Does a 4–6 Week Shoeing Interval Promote Optimal Foot Balance in the Working Equine?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Method
2.1. Protocol
2.2. Data Processing and Analysis
3. Results
3.1. Hoof Measurements
3.2. Medio-Lateral Variation
3.3. Centre of Pressure
3.4. Measurement Correlations
4. Discussion
Limitations
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Oosterlinck, M.; Hardeman, L.C.; van der Meij, B.R.; Veraa, S.; van der Kolk, J.H.; Wijnberg, I.D.; Pille, F.; Back, W. Pressure plate analysis of toe-heel and medio-lateral hoof balance at the walk and trot in sound sport horses. Vet. J. 2013, 198, e9–e13. [Google Scholar] [CrossRef] [PubMed]
- Dyson, S.J.; Tranquille, C.A.; Collins, S.N.; Parkin, T.D.H.; Murray, R.C. An investigation of the relationships between angles and shapes of the hoof capsule and the distal phalanx. Equine Vet. J. 2011, 43, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Baxter, G.M. Adams and Stashak’s Lameness in Horses, 6th ed.; Baxter, G.M., Ed.; John Wiley & Sons: Oxford, UK, 2011. [Google Scholar]
- Van Heel, M.C.V.; Moleman, M.; Barneveld, A.; Van Weeren, P.R.; Back, W. Changes in location of centre of pressure and hoof-unrollment pattern in relation to an 8-week shoeing interval in the horse. Equine Vet. J. 2005, 37, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Ducro, B.J.; Gorissen, B.; van Eldik, P.; Back, W. Influence of foot conformation on duration of competitive life in a Dutch Warmblood horse population. Equine Vet. J. 2009, 41, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Moleman, M.; van Heel, M.C.V.; van Weeren, P.R.; Back, W. Hoof growth between two shoeing sessions leads to a substantial increase of the moment about the distal, but not the proximal, interphalangeal joint. Equine Vet. J. 2006, 38, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Senden, A.I.P. A Comparison between Unshod and Shod Front Hooves of Thoroughbreds and the Effect of Trimming. Master’s Thesis, Utrecht University, Utrecht, The Neherlands, 2009. [Google Scholar]
- Kummer, M.; Geyer, H.; Imboden, I.; Auer, J.; Lischer, C. The effect of hoof trimming on radiographic measurements of the front feet of normal Warmblood horses. Vet. J. 2006, 172, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Van Heel, M.C.V.; Kroekenstoel, A.M.; van Dierendonck, M.C.; van Weeren, P.R.; Back, W. Uneven feet in a foal may develop as a consequence of lateral grazing behaviour induced by conformational traits. Equine Vet. J. 2006, 38, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Elishar, E.; McGuigan, M.P.; Wilson, A.M. Relationship of foot conformation and force applied to the navicular bone of sound horses at the trot. Equine Vet. J. 2004, 36, 431–435. [Google Scholar] [CrossRef]
- Page, B.T.; Hagan, T.L. Breakover of the hoof and its effect on structures and forces within the foot. J. Equine Vet. Sci. 2002, 22, 258–264. [Google Scholar] [CrossRef]
- Duberstein, K.J.; Johnson, E.L.; Whitehead, A. Effects of shortening breakover at the toe on gait kinematics at the walk and trot. J. Equine Vet. Sci. 2013, 33, 930–936. [Google Scholar] [CrossRef]
- O’Grady, S.E. Therapeutic Shoes: Application of Principles. In Equine Laminitis; Belknap, J.K., Geor, R.J., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; p. 343. [Google Scholar]
- Parks, A. Foot balance and conformation: Clinical perspectives. J. Equine Vet. Sci. 2005, 25, 230. [Google Scholar] [CrossRef]
- Johnston, C.; Back, W. Hoof ground interaction: When biomechanical stimuli challenge the tissues of the distal limb. Equine Vet. J. 2006, 38, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Floyd, A.; Mansmann, R. Equine Podiatry; Elsevier Health Sciences: Philidelphia, PA, USA, 2007; p. 480. [Google Scholar]
- Van Heel, M.C.V.; Barneveld, A.; van Weeren, P.R.; Back, W. Dynamic pressure measurements for the detailed study of hoof balance: The effect of trimming. Equine Vet. J. 2004, 36, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.H.; McDonald, K.; O’Connell, M.J. Skeletal forelimb measurements and hoof spread in relation to asymmetry in the bilateral forelimb of horses. Equine Vet. J. 2009, 41, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Labens, R.; Redding, W.R.; Desai, K.K.; Vom Orde, K.; Mansmann, R.A.; Blikslager, A.T. Validation of a photogrammetric technique for computing equine hoof volume. Vet. J. 2013, 197, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.; Hood, D.M.; Wagner, I.P. Short-term effect of therapeutic shoeing on severity of lameness in horses with chronic laminitis. Am. J. Vet. Res. 2002, 63, 1629–1633. [Google Scholar] [CrossRef] [PubMed]
- White, J.M.; Mellor, D.J.; Duz, M.; Lischer, C.J.; Voute, L.C. Diagnostic accuracy of digital photography and image analysis for the measurement of foot conformation in the horse. Equine Vet. J. 2008, 40, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Dyson, S.J.; Tranquille, C.A.; Collins, S.N.; Parkin, T.D.H.; Murray, R.C. External characteristics of the lateral aspect of the hoof differ between non-lame and lame horses. Vet. J. 2011, 190, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Clayton, H.M.; Gray, S.; Kaiser, L.J.; Bowker, R.M. Effects of barefoot trimming on hoof morphology. Aust. Vet J. 2011, 89, 305–311. [Google Scholar] [CrossRef] [PubMed]
- Kroekenstoel, A.M.; Heel, M.C.V.; Weeren, P.R.; Back, W. Developmental aspects of distal limb conformation in the horse: The potential consequences of uneven feet in foals. Equine Vet. J. 2006, 38, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Wright, I.M. A study of 118 cases of navicular disease: Clinical features. Equine Vet. J. 1993, 25, 488–492. [Google Scholar] [CrossRef] [PubMed]
- O’Grady, S.E.; Poupard, D.A. Physiological horseshoeing: An overview. Equine Vet Educ. 2001, 13, 330–334. [Google Scholar] [CrossRef]
- Gill, D.W. Farriery: The Whole Horse Concept: The Enigmas of Hoof Balance Made Clear; Nottingham University Press: Notingham, UK, 2007. [Google Scholar]
- Gordon, S.; Rogers, C.; Weston, J.; Bolwell, C.; Doloonjin, O. The Forelimb and Hoof Conformation in a Population of Mongolian Horses. J. Equine Vet. Sci. 2013, 33, 90–94. [Google Scholar] [CrossRef]
- Hickman, J.; Humphrey, M. Hickman’s Farriery, 2nd ed.; JA Allen: London, UK, 1988. [Google Scholar]
- Cruz, C.; Thomason, J.; Faramarzi, B.; Bignell, W.; Sears, W.; Dobson, H.; Konyer, N.B. Changes in shape of the Standardbred distal phalanx and hoof capsule in response to exercise. Equine Comp. Exerc. Physiol. 2007, 3, 199. [Google Scholar] [CrossRef]
- Thomason, J.J.; Biewener, A.A.; Bertram, J.E. Surface strain on the equine hoof wall in vivo: Implications for the material design and functional morphology of the wall. J. Exp. Biol. 1992, 166, 145–168. [Google Scholar]
- Barrey, E. Investigation of the vertical hoof force distribution in the equine forelimb with an instrumented horseboot. Equine Vet. J. Suppl. 1990, 9, 35–38. [Google Scholar] [CrossRef]
- O’Grady, S.E.; Poupard, D.A. Proper physiologic horseshoeing. Vet. Clin. North Am. Equine Pract. 2003, 19, 333–351. [Google Scholar] [CrossRef]
- Holroyd, K.; Dixon, J.J.; Mair, T.; Bolas, N.; Bolt, D.M.; David, F.; Weller, R. Variation in foot conformation in lame horses with different foot lesions. Vet. J. 2013, 195, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Ovnicek, G.D.; Page, B.T.; Trotter, G.W. Natural balance trimming and shoeing: Its theory and application. Vet. Clin. N. Am. Equine Pract. 2003, 19, 353–377. [Google Scholar] [CrossRef]
- Kane, A.J.; Stover, S.M.; Gardner, I.A.; Bock, K.B.; Case, J.T.; Johnson, B.J.; Anderson, M.L.; Barr, B.C.; Daft, B.M.; Kinde, H.; et al. Hoof size, shape, and balance as possible risk factors for catastrophic musculoskeletal injury of Thoroughbred racehorses. Am. J. Vet. Res. 1998, 59, 1545–1552. [Google Scholar] [PubMed]
- Roland, E.; Stover, S.M.; Hull, M.L.; Dorsch, K. Geometric symmetry of the solar surface of hooves of Thoroughbred racehorses. Am. Vet. Med. Assoc. 2005, 64, 1030–1039. [Google Scholar] [CrossRef]
- Pollitt, C.C. Clinical anatomy and physiology of the normal equine foot. Equine Vet. Educ. 1992, 4, 219–224. [Google Scholar] [CrossRef]
- Reilly, P.T. In-Shoe Force Measurements and Hoof Balance. J. Equine Vet. Sci. 2010, 30, 475–478. [Google Scholar] [CrossRef]
- Wilson, A.; Agass, R.; Vaux, S.; Sherlock, E.; Day, P.; Pfau, T.; Weller, R. Foot placement of the equine forelimb: Relationship between foot conformation, foot placement and movement asymmetry. Equine Vet. J. 2015, 48, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Egenvall, A.; Lönnell, C.; Roepstorff, L. Analysis of morbidity and mortality data in riding school horses, with special regard to locomotor problems. Prev. Vet. Med. 2009, 88, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Kummer, M.; Gygax, D.; Lischer, C.; Auer, J. Comparison of the trimming procedure of six different farriers by quantitative evaluation of hoof radiographs. Vet. J. 2009, 179, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Clayton, H. The effect of an acute hoof wall angulation on the stride kinematics of trotting horses. Equine Vet. J. 2010, 22 (Suppl. S9), 86–90. [Google Scholar] [CrossRef]
- Hood, D.M.; Taylor, D.; Wagner, I.P. Effects of ground surface deformability, trimming, and shoeing on quasistatic hoof loading patterns in horses. Am. J. Vet. Res. 2001, 62, 895–900. [Google Scholar] [CrossRef] [PubMed]
| |
| |
| |
| |
| |
| |
| |
|
Lateral Hoof Measurements | ||
---|---|---|
Variable | Abbreviation | Description |
Dorsal hoof wall length | DHWL | Length of dorsal hoof wall from hair line at the coronary band to ground level |
Weight bearing length lateral | WBL-L | Length from the dorsal to the palmar point of the hoof wall in contact with the ground surface |
Coronary band length | CBL | Length from the dorsal to the palmar point of the coronary band |
Dorsal hoof wall angle | DHWA | Angle between the dorsal hoof wall and the ground plane |
Heel angle | HLA | Angle between the palmer aspect of the hoof wall and the ground surface |
Dorsal coronary band height | DCBH | Vertical height between the dorsal region of the coronary band and the solar plane |
Palmer coronary band height | PCBH | Vertical height between the palmer region of the coronary band and the solar plane |
Dorsal Hoof Measurements | ||
---|---|---|
Variable | Abbreviation | Description |
Weight bearing length dorsal | WBL-D | Coronary band width between the lateral and medial hoof walls at the distal region of the hoof |
Coronary band width | CBW | Support length between the lateral and medial hoof walls at the proximal region of the hoof |
Medial dorsal hoof wall length | MDHWL | Length of the medial hoof wall from hairline to ground |
Midline dorsal hoof wall length | CDHWL | Length of the hoof wall at the midpoint of the hoof from hairline to ground |
Lateral dorsal hoof wall length | LDHWL | Length of the lateral hoof wall from hairline to ground |
Medial hoof angle | MHA | Angle between the medial hoof wall and solar plane |
Lateral hoof angle | LHA | Angle between the lateral hoof wall and solar plane |
Lateral Limb Measurements | ||
---|---|---|
Variable | Abbreviation | Description |
| VD | |
| FJA | |
| HAD |
Variable | Mean ± Standard Deviation | p Value | Increase/Decrease | ||
---|---|---|---|---|---|
Pre-Farriery | Post-Farriery | ||||
Lateral View | DHWA | 52.1° ± 3.47° | 54.36° ± 3.99° | p = 0.0001 | Increased |
HLA | 45.49° ± 7.59° | 49.96° ± 5.55° | p = 0.0001 | Increased | |
DHWL | 7.81 ± 1.35 cm | 7.56 ± 0.91 cm | p > 0.05 | Decreased | |
WBL-L | 11.58 ± 1.16 cm | 11.04 ± 1.4 cm | p = 0.0001 | Decreased | |
CBL | 10.88 ± 0.96 cm | 10.15 ± 1.09 cm | p = 0.0001 | Decreased | |
DCBH | 7.22 ± 1.21 cm | 7.43 ± 0.78 cm | p > 0.05 | Increased | |
PCBH | 2.70 ± 0.63 cm | 3.24 ± 0.56 cm | p = 0.0001 | Increased | |
Anterior View | CBW | 5.39 ± 1.00 cm | 5.09 ± 1.09 cm | p = 0.05 | Decreased |
WBL-D | 6.84 ± 1.44 cm | 6.14 ± 1.29 cm | p = 0.001 | Decreased | |
CDHWL | 3.87 ± 0.61 cm | 4.14 ± 0.94 cm | p > 0.05 | Increased | |
MDHWL | 3.57 ± 0.69 cm | 3.84 ± 0.74 cm | p = 0.03 | Increased | |
LDHWL | 3.72 ± 0.68 cm | 4.09 ± 0.80 cm | p = 0.009 | Increased | |
MHA | 78.96° ± 5.81° | 80.17° ± 5.41° | p > 0.05 | Increased | |
LHA | 73.17° ± 4.20° | 72.79° ± 4.07° | p > 0.05 | Decreased | |
Lateral limb | HAD | 189.49° ± 4.89° | 183.28° ± 2.89° | p = 0.0001 | Decreased |
FJA | 212.71° ± 8.03° | 212.81° ± 8.48° | p > 0.05 | Increased | |
VD | 184.04° ± 2.72° | 183.39° ± 2.11° | p > 0.05 | Decreased |
Variables | Pre-Farriery | Post-Farriery | |||
---|---|---|---|---|---|
r co-eff | p Value | r co-eff | p Value | ||
DHWA | WBL-L | −0.39 | 0.050 | −0.45 | 0.022 |
LHA | PCBH | 0.42 | 0.031 | - | - |
DHWL | CBL | 0.57 | 0.002 | - | - |
DHWL | DCBH | 0.93 | 0.0001 | 0.40 | 0.043 |
DHWL | PCBH | 0.75 | 0.0001 | 0.65 | 0.0001 |
DHWL | LDHWL | - | - | 0.50 | 0.009 |
WBL-L | CBL | 0.68 | 0.0001 | 0.86 | 0.000 |
WBL-L | PCBH | 0.46 | 0.019 | - | - |
WBL-L | CBW | 0.66 | 0.0001 | 0.46 | 0.018 |
WBL-L | WBL-D | 0.67 | 0.0001 | - | - |
WBL-L | LDHWL | - | - | 0.38 | 0.053 |
CBL | DCBH | 0.59 | 0.001 | - | - |
CBL | PCBH | 0.61 | 0.001 | - | - |
CBL | CBW | 0.59 | 0.002 | 0.52 | 0.007 |
CBL | WBL-D | 0.65 | 0.0001 | - | - |
CBL | CDHWL | - | - | 0.41 | 0.040 |
CBL | MDHWL | - | - | 0.41 | 0.036 |
CBL | LDHWL | - | - | 0.50 | 0.010 |
DCBH | PCBH | 0.84 | 0.0001 | - | - |
PCBH | HAD | −0.41 | 0.039 | - | - |
CBW | WBL-D | 0.95 | 0.0001 | 0.87 | 0.0001 |
CBW | CDHWL | 0.54 | 0.005 | 0.78 | 0.0001 |
CBW | MDHWL | 0.67 | 0.0001 | 0.76 | 0.0001 |
CBW | LDHWL | 0.58 | 0.002 | 0.82 | 0.0001 |
WBL-D | CDHWL | 0.53 | 0.005 | 0.79 | 0.0001 |
WBL-D | MDHWL | 0.64 | 0.0001 | 0.76 | 0.0001 |
WBL-D | LDHWL | 0.53 | 0.006 | 0.79 | 0.0001 |
CDHWL | MDHWL | 0.91 | 0.0001 | 0.93 | 0.0001 |
CDHWL | LDHWL | 0.86 | 0.0001 | 0.92 | 0.0001 |
CDHWL | LHA | 0.44 | 0.026 | - | - |
MDHWL | LDHWL | 0.91 | 0.0001 | 0.92 | 0.0001 |
MDHWL | MHA | −0.41 | 0.040 | - | - |
FJA | VD | −0.70 | 0.0001 | - | - |
MHA | FJA | - | - | −0.44 | 0.025 |
VD | MHA | - | - | 0.51 | 0.008 |
HLA | VD | - | - | 0.41 | 0.035 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leśniak, K.; Williams, J.; Kuznik, K.; Douglas, P. Does a 4–6 Week Shoeing Interval Promote Optimal Foot Balance in the Working Equine? Animals 2017, 7, 29. https://doi.org/10.3390/ani7040029
Leśniak K, Williams J, Kuznik K, Douglas P. Does a 4–6 Week Shoeing Interval Promote Optimal Foot Balance in the Working Equine? Animals. 2017; 7(4):29. https://doi.org/10.3390/ani7040029
Chicago/Turabian StyleLeśniak, Kirsty, Jane Williams, Kerry Kuznik, and Peter Douglas. 2017. "Does a 4–6 Week Shoeing Interval Promote Optimal Foot Balance in the Working Equine?" Animals 7, no. 4: 29. https://doi.org/10.3390/ani7040029
APA StyleLeśniak, K., Williams, J., Kuznik, K., & Douglas, P. (2017). Does a 4–6 Week Shoeing Interval Promote Optimal Foot Balance in the Working Equine? Animals, 7(4), 29. https://doi.org/10.3390/ani7040029