Effects of Feeding Methionine Hydroxyl Analogue Chelated Zinc, Copper, and Manganese on Growth Performance, Nutrient Digestibility, Mineral Excretion and Welfare Conditions of Broiler Chickens: Part 1: Performance Aspects
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diets
2.2. Data Collection
2.2.1. Growth Performance
2.2.2. Carcass Characteristics, Gizzard Erosion Score, and Bone Parameters
2.2.3. Apparent Nutrient Digestibility
2.3. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Carcass Characteristics, Gizzard Erosion Score, and Bone Parameters
3.3. Nutrient Digestibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variable | ITM | M10 | T125 | M30 | SEM | p-Value |
---|---|---|---|---|---|---|
Air-dry weight (g) | 10.3 | 10.3 | 10.4 | 10.3 | 0.20 | 0.984 |
Oven-dry weight (g) | 9.09 | 9.05 | 9.10 | 8.98 | 0.17 | 0.961 |
Ash content (%) | 40.6 | 41.1 | 40.9 | 40.9 | 0.42 | 0.887 |
Length (mm) | 104.5 | 104.7 | 104.8 | 104.8 | 0.70 | 0.993 |
Diameter (mm) | 10.9 | 10.8 | 11.0 | 10.7 | 0.16 | 0.567 |
Breaking strength (N) | 463 | 485 | 498 | 457 | 19.39 | 0.417 |
References
- Echeverry, H.; Yitbarek, A.; Munyaka, P.; Alizadeh, M.; Cleaver, A.; Camelo-Jaimes, G.; Wang, P.; Karmin, O.; Rodriguez-Lecompte, J.C. Organic trace mineral supplementation enhances local and systemic innate immune responses and modulates oxidative stress in broiler chickens. Poult. Sci. 2016, 95, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Dieck, H.T.; Doring, F.; Roth, H.P.; Daniel, H. Changes in rat hepatic gene expression in response to zinc deficiency as assessed by DNA arrays. J. Nutr. 2003, 133, 1004–1010. [Google Scholar] [CrossRef]
- Lee, S.H.; Choi, S.C.; Chae, B.J.; Lee, J.K.; Acda, S.P. Evaluation of metal-amino acid chelates and complexes at various levels of copper and zinc in weanling pigs and broiler chicks. Asian-Australas. J. Anim. Sci. 2001, 14, 1734–1740. [Google Scholar] [CrossRef]
- Vieria, R.; Ferket, P.; Malheiros, R.D.; Hannas, M.; Crivellari, R.; Moraes, V.M.B.; Elliott, S. Feeding low dietary levels of organic trace minerals improves broiler performance and reduces excretion of minerals in litter. Br. Poult. Sci. 2020, 61, 574–582. [Google Scholar] [CrossRef]
- Peters, J.C.; Mahan, D.C. Effects of neonatal iron status, iron injections at birth, and weaning in young pigs from sows fed either organic or inorganic trace minerals. J. Anim. Sci. 2008, 86, 2261–2269. [Google Scholar] [CrossRef] [PubMed]
- Ji, F.; Luo, X.G.; Lu, L.; Liu, B.; Yu, S.X. Effect of manganese source on manganese absorption by the intestine of broilers. Poult. Sci. 2006, 85, 1947–1952. [Google Scholar] [CrossRef]
- Brooks, M.A.; Grimes, J.L.; Lloyd, K.E.; Valdez, F.; Spears, J.W. Relative bioavailability in chicks of manganese from manganese propionate. J. Appl. Poult. Res. 2012, 21, 126–130. [Google Scholar] [CrossRef]
- Bao, Y.M.; Choct, M.; Iji, P.A.; Bruerton, K. Effect of organically complexed copper, iron, manganese, and zinc on broiler performance, mineral excretion, and accumulation in tissues. J. Appl. Poult. Res. 2007, 16, 448–455. [Google Scholar] [CrossRef]
- AAFCO (American Association of Feed Control Officials). Feed terms and ingredient definitions. In American Association of Feed Control Officials 2020, Proceedings of the 2020 AAFCO Midyear Meeting, Albuquerque, NM, USA, 21–23 January 2020; Eyck, R.T., Ed.; American Association of Feed Control Officials: Champaign, IL, USA, 2020. [Google Scholar]
- Zhao, J.; Shirley, R.B.; Vazquez-Anon, M.; Dibner, J.J.; Richards, J.D.; Fisher, P.; Hampton, T.; Christensen, K.D.; Allard, J.P.; Giesen, A.F. Effects of chelated trace minerals on growth performance, breast meat yield, and footpad health in commercial meat broilers. J. Appl. Poult. Res. 2010, 19, 365–372. [Google Scholar] [CrossRef]
- Ghasemi, H.A.; Hajkhodadadi, I.; Hafizi, M.; Taherpour, K.; Nazaran, M.H. Effect of advanced chelate technology based trace minerals on growth performance, mineral digestibility, tibia characteristics, and antioxidant status in broiler chickens. Nutr. Metab. 2020, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sirri, F.; Maiorano, G.; Tavaniello, S.; Chen, J.; Petracci, M.; Meluzzi, A. Effect of different levels of dietary zinc, manganese, and copper from organic or inorganic sources on performance, bacterial chondronecrosis, intramuscular collagen characteristics, and occurrence of meat quality defects of broiler chickens. Poult. Sci. 2016, 95, 1813–1824. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Xie, B.; Wuren, Q.; Gao, M. Meta-analysis of the correlation between dietary copper supply and broiler performance. PLoS ONE 2020, 15, e0232876. [Google Scholar] [CrossRef]
- Das, T.K.; Mondal, M.K.; Biswas, P.; Bairagi, B.; Samanta, C.C. Influence of level of dietary inorganic and organic copper and energy level on the performance and nutrient utilization of broiler chickens. Asian Australas. J. Anim. Sci. 2010, 23, 82–89. [Google Scholar] [CrossRef]
- Samanta, B.; Biswas, A.; Ghosh, P.R. Effects of dietary copper supplementation on production performance and plasma biochemical parameters in broiler chickens. Br. Poult. Sci. 2011, 52, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Burnell, T.W.; Cromwell, G.L.; Stahly, T.S. Effects of dried whey and copper sulfate on the growth responses to organic acid in diets for weanling pigs. J. Anim. Sci. 1988, 66, 1100–1108. [Google Scholar] [CrossRef]
- Xia, M.S.; Hu, C.H.; Xu, Z.R. Effects of copper-bearing montmorillonite on growth performance, digestive enzyme activities, and intestinal microflora and morphology of male broilers. Poult. Sci. 2004, 83, 1868–1875. [Google Scholar] [CrossRef] [PubMed]
- Leeson, S. Copper metabolism and dietary needs. Worlds Poult. Sci. J. 2009, 65, 353–366. [Google Scholar] [CrossRef]
- Zhang, X.Q. Effects of Dietary Copper Source and Copper Level on Performance, Shank Pigmentation and Tissues’ Nutrients Deposition in Broiler. Master’s Thesis, Sichuan Agriculture University, Ya’an, China, 2009. [Google Scholar]
- Yang, W.; Zhao, C.; Zhang, C.; Yang, L. High dietary copper increases catecholamine concentrations in the hypothalami and midbrains of growing pigs. Biol. Trace Elem. Res. 2016, 170, 115–118. [Google Scholar] [CrossRef]
- Persia, M.E.; Baker, D.H.; Parsons, C.M. Tolerance for excess basic zinc chloride and basic copper chloride in chicks. Br. Poult. Sci. 2004, 45, 672–676. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Sadeghi, G.H.; Vaziry, A. The effect of copper in excess of the requirement during the starter period on subsequent performance of broiler chicks. J. Appl. Poult. Res. 2011, 20, 203–209. [Google Scholar] [CrossRef]
- Deo, C.; Biswas, A.; Sharma, D.; Agashe, J.L.; Tiwari, A.K. Effects of various copper sources and concentrations on performance, skeletal growth, and mineral content of excreta in broiler chickens. Biol. Trace Elem. Res. 2023, 201, 5786–5793. [Google Scholar] [CrossRef] [PubMed]
- Gaetke, L.M.; Chow, C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. J. Toxicol. 2003, 189, 147–163. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.G.; Ji, F.; Lin, Y.X.; Steward, F.A.; Lu, L.; Liu, B.; Yu, S.X. Effects of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability, and oxidation stability of vitamin E in feed. Poult. Sci. 2005, 84, 888–893. [Google Scholar] [CrossRef]
- Han, F.X.; Kingery, W.L.; Selim, H.M.; Gerard, P.D. Accumulation of heavy metals in a long-term poultry waste-amended soil. Soil Sci. 2000, 165, 260–268. [Google Scholar] [CrossRef]
- Bolan, N.; Khan, S.M.A.; Donaldson, J.; Adriano, D.C.; Matthew, C. Distribution and bioavailability of copper in farm effluent. Sci. Total Environ. 2003, 309, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, F.A.; Smith, S.R.; Alloway, B.J.; Carlton-Smith, C.; Chambers, B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
- Chowdhury, S.; Paik, I.; Namkung, H.; Lim, H. Responses of broiler chickens to organic copper fed in the form of copper-methionine chelate. Anim. Feed Sci. Technol. 2004, 115, 281–293. [Google Scholar] [CrossRef]
- Swirski, A.L.; Kasab-Bachi, H.; Rivers, J.; Wilson, J.B. Data driven enhancements to the intestinal integrity (I2) index: A novel approach to support poultry sustainability. Agriculture 2020, 10, 320. [Google Scholar] [CrossRef]
- Ma, Y.L.; Zanton, G.I.; Zhao, J.; Wedekind, K.; Escobar, J.; Vazquez-Añón, M. Multitrial analysis of the effects of copper level and source on performance in nursery pigs. J. Anim. Sci. 2015, 93, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Galiotto Miranda, P.A.; Remus, A.; Dalto, D.B.; Hilgemberg, R.; Beber Jasluk, G.; Rosário Silva, B.C.; Lehnen, C.R. A systematic review and meta-analysis of the effects of various sources and amounts of copper on nursery piglets. Vet. Sci. 2024, 11, 68. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yan, F.; Kuttappan, V.A.; Wedekind, K.; Vázquez-Añón, M.; Hancock, D. Effects of bis-chelated copper in growth performance and gut health in broiler chickens subject to coccidiosis vaccination or coccidia challenge. Front. Physiol. 2023, 13, 991318. [Google Scholar] [CrossRef] [PubMed]
- NHMRC (National Health and Medical Research Council). Australian Code of Practice for the Care and Use of Animals for Scientific Purposes, 8th rev. ed.; The National Health and Medical Research Council: Canberra, Australia, 2013. [Google Scholar]
- Ross Broiler Management Handbook 2018. Available online: https://aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-BroilerHandbook2018-EN.pdf (accessed on 18 December 2024).
- Ross Broiler Nutrition Specification 2022. Available online: https://aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-BroilerNutritionSpecifications2022-EN.pdf (accessed on 18 December 2024).
- Chen, J.; Yan, F.; Kuttappan, V.A.; Cook, K.; Buresh, B.; Roux, M.; Hancock, D.; Vázquez-Añón, M. Effect of methionine and trace minerals (zinc, copper and manganese) supplementation on growth performance of broilers subjected to Eimeria challenge. Front. Physiol. 2022, 13, 991320. [Google Scholar] [CrossRef]
- Brown, A.T.; Lemons, M.E.; Perryman, K.; Kiess, A.S.; Wamsley, K.G.S. Determining the relationship between varying inclusions of Bacillus lichenformis and tribasic copper chloride on 42-day-old Ross 708 male broiler performance. J. Appl. Poult. Res. 2021, 30, 100109. [Google Scholar] [CrossRef]
- Jensen, B.B. Extensive literature search on the ‘Effects of Copper intake levels in the gut microbiota profile of target animals, in particular piglets’. EFSA Support. Publ. 2016, 13, 1024E. [Google Scholar] [CrossRef]
- Kuttappan, V.A.; Manangi, M.; Bekker, M.; Chen, J.; Vazquez-Anon, M. Nutritional intervention strategies using dietary antioxidants and organic trace minerals to reduce the incidence of wooden breast and other carcass quality defects in broiler birds. Front. Physiol. 2021, 12, 663409. [Google Scholar] [CrossRef]
- Yi, G.F.; Atwell, C.A.; Hume, J.A.; Dibner, J.J.; Knight, C.D.; Richards, J.D. Determining the methionine activity of Mintrex organic trace minerals in broiler chicks by using radiolabel tracing or growth assay. Poult. Sci. 2007, 86, 877–887. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International. J. AOAC Int. 1994, 77, 1–296. [Google Scholar]
- Allain, V.; Mirabito, L.; Arnould, C.; Colas, M.; Le Bouquin, S.; Lupo, C.; Michel, V. Skin lesions in broiler chickens measured at the slaughterhouse: Relationships between lesions and between their prevalence and rearing factors. Br. Poult. Sci. 2009, 50, 407–417. [Google Scholar] [CrossRef]
- De Jong, I.C.; Gunnink, H.; Van Harn, J. Wet litter not only induces footpad dermatitis but also reduces overall welfare, technical performance, and carcass yield in broiler chickens. J. Appl. Poult. Res. 2014, 23, 51–58. [Google Scholar] [CrossRef]
- Tijare, V.V.; Yang, F.L.; Kuttappan, V.A.; Alvarado, C.Z.; Coon, C.N.; Owens, C.M. Meat quality of broiler breast fillets with white striping and woody breast muscle myopathies. Poult. Sci. 2016, 95, 2167–2173. [Google Scholar] [CrossRef] [PubMed]
- Pedrão, M.R.; de Souza, R.M.; Louvandini, H.; Louvandini, P.; de Souza, R.B.; de Morais Leite, N.; Coró, F.A.G. White striping and wooden breast myopathies in the poultry industry: An overview of changes in the skin, bone tissue and intestinal microbiota and their economic impact. In Advances in Poultry Nutrition Research; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Wijnen, H.J.; Molenaar, R.; van Roovert-Reijrink, I.A.M.; Van der Pol, C.W.; Kemp, B.; Van den Brand, H. Effects of incubation temperature pattern on broiler performance. Poult. Sci. 2020, 99, 3897–3907. [Google Scholar] [CrossRef]
- Gjevre, A.G.; Kaldhusdal, M.; Eriksen, G.S. Gizzard erosion and ulceration syndrome in chickens and turkeys: A review of causal or predisposing factors. Avian Pathol. 2013, 42, 297–303. [Google Scholar] [CrossRef]
- Short, F.J.; Gorton, P.; Wiseman, J.; Boorman, K.N. Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim Feed Sci Technol. 1996, 59, 215–221. [Google Scholar] [CrossRef]
- Jasek, A.; Latham, R.E.; Mañón, A.; Llamas-Moya, S.; Adhikari, R.; Poureslami, R.; Lee, J.T. Impact of a multicarbohydrase containing α-galactosidase and xylanase on ileal digestible energy, crude protein digestibility, and ileal amino acid digestibility in broiler chickens. Poult. Sci. 2018, 97, 3149–3155. [Google Scholar] [CrossRef] [PubMed]
- Virden, W.S.; Yeatman, J.B.; Barber, S.J.; Willeford, K.O.; Ward, T.L.; Fakler, T.M.; Kidd, M.T. Immune system and cardiac functions of progeny chicks from dams fed diets differing in zinc and manganese level and source. Poult. Sci. 2004, 83, 344–351. [Google Scholar] [CrossRef]
- Dibner, J.J.; Richards, J.D. Management beyond performance: Role of organic trace minerals. In Proceedings of the Arkansas Nutrition Conference, Rogers, AR, USA, 17–20 September 2006; The Poultry Federation: Little Rock, AR, USA, 2006. [Google Scholar]
- Yan, F.; Waldroup, P.W. Evaluation of Mintrex® manganese as a source of manganese for young broilers. Int. J. Poult. Sci. 2006, 5, 708–713. [Google Scholar] [CrossRef]
- Richards, J.; Shirley, R.; Winkelbauer, P.; Atwell, C.; Wuelling, C.; Wehmeyer, M.; Buttin, P. Bioavailability of zinc sources in chickens determined via real time polymerase chain reaction (RT-PCR) assay for metallothionein. In Proceedings of the 16th European Symposium on Poultry Nutrition, Strasbourg, France, 26–30 August 2007. [Google Scholar]
- Wang, Z.; Cerrate, S.; Coto, C.; Yan, F.; Waldroup, P.W. Evaluation of Mintrex copper as a source of copper in broiler diets. Int. J. Poult. Sci. 2007, 6, 308–313. [Google Scholar] [CrossRef]
- Elizondo-Vega, R.; Cortés-Campos, C.; Barahona, M.J.; Carril, C.; Ordenes, P.; Salgado, M.; Oyarce, K.; García-Robles, M.D.L.A. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression. Sci. Rep. 2016, 6, 33606. [Google Scholar] [CrossRef]
- Shahzad, R.; Jones, M.R.; Viles, J.H.; Jones, C.E. Endocytosis of the tachykinin neuropeptide, neurokinin B, in astrocytes and its role in cellular copper uptake. J. Inorg. Biochem. 2016, 162, 319–325. [Google Scholar] [CrossRef]
- Wu, X.; Dai, S.; Hua, J.; Hu, H.; Wang, S.; Wen, A. Influence of dietary copper methionine concentrations on growth performance, digestibility of nutrients, serum lipid profiles, and immune defenses in broilers. Biol. Trace Elem. Res. 2019, 191, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Pekel, A.Y.; Patterson, P.H.; Hulet, R.M.; Acar, N.; Cravener, T.L.; Dowler, D.B.; Hunter, J.M. Dietary camelina meal versus flaxseed with and without supplemental copper for broiler chickens: Live performance and processing yield. Poult. Sci. 2009, 88, 2392–2398. [Google Scholar] [CrossRef] [PubMed]
- Philpot, S.C.; Perryman, K.R.; Dozier III, W.A. Growth performance and carcass characteristics of broilers fed diets varying in supplemental copper concentrations from 29 to 53 days of age. J. Appl. Poult. Res. 2020, 29, 289–300. [Google Scholar] [CrossRef]
- Zhou, W.; Kornegay, E.T.; Van Laar, H.; Swinkels, J.W.G.M.; Wong, E.A.; Lindemann, M.D. The role of feed consumption and feed efficiency in copper-stimulated growth. J. Anim. Sci. 1994, 72, 2385–2394. [Google Scholar] [CrossRef] [PubMed]
- Tesseraud, S.; Peresson, R.; Lopes, J.; Chagneau, A.M. Dietary lysine deficiency greatly affects muscle and liver protein turnover in growing chickens. Br. J. Nutr. 1996, 75, 853–865. [Google Scholar] [CrossRef]
- Liao, S.F.; Wang, T.; Regmi, N. Lysine nutrition in swine and the related monogastric animals: Muscle protein biosynthesis and beyond. SpringerPlus 2015, 4, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rochell, S.J.; Usry, J.L.; Parr, T.M.; Parsons, C.M.; Dilger, R.N. Effects of dietary copper and amino acid density on growth performance, apparent metabolizable energy, and nutrient digestibility in Eimeria acervulina-challenged broilers. Poult. Sci. 2017, 96, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, C.; Mi, Y.; Kidd, M.T. Copper and lysine amino acid density responses in commercial broilers. J. Appl. Poult. Res. 2014, 23, 470–477. [Google Scholar] [CrossRef]
- Poupoulis, C.; Jensen, L.S. Effect of high dietary copper on gizzard integrity of the chick. Poult. Sci. 1976, 55, 113–121. [Google Scholar] [CrossRef]
- Fisher, G.; Laursen-Jones, A.P.; Hill, K.J.; Hardy, W.S. The effect of copper sulphate on performance and the structure of the gizzard in broilers. Br. Poult. Sci. 1973, 14, 55–68. [Google Scholar] [CrossRef]
- M’Sadeq, S.A.; Wu, S.B.; Choct, M.; Swick, R.A. Influence of trace mineral sources on broiler performance, lymphoid organ weights, apparent digestibility, and bone mineralization. Poult. Sci. 2018, 97, 3176–3182. [Google Scholar] [CrossRef] [PubMed]
- El-Husseiny, O.M.; Hashish, S.M.; Ali, R.A.; Arafa, S.A.; Abd El-Samee, L.D.; Olemy, A.A. Effects of feeding organic zinc, manganese and copper on broiler growth, carcass characteristics, bone quality and mineral content in bone, liver and excreta. Int. J. Poult. Sci. 2012, 11, 368. [Google Scholar] [CrossRef]
- Bao, Y.M.; Choct, M.; Iji, P.A.; Bruerton, K. The digestibility of organic trace minerals along the small intestine in broiler chickens. Asian-Australas. J. Anim. Sci. 2010, 23, 90–97. [Google Scholar] [CrossRef]
- David, L.S.; Abdollahi, M.R.; Ravindran, G.; Walk, C.L.; Ravindran, V. Studies on the measurement of ileal calcium digestibility of calcium sources in broiler chickens. Poult. Sci. 2019, 98, 5582–5589. [Google Scholar] [CrossRef] [PubMed]
- Sprigg, C.; Leftwich, P.T.; Burton, E.; Scholey, D.; Bedford, M.R.; Brearley, C.A. Accentuating the positive and eliminating the negative: Efficacy of TiO2 as digestibility index marker for poultry nutrition studies. PLoS ONE 2023, 18, e0284724. [Google Scholar] [CrossRef]
- Richards, J.; Fisher, P.; Evans, J.; Wedekind, K. Greater bioavailability of chelated compared with inorganic zinc in broiler chicks in the presence or absence of elevated calcium and phosphorous. Open Access Anim. Physiol. 2015, 7, 97–110. [Google Scholar] [CrossRef]
- Kim, G.B.; Seo, Y.M.; Shin, K.S.; Rhee, A.R.; Han, J.; Paik, I.K. Effects of supplemental copper-methionine chelate and copper-soy proteinate on the performance, blood parameters, liver mineral content, and intestinal microflora of broiler chickens. J. Appl. Poult. Res. 2011, 20, 21–32. [Google Scholar] [CrossRef]
- Kim, C.H.; Woo, K.C.; Kim, G.-B.; Park, Y.H.; Paik, I.K. Effects of supplementary multiple probiotics or single probiotic on the performance, intestinal microflora, immune response of laying hens and broilers. J. Poult. Sci. 2010, 37, 51–62. [Google Scholar] [CrossRef]
- Dao, T.H.; Nguyen, H.D.; Moss, A.F.; Yan, F.; Romero, H. Feeding methionine hydroxyl analogue chelated trace minerals reduces mineral excretion to the environment in broiler chickens. In Proceedings of the International Poultry Science Forum, Atlanta, GA, USA, 29–30 January 2024. [Google Scholar]
Treatment Number | Treatment Code | Trace Mineral Level and Source |
---|---|---|
1 | ITM | Inorganic trace mineral 110 ppm Zn as ZnSO4, 16 ppm Cu as CuSO4, and 120 ppm Mn as MnO per Ross 308 nutritional recommendations [36]. |
2 | M10 | Amounts of 40 ppm Zn, 10 ppm Cu, and 40 ppm Mn as chelate (MINTREX® *). |
3 | T125 | Inorganic trace mineral 110 ppm Zn as ZnSO4 and 120 ppm Mn as MnO per Ross 308 guidelines, with 125 ppm Cu as tribasic copper chloride (TBCC). |
4 | M30 | Amounts of 40 ppm Zn, 30 ppm Cu, and 40 ppm Mn as chelate (MINTREX®). |
Ingredients % | Starter (Days 0–10) | Grower (Days 10–21) | Finisher (Days 21–42) |
---|---|---|---|
Wheat | 38.89 | 34.37 | 38.94 |
Sorghum | 20.00 | 30.00 | 30.00 |
Soybean meal | 34.33 | 29.09 | 25.65 |
Canola oil | 2.84 | 2.92 | 2.83 |
Limestone | 1.14 | 0.86 | 0.79 |
Dicalcium phosphate | 1.13 | 0.75 | 0.45 |
Xylanase (Econase XT 5P) | 0.002 | 0.002 | 0.002 |
Phytase (Quantum Blue 5G) | 0.01 | 0.01 | 0.01 |
Salt | 0.20 | 0.17 | 0.19 |
Sodium bicarbonate | 0.23 | 0.17 | 0.16 |
Titanium dioxide | 0.00 | 0.50 | 0.00 |
Vitamin–mineral premix 1 | 0.10 | 0.10 | 0.10 |
Choline Cl 60% | 0.048 | 0.054 | 0.041 |
L-lysine HCl | 0.362 | 0.341 | 0.309 |
D,L-methionine | 0.438 | 0.395 | 0.351 |
L-threonine | 0.176 | 0.149 | 0.118 |
L-arginine | 0.050 | 0.067 | 0.056 |
L-valine | 0.056 | 0.044 | 0.023 |
Calculated nutrient % (otherwise as stated) | |||
Dry matter | 91.0 | 90.9 | 90.9 |
AMEn 2, kcal/kg | 2975 | 3050 | 3100 |
Crude protein | 22.9 | 20.9 | 19.7 |
Crude fat | 4.76 | 5.05 | 5.02 |
Crude fibre | 3.20 | 3.42 | 3.39 |
Ash content | 4.68 | 4.47 | 3.50 |
Dig. 3 lysine | 1.320 | 1.180 | 1.080 |
Dig. methionine | 0.708 | 0.647 | 0.592 |
Dig. methionine + cysteine | 1.000 | 0.920 | 0.860 |
Dig. threonine | 0.880 | 0.790 | 0.720 |
Calcium | 0.950 | 0.750 | 0.650 |
Available phosphorus | 0.500 | 0.420 | 0.360 |
Sodium | 0.210 | 0.180 | 0.180 |
Potassium | 1.013 | 0.918 | 0.863 |
Chloride | 0.250 | 0.230 | 0.230 |
Choline, mg/kg | 1700 | 1600 | 1500 |
Linoleic acid | 1.686 | 1.803 | 1.813 |
Dietary electrolyte balance, mEq/kg | 302 | 269 | 253 |
Nutrients | Starter (Days 0–10) | Grower (Days 10–21) | Finisher (Days 21–42) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ITM | M10 | T125 | M30 | ITM | M10 | T125 | M30 | ITM | M10 | T125 | M30 | |
DM, % | 89.3 | 88.6 | 89.5 | 89.2 | 89.5 | 89.7 | 90.3 | 89.0 | 89.7 | 89.6 | 89.6 | 89.7 |
GE, kcal/kg | 4039 | 3997 | 4025 | 4021 | 4038 | 4046 | 4079 | 4000 | 4074 | 4082 | 4083 | 4084 |
CP, % | 22.0 | 22.0 | 22.8 | 22.0 | 20.8 | 21.0 | 21.5 | 21.2 | 19.5 | 19.3 | 19.5 | 19.8 |
Cu, µg/g | 19.8 | 20.2 | 123.8 | 55.1 | 21.7 | 20.5 | 135.5 | 45.8 | 18.2 | 20.9 | 137.2 | 44.8 |
Zn, µg/g | 115.2 | 71.9 | 117.6 | 72.2 | 124.2 | 68.1 | 119.6 | 60.9 | 123.1 | 57.9 | 122.9 | 58.9 |
Mn, µg/g | 166 | 137 | 167 | 139 | 203 | 121 | 192 | 117 | 172 | 111 | 171 | 105 |
P, % | 0.66 | 0.67 | 0.66 | 0.66 | 0.60 | 0.59 | 0.59 | 0.57 | 0.51 | 0.52 | 0.51 | 0.50 |
Ca, % | 0.74 | 0.84 | 0.85 | 0.81 | 0.64 | 0.68 | 0.63 | 0.60 | 0.57 | 0.58 | 0.52 | 0.52 |
Mg, % | 0.19 | 0.19 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.17 | 0.17 | 0.17 | 0.16 |
Na, % | 0.13 | 0.15 | 0.15 | 0.14 | 0.12 | 0.13 | 0.12 | 0.12 | 0.13 | 0.14 | 0.12 | 0.12 |
K, % | 1.13 | 1.09 | 1.07 | 1.08 | 1.00 | 0.99 | 1.00 | 0.99 | 0.92 | 0.92 | 0.91 | 0.90 |
S, % | 0.32 | 0.33 | 0.34 | 0.32 | 0.31 | 0.30 | 0.31 | 0.29 | 0.30 | 0.29 | 0.28 | 0.28 |
Al, µg/g | 68.5 | 71.8 | 71.6 | 65.6 | 52.7 | 53.2 | 53.6 | 49.6 | 51.9 | 47.8 | 43.9 | 44.5 |
Fe, µg/g | 99.5 | 114.3 | 108.9 | 102.0 | 100.3 | 98.1 | 99.6 | 89.8 | 89.2 | 90.4 | 86.7 | 88.1 |
B, µg/g | 17.0 | 16.5 | 15.9 | 15.9 | 15.5 | 15.4 | 15.6 | 15.4 | 13.8 | 13.7 | 12.5 | 11.9 |
Cr, µg/g | 0.38 | 0.46 | 0.40 | 0.39 | 1.24 | 1.15 | 1.23 | 1.06 | 0.57 | 0.58 | 0.34 | 0.27 |
Co, µg/g | 2.24 | 1.07 | 0.90 | 0.67 | 0.91 | 0.69 | 0.87 | 0.61 | 0.78 | 0.65 | 0.65 | 0.50 |
Feeding Phase | Variable | ITM | M10 | T125 | M30 | SEM | p-Value |
---|---|---|---|---|---|---|---|
Starter (days 0–10) | Weight gain (g/bird) | 288 | 309 | 292 | 301 | 7.93 | 0.308 |
Feed intake (g/bird) | 294 | 316 | 297 | 309 | 8.71 | 0.312 | |
FCR | 1.020 | 1.022 | 1.016 | 1.028 | 0.006 | 0.665 | |
Liveability rate (%) | 96.2 | 98.1 | 98.1 | 98.1 | 1.82 | 0.675 | |
Grower (days 10–21) | Weight gain (g/bird) | 838 | 848 | 869 | 878 | 17.10 | 0.382 |
Feed intake (g/bird) | 1042 | 1081 | 1041 | 1085 | 14.93 | 0.086 | |
FCR | 1.244 ab | 1.278 b | 1.201 a | 1.237 ab | 0.014 | 0.021 | |
Liveability rate (%) | 99.0 | 99.0 | 95.8 | 99.0 | 1.18 | 0.188 | |
Finisher (days 21–42) | Weight gain (g/bird) | 2312 | 2427 | 2443 | 2442 | 44.69 | 0.155 |
Feed intake (g/bird) | 4438 | 4557 | 4768 | 4682 | 82.11 | 0.057 | |
FCR | 1.924 | 1.884 | 1.952 | 1.920 | 0.041 | 0.725 | |
Liveability rate (%) | 97.2 | 97.2 | 91.1 | 94.4 | 2.38 | 0.085 | |
Overall (days 0–42) | Weight gain (g/bird) | 3441 | 3583 | 3612 | 3625 | 49.79 | 0.063 |
Feed intake (g/bird) | 5774 | 5954 | 6106 | 6077 | 95.87 | 0.052 | |
FCR | 1.679 | 1.664 | 1.690 | 1.677 | 0.023 | 0.888 | |
Liveability rate (%) | 93.3 | 95.2 | 88.5 | 93.3 | 2.26 | 0.244 | |
Overall liveability and European productivity index (days 0–42) | 462 | 494 | 455 | 487 | 16.63 | 0.308 | |
Coefficient of variation in mean individual body weight at day 42 | 8.12 | 7.13 | 6.47 | 5.77 | 1.03 | 0.499 |
Feeding Phase | Variable | ITM | M10 | T125 | M30 | SEM | p-Value |
---|---|---|---|---|---|---|---|
Starter (days 0–10) | Water intake (L/bird) | 0.73 | 0.73 | 0.76 | 0.73 | 0.03 | 0.872 |
Water intake (L/kg BW) | 2.52 | 2.38 | 2.52 | 2.42 | 0.09 | 0.625 | |
Water/feed intake | 2.47 | 2.33 | 2.47 | 2.35 | 0.08 | 0.501 | |
Grower (days 10–21) | Water intake (L/bird) | 1.96 | 2.09 | 1.96 | 2.04 | 0.04 | 0.182 |
Water intake (L/kg BW) | 2.32 | 2.45 | 2.25 | 2.34 | 0.05 | 0.057 | |
Water/feed intake | 1.87 | 1.93 | 1.88 | 1.89 | 0.02 | 0.529 | |
Finisher (days 21–42) | Water intake (L/bird) | 6.65 a | 7.03 ab | 6.70 ab | 7.06 b | 0.11 | 0.020 |
Water intake (L/kg BW) | 2.86 | 2.90 | 2.79 | 2.87 | 0.04 | 0.464 | |
Water/feed intake | 1.49 | 1.55 | 1.45 | 1.52 | 0.03 | 0.117 | |
Overall (days 0–42) | Water intake (L/bird) | 9.32 a | 10.07 b | 9.39 a | 9.83 ab | 0.13 | 0.002 |
Water intake (L/kg BW) | 2.71 ab | 2.78 b | 2.60 a | 2.70 ab | 0.03 | 0.010 | |
Water/feed intake | 1.59 ab | 1.68 b | 1.57 a | 1.63 ab | 0.02 | 0.046 |
Variable | ITM | M10 | T125 | M30 | SEM | p-Value |
---|---|---|---|---|---|---|
Breast | 684 | 716 | 719 | 713 | 14.86 | 0.415 |
Thigh | 397 | 413 | 412 | 425 | 7.29 | 0.078 |
Drumstick | 320 | 335 | 332 | 340 | 4.68 | 0.058 |
Thigh and drumstick | 717 a | 748 ab | 745 ab | 765 b | 11.32 | 0.050 |
Fat pad | 32.3 | 33.1 | 33.4 | 35.5 | 1.59 | 0.546 |
Liver | 68.0 | 67.4 | 66.0 | 71.1 | 2.41 | 0.528 |
Heart | 18.8 | 18.6 | 19.2 | 19.2 | 0.68 | 0.898 |
Kidney | 9.49 | 10.2 | 10.6 | 10.6 | 0.51 | 0.413 |
Woody breast score | 0.792 | 0.583 | 0.917 | 0.583 | 0.148 | 0.337 |
Breast white striping score | 1.917 | 1.583 | 1.750 | 1.750 | 0.223 | 0.788 |
Nutrient Digestibility Coefficient | ITM | M10 | T125 | M30 | SEM | p-Value |
---|---|---|---|---|---|---|
Cu | 0.046 a | −0.001 a | 0.207 ab | 0.250 b | 0.053 | 0.006 |
Zn | −0.040 | −0.062 | −0.039 | −0.014 | 0.045 | 0.902 |
Mn | −0.001 | −0.114 | −0.033 | −0.020 | 0.047 | 0.371 |
P | 0.637 | 0.669 | 0.676 | 0.655 | 0.017 | 0.428 |
Ca | 0.567 | 0.559 | 0.575 | 0.532 | 0.024 | 0.599 |
Nitrogen (protein) | 0.846 | 0.854 | 0.858 | 0.849 | 0.005 | 0.314 |
Energy | 0.762 | 0.775 | 0.768 | 0.761 | 0.006 | 0.293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, H.D.; Moss, A.F.; Yan, F.; Romero-Sanchez, H.; Dao, T.H. Effects of Feeding Methionine Hydroxyl Analogue Chelated Zinc, Copper, and Manganese on Growth Performance, Nutrient Digestibility, Mineral Excretion and Welfare Conditions of Broiler Chickens: Part 1: Performance Aspects. Animals 2025, 15, 421. https://doi.org/10.3390/ani15030421
Nguyen HD, Moss AF, Yan F, Romero-Sanchez H, Dao TH. Effects of Feeding Methionine Hydroxyl Analogue Chelated Zinc, Copper, and Manganese on Growth Performance, Nutrient Digestibility, Mineral Excretion and Welfare Conditions of Broiler Chickens: Part 1: Performance Aspects. Animals. 2025; 15(3):421. https://doi.org/10.3390/ani15030421
Chicago/Turabian StyleNguyen, Hoang Duy, Amy Fay Moss, Frances Yan, Hugo Romero-Sanchez, and Thi Hiep Dao. 2025. "Effects of Feeding Methionine Hydroxyl Analogue Chelated Zinc, Copper, and Manganese on Growth Performance, Nutrient Digestibility, Mineral Excretion and Welfare Conditions of Broiler Chickens: Part 1: Performance Aspects" Animals 15, no. 3: 421. https://doi.org/10.3390/ani15030421
APA StyleNguyen, H. D., Moss, A. F., Yan, F., Romero-Sanchez, H., & Dao, T. H. (2025). Effects of Feeding Methionine Hydroxyl Analogue Chelated Zinc, Copper, and Manganese on Growth Performance, Nutrient Digestibility, Mineral Excretion and Welfare Conditions of Broiler Chickens: Part 1: Performance Aspects. Animals, 15(3), 421. https://doi.org/10.3390/ani15030421