Exploring the Impact of Land Cover on the Occurrence of Ornithobacteriosis and Fowl Cholera: A Case-Case Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Source Population and Output Definition
2.3. Data Collection for Variables of Interest
2.4. Statistical Analysis
3. Results
3.1. Descriptive Statistics and Univariable Analysis
3.2. Multivariable Logistic Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ather, M.; Ravikanth, K.; Rekhe, D.S.; Maini, S. Effectiveness of Conventional and Alternative Therapy in Treatment of Respiratory Infections in Poultry. Vet. World 2009, 2, 313–316. [Google Scholar]
- Barbosa, E.V.; Cardoso, C.V.; de Cássia Figueira Silva, R.; de Mello Figueiredo Cerqueira, A.; Liberal, M.H.T.; Castro, H.C. Ornithobacterium rhinotracheale: An Update Review about An Emerging Poultry Pathogen. Vet. Sci. 2019, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Waller, L.; Underhill, L. Management of Avian Cholera Pasteurella multocida Outbreaks on Dyer Island, South Africa, 2002–2005. Afr. J. Mar. Sci. 2007, 29, 105–111. [Google Scholar] [CrossRef]
- Crawford, R.J.M.; Allwright, D.M.; Heyl, C.W. High Mortality of Cape Cormorants (Phalacrocorax capensis) off Western South Africa in 1991 Caused by Pasteurella multocida. Colon. Waterbirds 1992, 15, 236. [Google Scholar] [CrossRef]
- Österblom, H.; Van Der Jeugd, H.P.; Olsson, O. Adult Survival and Avian Cholera in Common Guillemots Uria aalge in the Baltic Sea. Ibis 2004, 146, 531–534. [Google Scholar] [CrossRef]
- Boulianne, M.; Blackall, P.J.; Hofacre, C.L.; Ruiz, J.A.; Sandhu, T.S.; Hafez, H.M.; Chin, R.P.; Register, K.B.; Jackwood, M.W. Pasteurellosis and Other Respiratory Bacterial Infections. In Diseases of Poultry; Swayne, D.E., Boulianne, M., Logue, C.M., McDougald, L.R., Nair, V., Suarez, D.L., Wit, S., Grimes, T., Johnson, D., Kromm, M., et al., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 831–889. ISBN 978-1-119-37116-8. [Google Scholar]
- Salmon, D.E. Investigations of Fowl Cholera. Rep. US Comm. Agric. 1880, 401, 445. [Google Scholar]
- Harper, M.; Boyce, J.D.; Adler, B. Pasteurella multocida Pathogenesis: 125 Years after Pasteur: Pasteurella multocida Pathogenesis. FEMS Microbiol. Lett. 2006, 265, 1–10. [Google Scholar] [CrossRef]
- Petersen, K.D.; Christensen, J.P.; Permin, A.; Bisgaard, M. Virulence of Pasteurella multocida Subsp. Multocida Isolated from Outbreaks of Fowl Cholera in Wild Birds for Domestic Poultry and Game Birds. Avian Pathol. 2001, 30, 27–31. [Google Scholar] [CrossRef]
- Tatum, F.M.; Yersin, A.G.; Briggs, R.E. Construction and Virulence of a Pasteurella multocida fhaB2 Mutant in Turkeys. Microb. Pathog. 2005, 39, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Sacco, R.E.; Saif, Y.M.; Nestor, K.E.; Anthony, N.B.; Emmerson, D.A.; Dearth, R. Genetic Variation in Resistance of Turkeys to Experimental Challenge with Pasteurella multocida. Avian Dis. 1991, 35, 950–954. [Google Scholar] [CrossRef] [PubMed]
- Niemi, J.K. The Economic Cost of Bacterial Infections. In Advancements and Technologies in Pig and Poultry Bacterial Disease Control; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–23. ISBN 978-0-12-818030-3. [Google Scholar]
- Pattison, M. Poultry Diseases, 6th ed.; Elsevier/Butterworth-Heinemann: New York, NY, USA, 2008; ISBN 978-0-7020-2862-5. [Google Scholar]
- Wilson, B.A.; Ho, M. Pasteurella multocida: From Zoonosis to Cellular Microbiology. Clin. Microbiol. Rev. 2013, 26, 631–655. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.; Miller, E.; Aguayo, J.M.; Figueroa, C.F.; Nezworski, J.; Studniski, M.; Wileman, B.; Johnson, T. Genomic Diversity and Molecular Epidemiology of Pasteurella multocida. PLoS ONE 2021, 16, e0249138. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.; Froebel, L. Turkey Industry Annual Report—Current Health and Industry Issues Facing The US Turkey Industry. In Proceedings of the 124th Annual Meeting of the USAHA, Virtual, 14 October 2020. [Google Scholar]
- Pan, Q.; Liu, A.; Zhang, F.; Ling, Y.; Ou, C.; Hou, N.; He, C. Co-Infection of Broilers with Ornithobacterium rhinotracheale and H9N2 Avian Influenza Virus. BMC Vet. Res. 2012, 8, 104. [Google Scholar] [CrossRef]
- Morales-Erasto, V.; Falconi-Agapito, F.; Luna-Galaz, G.A.; Saravia, L.E.; Montalvan-Avalos, A.; Soriano-Vargas, E.; Fernández-Díaz, M. Coinfection of Avibacterium paragallinarum and Ornithobacterium rhinotracheale in Chickens from Peru. Avian Dis. 2016, 60, 75–78. [Google Scholar] [CrossRef]
- Mbuthia, P.G.; Njagi, L.W.; Nyaga, P.N.; Bebora, L.C.; Minga, U.; Kamundia, J.; Olsen, J.E. Pasteurella multocida in Scavenging Family Chickens and Ducks: Carrier Status, Age Susceptibility and Transmission between Species. Avian Pathol. 2008, 37, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Korbel, R.; Gerlach, H.; Bisgaard, M.; Hafez, H.M. Further Investigations on Pasteurella multocida Infections in Feral Birds Injured by Cats. J. Vet. Med. B 1992, 39, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.P.; Bisgaard, M. Fowl Cholera: -EN- -FR- -ES-. Rev. Sci. Tech. OIE 2000, 19, 626–637. [Google Scholar] [CrossRef] [PubMed]
- Wilkie, I.W.; Harper, M.; Boyce, J.D.; Adler, B. Pasteurella multocida: Diseases and Pathogenesis. In Pasteurella multocida: Molecular Biology, Toxins and Infection; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–22. [Google Scholar]
- Samuel, M.D.; Botzler, R.G.; Wobeser, G.A. Avian Cholera. In Infectious Diseases of Wild Birds; Thomas, N.J., Hunter, D.B., Atkinson, C.T., Eds.; Wiley: Hoboken, NJ, USA, 2007; pp. 239–269. ISBN 978-0-8138-2812-1. [Google Scholar]
- Van Empel, P.; Hafez, H. Ornithobacterium rhinotracheale: A Review. Avian Pathol. 1999, 28, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Remington, B.; Blackall, P.; Turni, C. Epidemiology of Fowl Cholera in Free Range Broilers. Avian Dis. 2014, 58, 124–128. [Google Scholar] [CrossRef]
- Hafez, H.M. Diagnosis of Ornithobacterium rhinotracheale. Int. J. Poult. Sci. 2002, 1, 114–118. [Google Scholar]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land Cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef]
- Lambin, E. Land Cover Assessment and Monitoring. In Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation; Wiley Online Library: Hoboken, NJ, USA, 2006. [Google Scholar]
- Gottdenker, N.L.; Streicker, D.G.; Faust, C.L.; Carroll, C.R. Anthropogenic Land Use Change and Infectious Diseases: A Review of the Evidence. EcoHealth 2014, 11, 619–632. [Google Scholar] [CrossRef] [PubMed]
- Blanchong, J.A.; Samuel, M.D.; Goldberg, D.R.; Shadduck, D.J.; Lehr, M.A. Persistence of Pasteurella multocida in Wetlands Following Avian Cholera Outbreaks. J. Wildl. Dis. 2006, 42, 33–39. [Google Scholar] [CrossRef]
- Audigé, L.; Dohoo, W.; Martin, H.; Stryhn, H. Veterinary Epidemiologic Research: I. In Veterinary Epidemiologic Research; Atlantic Veterinary College: Charlottetown, PE, Canada; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- McCarthy, N.; Giesecke, J. Case-Case Comparisons to Study Causation of Common Infectious Diseases. Int. J. Epidemiol. 1999, 28, 764–768. [Google Scholar] [CrossRef]
- Campler, M.R.; Hashish, A.; Ghanem, M.; El-Gazzar, M.M.; Arruda, A.G. Space–Time Patterns of Poultry Pathogens in the USA: A Case Study of Ornithobacterium rhinotracheale and Pasteurella multocida in Turkey Populations. Pathogens 2023, 12, 1004. [Google Scholar] [CrossRef]
- Maroney, S.; McCool-Eye, M.J.; Fox, A.; Burdett, C. Using Object-Based Image Analysis to Map Commercial Poultry Operations from High Resolution Imagery to Support Animal Health Outbreaks and Events. Geospat. Health 2020, 15, 919. [Google Scholar] [CrossRef] [PubMed]
- Vittinghoff, E.; Glidden, D.V.; Shiboski, S.C.; McCulloch, C.E. Regression Methods in Biostatistics: Linear, Logistic, Survival, and Repeated Measures Models; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Greenland, S.; Pearl, J.; Robins, J.M. Causal Diagrams for Epidemiologic Research. Epidemiology 1999, 10, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, W.S. Robust Locally Weighted Regression and Smoothing Scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Royston, P.; Sauerbrei, W. Multivariable Model-Building: A Pragmatic Approach to Regression Anaylsis Based on Fractional Polynomials for Modelling Continuous Variables; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Bursac, Z.; Gauss, C.H.; Williams, D.K.; Hosmer, D.W. Purposeful Selection of Variables in Logistic Regression. Source Code Biol. Med. 2008, 3, 17. [Google Scholar] [CrossRef]
- Daly, L.E. Confidence Limits Made Easy: Interval Estimation Using a Substitution Method. Am. J. Epidemiol. 1998, 147, 783–790. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Strugnell, B.W.; Dagleish, M.P.; Bayne, C.W.; Brown, M.; Ainsworth, H.L.; Nicholas, R.A.J.; Hodgson, J.C. Investigations into an Outbreak of Corvid Respiratory Disease Associated with Pasteurella Multocida. Avian Pathol. 2011, 40, 329–336. [Google Scholar] [CrossRef]
- Christensen, J.P.; Dietz, H.H.; Bisgaard, M. Phenotypic and Genotypic Characters of Isolates of Pasteurella multocida Obtained from Back-Yard Poultry and from Two Outbreaks of Avian Cholera in Avifauna in Denmark. Avian Pathol. 1998, 27, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Iverson, S.A.; Forbes, M.R.; Simard, M.; Soos, C.; Gilchrist, H.G. Avian Cholera Emergence in Arctic-Nesting Northern Common Eiders: Using Community-Based, Participatory Surveillance to Delineate Disease Outbreak Patterns and Predict Transmission Risk. Ecol. Soc. 2016, 1, 12. [Google Scholar] [CrossRef]
- Rohr, J.R.; Raffel, T.R. Linking Global Climate and Temperature Variability to Widespread Amphibian Declines Putatively Caused by Disease. Proc. Natl. Acad. Sci. USA 2010, 107, 8269–8274. [Google Scholar] [CrossRef]
- Wood, J.P.; Choi, Y.W.; Chappie, D.J.; Rogers, J.V.; Kaye, J.Z. Environmental Persistence of a Highly Pathogenic Avian Influenza (H5N1) Virus. Environ. Sci. Technol. 2010, 44, 7515–7520. [Google Scholar] [CrossRef] [PubMed]
- Backstrand, J.M.; Botzler, R.G. Survival of Pasteurella multocida in Soil and Water in an Area Where Avian Cholera Is Enzootic. J. Wildl. Dis. 1986, 22, 257–259. [Google Scholar] [CrossRef]
- Fields, S. The Earth’s Open Wounds: Abandoned and Orphaned Mines. Environ. Health Perspect. 2003, 111, A154–A161. [Google Scholar] [CrossRef] [PubMed]
- Saja, D.B.; Hannibal, J.T. Quarrying History and Use of the Buena Vista Freestone, South-Central Ohio: Understanding the 19th Century Industrial Development of a Geological Resource. Ohio J. Sci. 2017, 117, 35–49. [Google Scholar] [CrossRef]
- Limstrom, G. Revegetation of Ohio’s Strip-Mined Land. Ohio J. Sci. 1964, 64, 112–119. [Google Scholar]
- Boulianne, M.; Brash, M.L.; Charlton, B.R.; Fitz-Coy, S.H. Avian Disease Manual, 7th ed.; American Association of Avian Pathologists: Jacksonville, FL, USA, 2013. [Google Scholar]
- Wickham, J.; Stehman, S.V.; Sorenson, D.G.; Gass, L.; Dewitz, J.A. Thematic Accuracy Assessment of the NLCD 2016 Land Cover for the Conterminous United States. Remote Sens. Environ. 2021, 257, 112357. [Google Scholar] [CrossRef] [PubMed]
Variables | PM | ORT | Odds Ratio (95% CI) | p-Value 1 |
---|---|---|---|---|
Number of farms | 28 | 37 | ||
# of poultry farms within 4.5 km radius, mean (SD) | 9.18 (5.65) | 9.32 (5.55) | 0.9952 (0.9103, 1.0881) | 0.916 |
Dist. to the nearest wetland (m), mean (SD) | 704.28 (458.12) | 1338.59 (663.29) | 0.9979 (0.9967, 0.9991) | 0.001 *** |
Dist. to the nearest forest (m), mean (SD) | 272.12 (182.58) | 412.15 (241.67) | 0.9968 (0.9942, 0.9995) | 0.018 * |
Dist. to the nearest herbaceous land (m), mean (SD) | 817.96 (601.09) | 861.26 (722.54) | 0.9999 (0.9992, 1.0006) | 0.794 |
Dist. to the nearest barren land (m), mean (SD) | 2318.34 (1557.53) | 3284.17 (1554.09) | 0.9996 (0.9993, 0.9999) | 0.020 * |
Dist. to the nearest water body (m), mean (SD) | 1040.63 (798.71) | 1282.29 (879.24) | 0.9996 (0.9990, 1.0003) | 0.260 |
Distance to the nearest pastureland, N (%) 2 | 0.694 | |||
Far | 13 (46.43) | 19 (51.35) | Ref. | |
Near | 15 (53.57) | 18 (48.65) | 0.8210 (0.3071, 2.1953) | |
Season, N (%) | 0.105 | |||
Autumn | 8 (28.57) | 3 (8.11) | Ref. | |
Spring | 8 (28.57) | 16 (43.24) | 0.1875 (0.0388, 0.9058) | |
Summer | 7 (25) | 7 (18.92) | 0.3750 (0.0691, 2.0338) | |
Winter | 5 (17.86) | 11 (29.73) | 0.1705 (0.0312, 0.9299) | |
Year of the outbreak, N (%) | 0.001 *** | |||
2014–2017 | 19 (67.86) | 3 (8.11) | Ref. | |
2018–2019 | 3 (10.71) | 26 (70.27) | 0.0182 (0.0033, 0.1003) | |
2020–2021 | 6 (21.43) | 8 (21.62) | 0.1184 (0.0236, 0.5945) |
Variables | OR (95% CI) | p-Value (WT) 1 | p-Value (LRT) 2 |
---|---|---|---|
Dist. to the nearest wetland (m) | 0.9976 (0.9960, 0.9992) | 0.004 ** | |
Year of the outbreak | 0.001 *** | ||
2014–2017 | Ref. | Ref. | |
2018–2019 | 0.0148 (0.0020, 0.1082) | 0.001 *** | |
2020–2021 | 0.0677 (0.0083, 0.5537) | 0.012 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, L.; Campler, M.R.; Wong, S.; Xiao, N.; Arruda, A.G. Exploring the Impact of Land Cover on the Occurrence of Ornithobacteriosis and Fowl Cholera: A Case-Case Study. Animals 2025, 15, 396. https://doi.org/10.3390/ani15030396
Ouyang L, Campler MR, Wong S, Xiao N, Arruda AG. Exploring the Impact of Land Cover on the Occurrence of Ornithobacteriosis and Fowl Cholera: A Case-Case Study. Animals. 2025; 15(3):396. https://doi.org/10.3390/ani15030396
Chicago/Turabian StyleOuyang, Lingyu, Magnus R. Campler, Sandy Wong, Ningchuan Xiao, and Andréia G. Arruda. 2025. "Exploring the Impact of Land Cover on the Occurrence of Ornithobacteriosis and Fowl Cholera: A Case-Case Study" Animals 15, no. 3: 396. https://doi.org/10.3390/ani15030396
APA StyleOuyang, L., Campler, M. R., Wong, S., Xiao, N., & Arruda, A. G. (2025). Exploring the Impact of Land Cover on the Occurrence of Ornithobacteriosis and Fowl Cholera: A Case-Case Study. Animals, 15(3), 396. https://doi.org/10.3390/ani15030396