Effect of Dietary Crude Protein Level and Supplemental Herbal Extract Blend on Selected Blood Variables in Broiler Chickens Vaccinated against Coccidiosis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Birds and Experimental Design
2.2. Experimental Factors
2.3. Sample Collection
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Dalloul, R.A.; Lillehoj, H.S. Poultry coccidiosis: Recent advancements in control measures and vaccine development. Expert Rev. Vaccines 2006, 5, 143–163. [Google Scholar] [CrossRef] [PubMed]
- Szeleszczuk, P.; Doner, S.; Nerc, J. Preliminary assessment of financial losses caused by coccidiosis in broiler chicken production. In Proceedings of the Ist International Technical Conference Eimeriana Avia, Poultry Coccidiosis—Actual Challenges AD 2016, Wrocław, Poland, 26–27 February 2016; pp. 97–104. [Google Scholar]
- Vermeulen, A.; Schaap, D.; Schetters, T.P. Control of coccidiosis in chickens by vaccination. Vet. Parasitol. 2001, 100, 13–20. [Google Scholar] [CrossRef]
- Williams, R.B. Intercurrent coccidiosis and necrotic enteritis of chickens: Rational, integrated disease management by maintenance of gut integrity. Avian Pathol. 2005, 34, 159–180. [Google Scholar] [CrossRef] [PubMed]
- Chapman, H.; Cherry, T.; Danforth, H.; Richards, G.; Shirley, M.; Williams, R. Sustainable coccidiosis control in poultry production: The role of live vaccines. Int. J. Parasitol. 2002, 32, 617–629. [Google Scholar] [CrossRef]
- Sharman, P.A.; Smith, N.C.; Wallach, M.G.; Katrib, M. Chasing the golden egg: Vaccination against poultry coccidiosis. Parasite Immunol. 2010, 32, 590–598. [Google Scholar] [CrossRef] [PubMed]
- Lehman, R.; Moran, E.T.; Hess, J.B. Response of coccidiostat- versus vaccination-protected broilers to gelatin inclusion in high and low crude protein diets. Poult. Sci. 2009, 88, 984–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arczewska-Włosek, A.; Świątkiewicz, S. Nutrition as a modulatory factor of the efficacy of live anticoccidial vaccines in broiler chickens. Worlds Poult. Sci. J. 2014, 70, 81–92. [Google Scholar] [CrossRef]
- Lee, J.T.; Eckert, N.H.; Ameiss, K.A.; Stevens, S.M.; Anderson, P.N.; Anderson, S.M.; Barri, A.; McElroy, A.P.; Danforth, H.D.; Caldwell, D.J. The effect of dietary protein level on performance characteristics of coccidiosis vaccinated and nonvaccinated broilers following mixed-species Eimeria challenge. Poult. Sci. 2011, 90, 1916–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parker, J.; Oviedo-Rondón, E.O.; Clack, B.A.; Clemente-Hernández, S.; Osborne, J.; Remus, J.C.; Kettunen, H.; Mäkivuokko, H.; Pierson, E.M. Enzymes as Feed Additive to Aid in Responses Against Eimeria Species in Coccidia-Vaccinated Broilers Fed Corn-Soybean Meal Diets with Different Protein Levels. Poult. Sci. 2007, 86, 643–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arczewska-Włosek, A.; Świątkiewicz, S.; Kowal, J.; Józefiak, D.; Długosz, J. The effect of increased crude protein level and/or dietary supplementation with herbal extract blend on the performance of chickens vaccinated against coccidiosis. Anim. Feed Sci. Technol. 2017, 229, 65–72. [Google Scholar] [CrossRef]
- Smulikowska, S.; Rutkowski, A. Recommended Allowances and Nutritive Value of Feedstuffs. Poultry Feeding Standards (In Polish), 4th ed.; The Kielanowski Institute of Animal Physiology and Nutrition, PAS, Jabłonna, Polish Branch of WPSA: Jabłonna, Poland, 2005; ISBN 83-917097-7-9. [Google Scholar]
- Janssen, W.M.M.A. European Table of Energy Values for Poultry Feedstuffs, 3rd ed.; Subcommittee Energy of the Working Group nr. 2 Nutrition of the European Federation of Branches of the World’s Poultry Science Association: Beekbergen, The Netherlands, 1989; ISBN 90-71463-00-0. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005; ISBN 0-935584-77-3. [Google Scholar]
- Feldman, B.V.; Zinkl, J.G.; Nemi, C.J. Schalm’s Veterinary Hematology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2000; ISBN 978-0-683-30692-7. [Google Scholar]
- Jahanian, R.; Rasouli, E. Dietary chromium methionine supplementation could alleviate immunosuppressive effects of heat stress in broiler chicks. J. Anim. Sci. 2015, 93, 3355–3363. [Google Scholar] [CrossRef] [PubMed]
- Lentfer, T.L.; Pendl, H.; Gebhardt-Henrich, S.G.; Fröhlich, E.K.F.; Borell, E.V. H/L ratio as a measurement of stress in laying hens—Methodology and reliability. Br. Poult. Sci. 2015, 56, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Siwicki, A.K.; Anderson, D.P. Nonspecific defense mechanisms assay in fish: II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin (Ig) level in serum. In Fish Diseases Diagnosis and Prevention Methods; Inland Fisheries Institute: Olsztyn, Poland, 1993; pp. 105–112. ISBN 83-901037-1-0. [Google Scholar]
- Park, B.H.; Fikrig, S.M.; Smithwick, E.M. Infection and nitroblue-tetrazolium reduction by neutrophils: A diagnostic aid. Lancet 1968, 292, 532–534. [Google Scholar] [CrossRef]
- Ognik, K.; Wertelecki, T. Effect of different vitamin E sources and levels on selected oxidative status indices in blood and tissues as well as on rearing performance of slaughter turkey hens. J. Appl. Poult. Res. 2012, 21, 259–271. [Google Scholar] [CrossRef] [Green Version]
- Duncan, D.B. Multiple Range and Multiple F Tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Mohiti-Asli, M.; Ghanaatparast-Rashti, M. Dietary oregano essential oil alleviates experimentally induced coccidiosis in broilers. Prev. Vet. Med. 2015, 120, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Harmon, B.G. Avian heterophils in inflammation and disease resistance. Poult. Sci. 1998, 77, 972–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, I.C.M.; Ribeiro, A.M.L.; Canal, C.W.; Pinheiro, C.C.; de Vieira, M.; Gonçalves, T.A.; Pereira, R.A.; Lacerda, L. Broiler chicken responses to immunological stimuli as mediated by different levels of vitamin E in the diet. J. Appl. Poult. Res. 2009, 18, 752–760. [Google Scholar] [CrossRef]
- Ognik, K.; Cholewińska, E.; Czech, A. The Effect of Adding Hesperidin, Diosmin, Quercetin and Resveratrol Extracts to Feed for Turkey Hens on Selected Immunological and Biochemical Blood Indices. Ann. Anim. Sci. 2016, 16, 1101–1114. [Google Scholar] [CrossRef] [Green Version]
- Perez-Carbajal, C.; Caldwell, D.; Farnell, M.; Stringfellow, K.; Pohl, S.; Casco, G.; Pro-Martinez, A.; Ruiz-Feria, C.A. Immune response of broiler chickens fed different levels of arginine and vitamin E to a coccidiosis vaccine and Eimeria challenge. Poult. Sci. 2010, 89, 1870–1877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthamilselvan, T.; Kuo, T.-F.; Wu, Y.-C.; Yang, W.-C. Herbal Remedies for Coccidiosis Control: A Review of Plants, Compounds, and Anticoccidial Actions. Evid. Based Complement. Altern. Med. 2016. [Google Scholar] [CrossRef] [PubMed]
- Pourali, M.; Kermanshahi, H.; Golian, A.; Razmi, G.R.; Soukhtanloo, M. Antioxidant and anticoccidial effects of garlic powder and sulfur amino acids on Eimeria-infected and uninfected broiler chickens. Iran. J. Vet. Res. 2014, 15, 227–232. [Google Scholar] [CrossRef]
- Ognik, K.; Krauze, M. The potential for using enzymatic assays to assess the health of turkeys. Worlds Poult. Sci. J. 2016, 72, 535–550. [Google Scholar] [CrossRef]
- Koinarski, V.; Gabrashanska, M.; Georgieva, N.; Petkov, P. Antioxidant parameters in Eimeria acervulina infected chicks after treatment with a new zinc compound. Bull. Vet. Inst. Pulawy 2006, 50, 55–61. [Google Scholar]
- Georgieva, N.V.; Koinarski, V.; Gadjeva, V. Antioxidant status during the course of Eimeria tenella infection in broiler chickens. Vet. J. 2006, 172, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L.; Suo, X.; Gu, J.H.; Zhang, W.W.; Fang, Q.; Wang, X. Influence of Grape Seed Proanthocyanidin Extract in Broiler Chickens: Effect on Chicken Coccidiosis and Antioxidant Status. Poult. Sci. 2008, 87, 2273–2280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, P.C. Dietary supplementation with Echinacea and development of immunity to challenge infection with coccidia. Parasitol. Res. 2003, 91, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Sotirov, L.; Koinarski, V. Lysozyme and complement activities in broiler chickens with coccidiosis. Rev. Méd. Vét. Fr. 2003, 154, 780–784. [Google Scholar]
- Abd El-Maksoud, H.A.; Afaf, D.A.-M.; El-Badry, M.A. Biochemical Effect of Coccidia Infestation in Laying Hen. BENHA Vet. Med. J. 2014, 26, 127–133. [Google Scholar]
- Patra, G.; Ali, M.A.; Chanu, K.V.; Jonathan, L.; Joy, L.K.; Prava, M.; Ravindran, R.; Das, G.; Devi, L.I. PCR Based Diagnosis of Eimeria tenella Infection in Broiler Chicken. Int. J. Poult. Sci. 2010, 9, 813–818. [Google Scholar] [CrossRef]
- Cho, J.H.; Kim, H.J.; Kim, I.H. Effects of phytogenic feed additive on growth performance, digestibility, blood metabolites, intestinal microbiota, meat color and relative organ weight after oral challenge with Clostridium perfringens in broilers. Livest. Sci. 2014, 160, 82–88. [Google Scholar] [CrossRef]
- Hong, J.-C.; Steiner, T.; Aufy, A.; Lien, T.-F. Effects of supplemental essential oil on growth performance, lipid metabolites and immunity, intestinal characteristics, microbiota and carcass traits in broilers. Livest. Sci. 2012, 144, 253–262. [Google Scholar] [CrossRef]
- Toghyani, M.; Toghyani, M.; Gheisari, A.; Ghalamkari, G.; Eghbalsaied, S. Evaluation of cinnamon and garlic as antibiotic growth promoter substitutions on performance, immune responses, serum biochemical and haematological parameters in broiler chicks. Livest. Sci. 2011, 138, 167–173. [Google Scholar] [CrossRef]
Ingredient [g/kg]: | Normative CP Level | Increased CP Level |
---|---|---|
Maize | 579.3 | 505.3 |
Soybean meal | 360 | 420 |
Soybean oil | 18 | 32 |
Limestone | 16 | 16 |
Monocalcium phosphate | 14.5 | 14.5 |
Sodium choloride | 3 | 3 |
dl-Methionine | 2 | 2 |
l-Lysine hydrochloride | 1.2 | 1.2 |
Vitamin-mineral premix 1 | 6 | 6 |
Calculated nutritional value per kg of feed: | ||
Crude protein [g/kg] | 216 | 236 |
Metabolizable energy [MJ/kg] | 12.3 | 12.3 |
Analysed chemical composition of the basal feed mixtures [g/kg]: | ||
Dry matter | 874 | 877 |
Crude ash | 69 | 76.1 |
Crude protein | 213.3 | 232.4 |
Crude fat | 35.1 | 36.1 |
Crude fibre | 24.2 | 22.9 |
Calcium | 14.7 | 15.9 |
Phosphorus | 7.45 | 7.33 |
Asp [g/kg] | 21.86 | 25.31 |
Tre [g/kg] | 7.7 | 8.65 |
Ser [g/kg] | 10.21 | 11.23 |
Glu [g/kg] | 36.95 | 41.17 |
Pro [g/kg] | 12.11 | 13.17 |
Gli [g/kg] | 8.51 | 9.67 |
Ala [g/kg] | 10.05 | 11.19 |
Val [g/kg] | 9.75 | 11.06 |
Ile [g/kg] | 8.68 | 10.01 |
Leu [g/kg] | 17.49 | 19.6 |
Tyr [g/kg] | 6.73 | 7.25 |
Fen [g/kg] | 11.32 | 12.6 |
His [g/kg] | 6.41 | 7.25 |
Lis [g/kg] | 14.54 | 16.37 |
Arg [g/kg] | 15.68 | 17.58 |
Cys [g/kg] | 3.11 | 3.27 |
Met [g/kg] | 5.11 | 5.46 |
Trp [g/kg] | 2.6 | 2.82 |
Factors | RBC | WBC | Ht | Hb | H | L | MONO | EOS | BASO | H/L | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACV | CP | HE | [1012 L−1] | [109 L−1] | [L L−1] | [g−1] | [%] | [%] | [%] | [%] | [%] | |
− | N | − | 2.20 | 15.9 | 27.0 | 6.28 | 27.7 | 69.3 | 1.00 | 1.00 | 1.00 | 0.40 |
+ | 2.68 | 17.6 | 29.6 | 5.38 | 33.8 | 62.2 | 1.50 | 1.00 | 1.50 | 0.55 | ||
I | − | 2.44 | 22.3 | 27.9 | 4.45 | 32.0 | 64.3 | 1.67 | 0.83 | 1.17 | 0.50 | |
+ | 2.90 | 18.6 | 27.5 | 5.47 | 29.3 | 67.5 | 1.17 | 0.83 | 1.17 | 0.43 | ||
+ | N | − | 2.45 | 15.1 | 29.2 | 6.80 | 42.3 | 53.8 | 1.67 | 1.00 | 1.17 | 0.79 |
+ | 2.60 | 14.8 | 28.2 | 4.97 | 40.2 | 55.8 | 1.33 | 1.17 | 1.50 | 0.72 | ||
I | − | 2.64 | 13.6 | 28.2 | 5.90 | 32.0 | 64.8 | 1.00 | 1.00 | 1.17 | 0.51 | |
+ | 2.64 | 13.2 | 27.2 | 5.65 | 26.8 | 70.0 | 1.17 | 0.83 | 1.17 | 0.38 | ||
SEM | 0.057 | 0.689 | 0.469 | 0.336 | 0.879 | 0.949 | 0.112 | 0.098 | 0.098 | 0.022 | ||
Significance (p-Value) | ||||||||||||
Effects | ACV | NS | * | NS | NS | NS | * | NS | * | NS | * | |
CP | NS | NS | NS | NS | NS | * | NS | NS | NS | * | ||
HE | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | ||
Interactions | ACV × CP | NS | * | NS | NS | NS | * | NS | NS | NS | * | |
ACV × HE | NS | NS | NS | NS | NS | * | NS | NS | NS | * | ||
CP × HE | NS | * | NS | NS | NS | * | NS | NS | NS | * | ||
ACV × CP × HE | NS | * | NS | NS | NS | NS | NS | NS | NS | NS |
Factors | Lysozyme [mg L−1] | %PC | PI | NBT: Positive Heterophils | ||
---|---|---|---|---|---|---|
ACV | CP | HE | [%] | |||
− | N | − | 3.79 | 44.0 | 5.95 | 26.3 |
+ | 2.81 | 36.3 | 5.90 | 23.8 | ||
I | − | 3.53 | 45.8 | 6.40 | 29.0 | |
+ | 2.56 | 38.8 | 6.00 | 22.8 | ||
+ | N | − | 2.30 | 36.3 | 5.72 | 23.7 |
+ | 1.50 | 32.5 | 5.55 | 19.2 | ||
I | − | 2.51 | 36.8 | 5.95 | 22.8 | |
+ | 1.89 | 33.7 | 5.52 | 20.7 | ||
SEM | 0.138 | 1.124 | 0.087 | 0.738 | ||
Significance (p-Value) | ||||||
Effects | ACV | * | * | * | * | |
CP | NS | NS | NS | NS | ||
HE | * | * | NS | * | ||
Interactions | ACV × CP | NS | NS | NS | NS | |
ACV × HE | NS | NS | NS | NS | ||
CP × HE | NS | NS | NS | NS | ||
ACV × CP × HE | NS | NS | NS | NS |
Factors | AST [U/L] | ALT [U/L] | LDH [U/L] | ||
---|---|---|---|---|---|
ACV | CP | HE | |||
− | N | − | 233 | 6.68 | 494 |
+ | 236 | 10.2 | 803 | ||
I | − | 330 | 4.02 | 466 | |
+ | 418 | 9.54 | 534 | ||
+ | N | − | 432 | 8.98 | 292 |
+ | 335 | 9.13 | 283 | ||
I | − | 292 | 8.65 | 264 | |
+ | 303 | 6.29 | 404 | ||
SEM | 11.79 | 0.445 | 34.6 | ||
Significance (p-Value) | |||||
Effects | ACV | * | NS | * | |
CP | NS | * | NS | ||
HE | NS | * | * | ||
Interactions | ACV × CP | * | NS | NS | |
ACV × HE | * | * | NS | ||
CP × HE | * | NS | NS | ||
ACV × CP × HE | NS | NS | NS |
Factors | TG [mmol/L] | TC [mmol/L] | HDL-C [mmol/L] | LDL-C [mmol/L] | ||
---|---|---|---|---|---|---|
ACV | CP | HE | ||||
− | N | − | 0.397 | 2.25 | 1.11 | 0.466 |
+ | 0.174 | 2.82 | 1.64 | 0.459 | ||
I | − | 0.321 | 2.28 | 1.13 | 0.379 | |
+ | 0.215 | 2.61 | 1.64 | 0.347 | ||
+ | N | − | 0.311 | 2.48 | 1.66 | 0.233 |
+ | 0.321 | 2.39 | 1.49 | 0.260 | ||
I | − | 0.262 | 2.51 | 1.36 | 0.406 | |
+ | 0.277 | 2.44 | 1.60 | 0.241 | ||
SEM | 0.017 | 0.049 | 0.046 | 0.030 | ||
Significance (p-Value) | ||||||
Effects | ACV | NS | NS | * | * | |
CP | NS | NS | NS | NS | ||
HE | * | NS | * | NS | ||
Interactions | ACV × CP | NS | NS | NS | NS | |
ACV × HE | * | * | * | NS | ||
CP × HE | NS | NS | NS | NS | ||
ACV × CP × HE | NS | NS | NS | NS |
Factors | TP [g/L] | GLU [mmol/L] | UA [µmol/L] | CREAT [µmol/L] | BIL [µmol/L] | ||
---|---|---|---|---|---|---|---|
ACV | CP | HE | |||||
− | N | − | 29.5 | 19.2 | 215 | 21.2 | 28.4 |
+ | 31.8 | 18.0 | 341 | 26.0 | 30.8 | ||
I | − | 27.7 | 16.5 | 298 | 19.2 | 28.4 | |
+ | 29.8 | 17.3 | 259 | 17.8 | 30.4 | ||
+ | N | − | 29.6 | 14.6 | 352 | 20.5 | 28.7 |
+ | 29.6 | 15.8 | 302 | 23.3 | 29.4 | ||
I | − | 30.2 | 13.3 | 289 | 21.2 | 29.5 | |
+ | 29.8 | 17.0 | 281 | 19.2 | 35.6 | ||
SEM | 0.511 | 0.511 | 15.94 | 5.194 | 0.699 | ||
Significance (p-Value) | |||||||
Effects | ACV | NS | * | NS | NS | NS | |
CP | NS | NS | NS | * | NS | ||
HE | NS | NS | NS | NS | * | ||
Interactions | ACV × CP | NS | NS | NS | NS | NS | |
ACV × HE | NS | NS | NS | NS | NS | ||
CP × HE | NS | NS | NS | NS | NS | ||
ACV × CP × HE | NS | NS | NS | NS | NS |
Factors | FRAP [μmol/L] | SOD [U/mL] | CAT [U/mL] | LOOH [μmol/L] | MDA [μmol/L] | ||
---|---|---|---|---|---|---|---|
ACV | CP | HE | |||||
− | N | − | 98 | 27.2 | 31.3 | 1.98 | 0.842 |
+ | 292 | 26.5 | 28.6 | 2.15 | 0.657 | ||
I | − | 291 | 25.5 | 19.7 | 1.44 | 0.925 | |
+ | 532 | 29.0 | 20.4 | 1.91 | 1.345 | ||
+ | N | − | 459 | 28.6 | 38.2 | 3.06 | 0.793 |
+ | 395 | 25.3 | 52.9 | 1.99 | 0.688 | ||
I | − | 363 | 29.5 | 76.0 | 1.18 | 0.570 | |
+ | 330 | 29.7 | 35.2 | 1.92 | 0.556 | ||
SEM | 19.78 | 0.417 | 2.975 | 0.111 | 0.058 | ||
Significance (p-Value) | |||||||
Effects | ACV | * | NS | * | NS | * | |
CP | * | * | NS | * | NS | ||
HE | * | NS | * | NS | NS | ||
Interactions | ACV × CP | * | NS | * | * | * | |
ACV × HE | * | NS | NS | NS | NS | ||
CP × HE | NS | * | * | * | NS | ||
ACV × CP × HE | NS | NS | * | NS | NS |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arczewska-Włosek, A.; Świątkiewicz, S.; Ognik, K.; Józefiak, D. Effect of Dietary Crude Protein Level and Supplemental Herbal Extract Blend on Selected Blood Variables in Broiler Chickens Vaccinated against Coccidiosis. Animals 2018, 8, 208. https://doi.org/10.3390/ani8110208
Arczewska-Włosek A, Świątkiewicz S, Ognik K, Józefiak D. Effect of Dietary Crude Protein Level and Supplemental Herbal Extract Blend on Selected Blood Variables in Broiler Chickens Vaccinated against Coccidiosis. Animals. 2018; 8(11):208. https://doi.org/10.3390/ani8110208
Chicago/Turabian StyleArczewska-Włosek, Anna, Sylwester Świątkiewicz, Katarzyna Ognik, and Damian Józefiak. 2018. "Effect of Dietary Crude Protein Level and Supplemental Herbal Extract Blend on Selected Blood Variables in Broiler Chickens Vaccinated against Coccidiosis" Animals 8, no. 11: 208. https://doi.org/10.3390/ani8110208
APA StyleArczewska-Włosek, A., Świątkiewicz, S., Ognik, K., & Józefiak, D. (2018). Effect of Dietary Crude Protein Level and Supplemental Herbal Extract Blend on Selected Blood Variables in Broiler Chickens Vaccinated against Coccidiosis. Animals, 8(11), 208. https://doi.org/10.3390/ani8110208