Transferrin Identification in Sterlet (Acipenser ruthenus) Reproductive System
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Fish and Sample Collection
2.3. Transcriptomics
2.4. Protein Samples Preparation
2.5. D-PAGE Separation
2.6. Western Blot Analysis
2.7. In-Gel Digestion and MALDI-MS and MS/MS Analysis
3. Results
3.1. Identification of Transferrin Transcripts in Sterlet
3.2. Expression of Transferrin in Reproductive Organs of Sterlet Males
3.3. 2-DE Analysis and Western Blot of Sterlet Seminal Plasma and Spermatozoa
3.4. Identification of Transferrin by MALDI-MS and MS/MS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mackenzie, E.L.; Iwasaki, K.; Tsuji, Y. Intracellular iron transport and storage: From molecular mechanisms to health implications. Antioxid. Redox Signal. 2014, 10, 997–1030. [Google Scholar] [CrossRef] [PubMed]
- Ellis, A.E. Immunity to bacteria in fish. Fish. Shellfish Immunol. 1999, 9, 291–308. [Google Scholar] [CrossRef]
- Stafford, J.L.; Belosevic, M. Transferrin and the innate immune response of fish: Identification of a novel mechanism of macrophage activation. Dev. Comp. Immunol. 2003, 2, 539–554. [Google Scholar] [CrossRef]
- Jurecka, P.; Irnazarow, I.; Stafford, J.L.; Ruszczyk, A.; Taverne, N.; Belosevic, M. The induction of nitric oxide response of carp macrophages by transferrin is induced by the allelic diversity of the molecule. Fish. Shellfish Immunol. 2009, 26, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Hulak, M.; Koubek, P.; Sulc, M.; Dzyuba, B.; Boryshpolets, S.; Rodina, M.; Gela, D.; Manaskova-Postlerova, P.; Peknicova, J.; et al. Ice-age endurance: The effects of cryopreservation on proteins of sperm of common carp, Cyprinus carpio L. Theriogenology 2010, 74, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, M.A.; Żmijewski, D.; Karol, H.; Hejmej, A.; Bilińska, B.; Jurecka, P.; Irnazarow, I.; Słowińska, M.; Hliwa, P.; Ciereszko, A. Isolation and characterization of transferrin from common carp (Cyprinus carpio L) seminal plasma. Fish. Shellfish Immunol. 2010, 29, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, M.A.; Dietrich, G.J.; Hliwa, P.; Ciereszko, A. Carp transferrin can protect spermatozoa against toxic effects of cadmium ions. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2011, 153, 422–429. [Google Scholar] [CrossRef]
- Wojtczak, M.; Dietrich, G.J.; Ciereszko, A. Transferrin and antiproteases are major proteins of common carp seminal plasma. Fish. Shellfish Immunol. 2005, 19, 387–391. [Google Scholar] [CrossRef]
- Barthelemy, C.; Khalfoun, B.; Guillaumin, J.M.; Lecomte, P.; Bardos, P. Seminal fluid transferrin as an index of gonadal function in men. J. Reprod. Infertil. 1988, 82, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Wojtczak, M.; Dietrich, G.J.; Irnazarow, I.; Jurecka, P.; Slowinska, M.; Ciereszko, A. Polymorphism of transferrin of carp seminal plasma: Relationship to blood transferrin and sperm motility characteristics. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2007, 148, 426–431. [Google Scholar] [CrossRef]
- Nynca, J.; Arnold, G.J.; Froehlich, T.; Otte, K.; Flenkenthaler, F.; Ciereszko, A. Proteomic identification of rainbow trout seminal plasma proteins. Proteomics 2014, 14, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Nynca, J.; Dietrich, M.A.; Adamek, M.; Steinhagen, D.; Bilinska, B.; Hejmej, A.; Ciereszko, A. Purification, characterization and expression of transferrin from rainbow trout seminal plasma. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2017, 208, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.K.; Griswold, M.D. Secretion of testicular transferrin by cultured Sertoli cells is regulated by hormones and retinoids. Biol. Reprod. 1982, 27, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Skinner, M.K.; Griswold, M.D. Sertoli cells synthesize and secrete transferrin-like protein. J. Biol. Chem. 1980, 255, 9523–9525. [Google Scholar] [PubMed]
- Mudumana, S.P.; Wan, H.Y.; Singh, M.; Korzh, V.; Gong, Z.Y. Expression analyses of zebrafish transferrin, ifabp, and elastaseB mRNAs as differentiation markers for the three major endodermal organs: Liver, intestine, and exocrine pancreas. Dev. Dyn. 2004, 230, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Denovan-Wright, E.M.; Ramsey, N.B.; McCormick, C.J.; Lazier, C.B.; Wright, J.M. Nucleotide sequence of transferrin cDNAs and tissue-specific of the transferrin gene in Atlantic cod (Gadus morhua). Physiol. B Biochem. Mol. Biol. 1996, 113, 269–273. [Google Scholar] [CrossRef]
- Mikawa, N.; Hirono, I.; Aoki, T. Structure of medaka transferrin gene and its 59-flanking region. Mol. Mar. Biol. Biotechnol. 1996, 5, 225–229. [Google Scholar] [PubMed]
- Lee, J.Y.; Tange, N.; Yamashita, H.; Hirono, I.; Aoki, T. Cloning and Characterization of Transferrin cDNA from Coho Salmon (Oncorhynchus kisutch). Fish. Pathol. 1995, 30, 271–277. [Google Scholar] [CrossRef]
- Ford, M.J. Molecular evolution of transferrin: Evidence for positive selection in salmonids. Mol. Biol. Evol. 2001, 18, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Alavi, S.M.H.; Cosson, J. Sperm motility in fishes. (II) Effects of ions and osmolality: A review. Cell Biol. Int. 2006, 30, 1–14. [Google Scholar] [CrossRef]
- Alavi, S.; Rodina, M.; Gela, D.; Linhart, O. Sperm biology and control of reproduction in sturgeon: (I) testicular development, sperm maturation and seminal plasma characteristics. Rev. Fish. Biol. Fisher. 2012, 22, 695–717. [Google Scholar] [CrossRef]
- Dzyuba, B.; Cosson, J.; Boryshpolets, S.; Bondarenko, O.; Dzyuba, V.; Prokopchuk, G.; Gazo, I.; Rodina, M.; Linhart, O. In vitro sperm maturation in sterlet, Acipenser ruthenus. Reprod. Biol. 2014, 14, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Dzyuba, B.; Boryshpolets, S.; Cosson, J.; Dzyuba, V.; Fedorov, P.; Saito, T.; Psenicka, M.; Linhart, O.; Rodina, M. Motility and fertilization ability of sterlet Acipenser ruthenus testicular sperm after cryopreservation. Cryobiology 2014, 69, 339–341. [Google Scholar] [CrossRef] [PubMed]
- Dzyuba, B.; Bondarenko, O.; Rodina, M.; Dzyuba, V.; Cosson, J.; Linhart, O.; Shelton, W.L.; Boryshpolets, S.; Fedorov, P. Sperm maturation in sturgeon (Actinopterygii, Acipenseriformes): A review. Theriogenology 2017, 97, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Trinity: Reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nature Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, R.M.; Seppey, M.; Simão, F.A.; Manni, M.; Ioannidis, P.; Klioutchnikov, G.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 2017, 35, 543–548. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12. [Google Scholar] [CrossRef]
- Huang, Y.; Chain, F.J.; Panchal, M.; Eizaguirre, C.; Kalbe, M.; Lenz, T.L.; Samonte, I.E.; Stoll, M.; Bornberg-Bauer, E.; Reusch, T.B.; et al. Transcriptome profiling of immune tissues reveals habitat-specific gene expression between lake and river sticklebacks. Mol. Ecol. 2016, 25, 943–958. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.C.; Minh, B.Q.; Susko, E.; Roger, A.J. Modeling site heterogeneity with posterior mean site frequency profiles accelerates accurate phylogenomic estimation. Syst. Biol. 2017, 67, 216–235. [Google Scholar] [CrossRef] [PubMed]
- Candiano, G.; Bruschi, M.; Musante, L.; Santucci, L.; Ghiggeri, G.M.; Carnemolla, B.; Orecchia, P.; Zardi, L.; Righetti, P.G. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 2004, 25, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, A.; Tomas, H.; Havlis, J.; Olsen, J.V.; Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 2006, 1, 2856–2860. [Google Scholar] [CrossRef]
- Rehulka, P.; Zahradnikova, M.; Rehulkova, H.; Dvorakova, P.; Nenutil, R.; Valik, D.; Vojtesek, B.; Hernychova, L.; Novotny, M.V. Microgradient separation technique for purification and fractionation of permethylated N-glycans before mass spectrometric analyses. J. Sep. Sci. 2018, 41, 1973–1982. [Google Scholar] [CrossRef] [PubMed]
- Dillies, M.A.; Rau, A.; Aubert, J.; Hennequet-Antier, C.; Jeanmougin, M.; Servant, N.; Keime, C.; Marot, G.; Castel, D.; Estelle, J.; et al. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Brief. Bioinform. 2013, 14, 671–683. [Google Scholar] [CrossRef]
- Hughes, A.L.; Friedman, R. Evolutionary diversification of the vertebrate transferrin multi-gene family. Immunogenetics 2014, 66, 651–661. [Google Scholar] [CrossRef] [Green Version]
- Brière, N.; Ferrari, J.; Chailler, P. Insulin and transferrin restore important cellular functions of human fetal kidney in serum-free organ culture. Biochem. Cell Biol. 1991, 69, 256–262. [Google Scholar] [CrossRef]
- Zak, O.; Aisen, P. A new method for obtaining human transferrin C-lobe in the native conformation: Preparation and properties. Biochemistry 2002, 41, 1647–1653. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhu, Z.; Wang, R.; Sun, Y.; Xu, T. Miiuy croaker transferrin gene and evidence for positive selection events reveal different evolutionary patterns. PLoS ONE 2012, 7, e43936. [Google Scholar] [CrossRef] [PubMed]
- Ciuraszkiewicz, J.; Olczak, M.; Watorek, W. Isolation and characterisation of crocodile and python ovotransferrins. Acta Biochim. Pol. 2007, 54, 175–182. [Google Scholar] [PubMed]
- Siqueiros-Cendón, T.; Arévalo-Gallegos, S.; Iglesias-Figueroa, B.F.; García-Montoya, I.A.; Salazar-Martínez, J.; Rascón-Cruz, Q. Immunomodulatory effects of lactoferrin. Acta Pharmacol. Sin. 2014, 35, 557–566. [Google Scholar] [CrossRef]
- Gomme, P.T.; McCann, K.B.; Bertolini, J. Transferrin: Structure, function and potential therapeutic actions. Drug Discov. Today 2005, 10, 267–273. [Google Scholar] [CrossRef]
- Hevesy, G.; Lockner, D.; Sletten, K. Iron metabolism and erythrocyte formation in fish. Acta Physiol. Scand. 1964, 60, 256–266. [Google Scholar] [CrossRef]
- Dunn, L.L.; Sekyere, E.O.; Rahmanto, Y.S.; Richardson, D.R. The function of melanotransferrin: A role in melanoma cell proliferation and tumorigenesis. Carcinogenesis 2006, 27, 2157–2169. [Google Scholar] [CrossRef]
- Sekyere, E.O.; Dunn, L.L.; Rahmanto, Y.S.; Richardson, D.R. Role of melanotransferrin in iron metabolism: Studies using targeted gene disruption in vivo. Blood 2006, 107, 2599–2601. [Google Scholar] [CrossRef]
- Kawamoto, T.; Pan, H.; Yan, W.Q.; Ishida, H.; Usui, E.; Oda, R.; Nakamasu, K.; Noshiro, M.; Kawashima-Ohya, Y.; Fujii, M.; et al. Expression of membrane-bound transferrin-like protein p97 on the cell surface of chondrocytes. Eur. J. Biochem. 1998, 256, 503–509. [Google Scholar] [CrossRef]
- Brown, J.P.; Woodbury, R.G.; Hart, C.E.; Hellström, I.; Hellström, K.E. Quantitative analysis of melanoma-associated antigen p97 in normal and neoplastic tissues. Proc. Natl. Acad. Sci. USA 1981, 78, 539–543. [Google Scholar] [CrossRef]
- Danielsen, E.M.; van Deurs, B. A transferrin-like GPI-linked iron-binding protein in detergent-insoluble noncaveolar microdomains at the apical surface of fetal intestinal epithelial cells. J. Cell Biol. 1995, 131, 939–950. [Google Scholar] [CrossRef] [PubMed]
- Rahmanto, Y.S.; Dunn, L.L.; Richardson, D.R. Identification of distinct changes in gene expression after modulation of melanoma tumor antigen p97 (melanotransferrin) in multiple models in vitro and in vivo. Carcinogenesis 2007, 28, 2172–2183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez-Gomez, F.; Ortiz-Pineda, P.A.; Rojas-Cartagena, C.; Suarez-Castillo, E.C.; Garcia-Ararras, J.E. Immune-related genes associated with intestinal tissue in the sea cucumber Holothuria glaberrima. Immunogenetics 2008, 60, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Rose, T.M.; Plowman, G.D.; Teplow, D.B.; Dreyer, W.J.; Hellström, K.E.; Brown, J.P. Primary Structure of the Human Melanoma-Associated Antigen p97 (Melanotransferrin) Deduced from the mRNA Sequence. Proc. Natl. Acad. Sci. USA 1986, 83, 1261–1265. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Pasos, J.; Valentin-Tirado, G.; Garcia-Arraras, J.E. Melanotransferrin: New Homolog Genes and Their Differential Expression during Intestinal Regeneration in the Sea Cucumber Holothuria glaberrima. J. Exp. Zool. B Mol. Dev. Evol. 2017, 328, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Betancur-R, R.; Wiley, E.O.; Arratia, G.; Acero, A.; Bailly, N.; Miya, M.; Lecointre, G.; Orti, G. Phylogenetic classification of bony fishes. BMC Evol. Biol. 2017, 17, 162. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, M.A.; Arnold, G.J.; Nynca, J.; Fröhlich, T.; Otte, K.; Ciereszko, A. Characterization of carp seminal plasma proteome in relation to blood plasma. J. Proteom. 2014, 98, 218–232. [Google Scholar] [CrossRef] [PubMed]
- Papadimas, I.; Papadopoulou, F.; Ioannidis, S.; Katsavelir, R.; Tarlatzis, B.; Bontis, I.; Mantalenakis, S. Seminal plasma transferrin in infertile men. Arch. Androl. 1992, 28, 125–133. [Google Scholar] [CrossRef]
- De Smet, H.; Blust, R.; Moens, L. Cadmium-binding to transferrin in the plasma of the common carp Cyprinus carpio. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2001, 128, 45–53. [Google Scholar] [CrossRef]
- Sylvester, S.R.; Griswold, M.D. Localization of transferrin and transferrin receptors in rat testes. Biol. Reprod. 1984, 31, 195–203. [Google Scholar] [CrossRef]
- Leichtmann-Bardoogo, Y.; Cohen, L.A.; Weiss, A.; Marohn, B.; Schubert, S.; Meinhardt, A.; Meyron-Holtz, E.G. Compartmentalization and regulation of iron metabolism proteins protect male germ cells from iron overload. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E1519–E1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Transcript Name | NCBI Accession Number | Length (nt) | ORF |
---|---|---|---|
Serotransferrin isoform 1 | MN045270 | 465 | 1–465 * |
Serotransferrin isoform 2 | MN045271 | 1790 | 285–1790 * |
Serotransferrin isoform 3 | MN045272 | 2651 | 285–1907 |
Serotransferrin isoform 4 | MN045273 | 1212 | 187–1212 * |
Serotransferrin isoform 5 | MN045274 | 425 | 1–425 * |
Serotransferrin isoform 6 | MN045275 | 1310 | 285–1310 * |
Melanotransferrin isoform 1 | MN045278 | 4514 | 263–2467 |
Serotransferrin | Melanotransferrin | ||||||
---|---|---|---|---|---|---|---|
Isoforms | 1 | 2 | 3 | 4 | 5 | 6 | 1 |
SM T | 0.92 | 0.23 | 0.44 | 0.36 | 0.33 | 0.66 | 0.48 |
OOS T | 0.68 | 0.12 | 0.32 | 0.69 | 0.08 | 0.16 | 1.07 |
SM K | 207.37 | 3.66 | 94.61 | 22.17 | 7.34 | 205.45 | 0.07 |
OOS K | 55.46 | 13.02 | 31.93 | 46.99 | 23.07 | 17.46 | 0.09 |
SM WD | 11.17 | 0.01 | 5.31 | 6.54 | 0.09 | 5.57 | 0.24 |
OOS WD | 4.09 | 0.24 | 1.85 | 3.61 | 0.54 | 1.13 | 0.73 |
Spot No. | Accession No. (a) | Description (b) | Organism | MW, kDa/pI (c) | Score (d) | No. of Peptides (e) | SC, % (f) |
---|---|---|---|---|---|---|---|
1 | MN045272 | serotransferrin isoform 3 | Acipenser ruthenus | 58.50/6.78 | 482.87 | 11 | 24.80 |
MN045273 | serotransferrin isoform 4 | Acipenser ruthenus | 37.40/6.79 | 367.31 | 9 | 25.70 | |
8 | gi|966652723 | hypothetical protein cypCar_00035444 (Triosephosphate isomerase) | Cyprinus carpio | 26.50/5.13 | 113.60 | 2 | 8.70 |
Spot No. | Accession No. (a) | Description (b) | Organism | MW, kDa/pI (c) | Score (d) | No. of Peptides (e) | SC, % (f) |
---|---|---|---|---|---|---|---|
1 | gi|1025390473 | PREDICTED: beta-enolase | Sinocyclocheilus rhinocerous | 47.40/6.58 | 513.09 | 10 | 24.90 |
gi|966672540 | hypothetical protein cypCar_00005974, partial (enolase-like) | Cyprinus carpio | 47.30/4.81 | 338.33 | 5 | 18.20 | |
2 | gi|1025390473 | PREDICTED: beta-enolase | Sinocyclocheilus rhinocerous | 47.40/6.58 | 355.54 | 11 | 21.00 |
gi|966672540 | hypothetical protein cypCar_00005974, partial (enolase-like) | Cyprinus carpio | 47.30/4.81 | 321.81 | 6 | 14.30 | |
19 | gi|82414773 | UNVERIFIED_ORG: zgc:123298 | Danio rerio | 49.90/5.01 | 847.58 | 13 | 35.80 |
gi|45709036 | Tuba1 protein | Danio rerio | 50.10/4.94 | 808.62 | 14 | 40.40 | |
gi|47940377 | Zgc:55461 | Danio rerio | 49.80/4.79 | 634.28 | 11 | 31.00 | |
gi|468861133 | tubulin alpha 1-like protein 2 | Hypophthalmichthys molitrix | 49.20/4.91 | 628.46 | 12 | 37.70 | |
gi|295314924 | tubulin beta 1 | Hypophthalmichthys molitrix | 49.70/4.79 | 613.81 | 11 | 27.60 | |
gi|966714399 | hypothetical protein cypCar_00019490 (tubulin) | Cyprinus carpio | 49.80/5.05 | 555.40 | 9 | 25.40 | |
20 | gi|295314924 | tubulin beta 1 | Hypophthalmichthys molitrix | 49.70/4.79 | 740.86 | 13 | 42.70 |
gi|1025170763 | PREDICTED: tubulin beta chain-like | Sinocyclocheilus rhinocerous | 49.60/4.81 | 658.89 | 10 | 35.10 | |
gi|966703762 | hypothetical protein cypCar_00027299 (tubulin) | Cyprinus carpio | 50.40/4.72 | 582.05 | 9 | 32.30 | |
gi|1101617233 | PREDICTED: tubulin beta chain-like isoform X1 | Cyprinus carpio | 55.90/5.33 | 553.66 | 9 | 26.30 | |
22 | gi|1101525613 | PREDICTED: tubulin beta-1 chain-like | Cyprinus carpio | 49.70/4.75 | 87.37 | 2 | 6.10 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xin, M.; Vechtova, P.; Shaliutina-Kolesova, A.; Fussy, Z.; Loginov, D.; Dzyuba, B.; Linhart, O.; Boryshpolets, S.; Rodina, M.; Li, P.; et al. Transferrin Identification in Sterlet (Acipenser ruthenus) Reproductive System. Animals 2019, 9, 753. https://doi.org/10.3390/ani9100753
Xin M, Vechtova P, Shaliutina-Kolesova A, Fussy Z, Loginov D, Dzyuba B, Linhart O, Boryshpolets S, Rodina M, Li P, et al. Transferrin Identification in Sterlet (Acipenser ruthenus) Reproductive System. Animals. 2019; 9(10):753. https://doi.org/10.3390/ani9100753
Chicago/Turabian StyleXin, Miaomiao, Pavlina Vechtova, Anna Shaliutina-Kolesova, Zoltan Fussy, Dmitry Loginov, Borys Dzyuba, Otomar Linhart, Serhii Boryshpolets, Marek Rodina, Ping Li, and et al. 2019. "Transferrin Identification in Sterlet (Acipenser ruthenus) Reproductive System" Animals 9, no. 10: 753. https://doi.org/10.3390/ani9100753
APA StyleXin, M., Vechtova, P., Shaliutina-Kolesova, A., Fussy, Z., Loginov, D., Dzyuba, B., Linhart, O., Boryshpolets, S., Rodina, M., Li, P., Loginova, Y., & Sterba, J. (2019). Transferrin Identification in Sterlet (Acipenser ruthenus) Reproductive System. Animals, 9(10), 753. https://doi.org/10.3390/ani9100753