Comparison of Reconstituted, Acidified Reconstituted Milk or Acidified Fresh Milk on Growth Performance, Diarrhea Rate, and Hematological Parameters in Preweaning Dairy Calves
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Calves, Feeds and Management
2.2. Growth Performance
2.3. Fecal Score and Diarrhea Rate
2.4. Hematological Parameters
2.5. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Fecal Score and Diarrhea Rate
3.3. Hematological Parameters
4. Discussion
4.1. Growth Performance
4.2. Fecal Score and Diarrhea Rate
4.3. Hematological Parameters
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diao, Q.Y.; Zhang, R.; Yan, T. Current research progresses on calf rearing and nutrition in China. J. Integr. Agr. 2017, 16, 2805–2814. [Google Scholar] [CrossRef]
- Drackley, J.K. Calf nutrition from birth to breeding. Vet. Clin. North Am. Food Anim. Pract. 2008, 24, 55–86. [Google Scholar] [CrossRef] [PubMed]
- Bayram, B.; Yanar, M.; Güler, O.; Metin, J. Growth performance, health and behavioural characteristics of Brown Swiss calves fed a limited amount of acidified whole milk. Ital. J. Anim. Sci. 2007, 6, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Weary, D.; Von Keyserlingk, M. Invited review: Effects of milk ration on solid feed intake, weaning, and performance in dairy heifers. J. Dairy Sci. 2011, 94, 1071–1081. [Google Scholar] [CrossRef] [PubMed]
- Todd, C.; Leslie, K.; Millman, S.; Bielmann, V.; Anderson, N.; Sargeant, J.; DeVries, T. Clinical trial on the effects of a free-access acidified milk replacer feeding program on the health and growth of dairy replacement heifers and veal calves. J. Dairy Sci. 2017, 100, 713–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collings, L.; Proudfoot, K.; Veira, D. The effects of feeding untreated and formic acid-treated colostrum ad libitum on intake and immunoglobulin levels in dairy calves. Can. J. Anim. Sci. 2011, 91, 55–59. [Google Scholar] [CrossRef]
- Todd, C.; Millman, S.; Leslie, K.; Anderson, N.; Sargeant, J.; DeVries, T. Effects of milk replacer acidification and free-access feeding on early life feeding, oral, and lying behavior of dairy calves. J. Dairy Sci. 2018, 101, 8236–8247. [Google Scholar] [CrossRef]
- Güler, O.; Yanar, M.; Bayrum, B.; Metin, J. Performance and health of dairy calves fed limited amounts of acidified milk replacer. S. Afr. J. Anim. Sci. 2006, 36, 149–154. [Google Scholar] [CrossRef]
- Jenkins, K.; Bona, A. Performance of calves fed combinations of whole milk and reconstituted skim milk powder. J. Dairy Sci. 1987, 70, 2091–2094. [Google Scholar] [CrossRef]
- Yanar, M.; Güler, O.; Bayram, B.; METİN, J. Effects of feeding acidified milk replacer on the growth, health and behavioural characteristics of Holstein Friesian calves. Turk. J. Vet. Anim. Sci. 2006, 30, 235–241. [Google Scholar]
- Hill, T.; Bateman II, H.; Aldrich, J.; Quigley, J.; Schlotterbeck, R. Evaluation of ad libitum acidified milk replacer programs for dairy calves. J. Dairy Sci. 2013, 96, 3153–3162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Diao, Q.-Y.; Zhou, Y.; Yun, Q.; Deng, K.-D.; Qi, D.; Tu, Y. Decreasing the pH of milk replacer containing soy flour affects nutrient digestibility, digesta pH, and gastrointestinal development of preweaned calves. J. Dairy Sci. 2017, 100, 236–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ur Rahman, M.A.; Chuanqi, X.; Huawei, S.; Binghai, C. Effects of hay grass level and its physical form (full length vs. chopped) on standing time, drinking time, and social behavior of calves. J. Vet Behav. 2017, 21, 7–12. [Google Scholar] [CrossRef]
- ur Rahman, M.A.; Qi, X.C.; Binghai, C. Nutrient intake, feeding patterns and abnormal behavior of growing bulls fed different concentrate levels and a single fiber source (corn stover silage). J. Vet Behav. 2019, 33, 46–53. [Google Scholar] [CrossRef]
- Li, L.; Zhu, Y.; Wang, X.; He, Y.; Cao, B. Effects of different dietary energy and protein levels and sex on growth performance, carcass characteristics and meat quality of F1 Angus× Chinese Xiangxi yellow cattle. J. Anim. Sci. Biotechnol. 2014, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Li, J.; Meng, Q.; Wu, D.; Xu, M. Effects of butyric acid supplementation of acidified milk on digestive function and weaning stress of cattle calves. Livest Sci. 2019, 225, 78–84. [Google Scholar] [CrossRef]
- Dingwell, R.; Wallace, M.; McLaren, C.; Leslie, C.; Leslie, K. An evaluation of two indirect methods of estimating body weight in Holstein calves and heifers. J. Dairy Sci. 2006, 89, 3992–3998. [Google Scholar] [CrossRef]
- Akins, M.S. Dairy heifer development and nutrition management. Vet. Clin. North Am. Food Anim. Pract. 2016, 32, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Eren, V. The effect of acidified milk on body weight gain, some blood parameters and health in calves. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi 2009, 20, 17–21. [Google Scholar]
- Jaster, E.; McCoy, G.; Tomkins, T.; Davis, C. Feeding acidified or sweet milk replacer to dairy calves. J. Dairy Sci. 1990, 73, 3563–3566. [Google Scholar] [CrossRef]
- Lukuyu, M.N.; Gibson, J.P.; Savage, D.; Duncan, A.J.; Mujibi, F.; Okeyo, A. Use of body linear measurements to estimate liveweight of crossbred dairy cattle in smallholder farms in Kenya. Springer Plus. 2016, 5, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, D.E.; Weese, J.S. Viral enteritis in calves. Can. Vet. J. 2017, 58, 1267–1274. [Google Scholar] [PubMed]
- Stewart, S.; Godden, S.; Bey, R.; Rapnicki, P.; Fetrow, J.; Farnsworth, R.; Scanlon, M.; Arnold, Y.; Clow, L.; Mueller, K. Preventing bacterial contamination and proliferation during the harvest, storage, and feeding of fresh bovine colostrum. J. Dairy Sci. 2005, 88, 2571–2578. [Google Scholar] [CrossRef]
- Woodford, S.; Whetstone, H.; Murphy, M.; Davis, C. Abomasal pH, nutrient digestibility, and growth of Holstein bull calves fed acidified milk replacer. J. Dairy Sci. 1987, 70, 888–891. [Google Scholar] [CrossRef]
- Kelada, S.N.; Aylor, D.L.; Peck, B.C.; Ryan, J.F.; Tavarez, U.; Buus, R.J.; Miller, D.R.; Chesler, E.J.; Threadgill, D.W.; Churchill, G.A. Genetic analysis of hematological parameters in incipient lines of the collaborative cross. G3 Genes Genomes Genet. 2012, 2, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Mohri, M.; Sharifi, K.; Eidi, S. Hematology and serum biochemistry of Holstein dairy calves: Age related changes and comparison with blood composition in adults. Res. Vet. Sci. 2007, 83, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Roland, L.; Drillich, M.; Iwersen, M. Hematology as a diagnostic tool in bovine medicine. J. Vet. Diagn. Invest. 2014, 26, 592–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, W.; Lakkis, F.G.; Chalasani, G. B cells, antibodies, and more. Clin. J. Am. Soc. Nephrol. 2016, 11, 137–154. [Google Scholar] [CrossRef] [PubMed]
- Karlmark, K.; Tacke, F.; Dunay, I. Monocytes in health and disease—Minireview. Eur. J. Microbiol. Immunol. 2012, 2, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Görgens, A.; Radtke, S.; Horn, P.; Giebel, B. New relationships of human hematopoietic lineages facilitate detection of multipotent hematopoietic stem and progenitor cells. Cell Cycle 2013, 12, 3478–3482. [Google Scholar] [CrossRef] [Green Version]
- Roodposhti, P.M.; Dabiri, N. Effects of probiotic and prebiotic on average daily gain, fecal shedding of Escherichia coli, and immune system status in newborn female calves. Asian-Australas. J. Anim. Sci. 2012, 25, 1255. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-H.; Yang, J.-Y.; Upadhaya, S.D.; Lee, H.-J.; Yun, C.-H.; Ha, J.K. The stress of weaning influences serum levels of acute-phase proteins, iron-binding proteins, inflammatory cytokines, cortisol, and leukocyte subsets in Holstein calves. J. Vet. Sci. 2011, 12, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, M.; Ko, S.; Lee, S.; Kim, G.; Choi, J.; Yang, C. Effect of different feed additives on growth performance and blood profiles of Korean Hanwoo calves. Asian-Australas. J. Anim. Sci. 2009, 23, 52–60. [Google Scholar] [CrossRef]
Items | ARM | RM | AFM |
---|---|---|---|
Milk lactose, % | 4.08 | 4.48 | 4.63 |
Milk fat, % | 4.30 | 4.55 | 4.74 |
Milk protein, % | 2.86 | 2.94 | 3.13 |
Total solids, % | 11.53 | 12.29 | 12.84 |
pH | 4.26 | 6.87 | 4.32 |
Item | Diet | SEM | p-Value | ||
---|---|---|---|---|---|
ARM | RM | AFM | |||
Total Bacterial Count (104 cfu/mL) | 43.67 a | 322.33 b | 38.00 a | 44.6 | 0.001 |
Lactobacillus (103 cfu/mL) | 114.33 | 52.17 | 115.00 | 30.4 | 0.137 |
Escherichia coli (101 cfu/mL) | 154.83 a | 458.67 b | 155.67 a | 39.1 | 0.000 |
Ingredient | Content | Nutrient Levels | Content |
---|---|---|---|
Corn | 33.00 | NEL (Mcal/kg) 3 | 1.69 |
Soybean meal | 23.50 | DM 4 | 88.07 |
Expanded corn | 10.00 | CP 5 | 20.95 |
DDGS 1 | 8.00 | EE 6 | 3.31 |
Corn husk | 5.07 | NDF 7 | 16.34 |
Extruded soybean | 4.00 | ADF 8 | 5.48 |
Corn germ meal | 9.00 | Ash | 7.40 |
Limestone | 1.50 | Ca 9 | 0.95 |
MDCP 2 | 0.15 | P 10 | 0.51 |
NaCl | 0.77 | ||
Beer yeast | 2.00 | ||
Elancoban | 0.01 | ||
Glucose | 2.00 | ||
Premix 11 | 1.00 |
Item | Diet | SEM | p-Value | ||
---|---|---|---|---|---|
ARM | RM | AFM | |||
Initial BW (kg) | 67.60 | 67.60 | 67.20 | 2.33 | 0.513 |
Final BW (kg) | 104.40 | 102.20 | 101.80 | 3.79 | 0.766 |
ADG (kg/day) | 0.92 | 0.88 | 0.96 | 0.25 | 0.952 |
Milk intake (L/day) | 11.28 | 11.17 | 11.41 | 0.25 | 0.637 |
Milk intake (kg/day DM) | 1.34 a | 1.41 b | 1.51 c | 0.03 | 0.002 |
Starter intake (kg/day DM) | 0.43 | 0.40 | 0.42 | 0.08 | 0.994 |
Total feed intake (kg/day DM) | 1.76 a | 1.81 a | 1.92 b | 0.03 | 0.002 |
Feed efficiency (kg intake/kg gain) | 1.85 a | 2.05 b | 2.00 b | 0.03 | 0.000 |
Item | Diet | SEM | p-Value | ||
---|---|---|---|---|---|
ARM | RM | AFM | |||
Initial | |||||
Body length (cm) | 83.80 | 83.60 | 82.60 | 0.76 | 0.275 |
Withers height (cm) | 83.60 | 83.80 | 83.00 | 0.87 | 0.634 |
Heart girth (cm) | 94.00 | 93.60 | 92.20 | 1.37 | 0.411 |
Shin circumference (cm) | 12.00 | 11.80 | 11.60 | 0.26 | 0.335 |
Final | |||||
Body length (cm) | 94.60 | 94.80 | 93.80 | 1.17 | 0.671 |
Withers height (cm) | 95.20 a | 91.00 b | 94.60 a | 1.44 | 0.026 |
Heart girth (cm) | 107.20 a | 108.00 a | 103.00 b | 1.78 | 0.034 |
Shin circumference (cm) | 12.70 | 12.80 | 12.40 | 0.44 | 0.649 |
Growth | |||||
Body length (cm) | 10.8 | 11.2 | 11.2 | 1.22 | 0.931 |
Withers height (cm) | 11.6 a | 7.20 b | 11.6 a | 1.45 | 0.015 |
Heart girth (cm) | 13.2 | 14.4 | 10.80 | 1.76 | 0.157 |
Shin circumference (cm) | 0.70 | 1.00 | 0.80 | 0.29 | 0.597 |
Item | Diet | SEM | p-Value | ||
---|---|---|---|---|---|
ARM | RM | AFM | |||
Fecal consistency score | |||||
30–50 day | 1.12 a | 1.48 b | 1.21 a | 0.10 | 0.003 |
51–60 day | 1.20 | 1.45 | 1.30 | 0.13 | 0.207 |
61–70 day | 1.29 a | 1.82 b | 1.63 b | 0.15 | 0.006 |
Diarrhea rate (%) | |||||
30–50 day | 0.72 a | 11.07 b | 0.74 a | 0.03 | 0.000 |
51–60 day | 0.17 a | 10.87 b | 0.23 a | 0.20 | 0.000 |
61–70 day | 2.90 a | 9.40 b | 2.48 a | 0.41 | 0.000 |
Item | Diet | SEM | p-Value | ||
---|---|---|---|---|---|
ARM | RM | AFM | |||
Initial | |||||
WBC 1 (109/L) | 10.57 | 11.06 | 10.81 | 0.98 | 0.887 |
LYM 2 (109/L) | 3.29 | 5.04 | 3.38 | 1.62 | 0.496 |
MO 3 (109/L) | 1.69 | 1.70 | 2.57 | 0.51 | 0.185 |
RBC 4 (1012/L) | 4.49 | 4.69 | 4.57 | 0.48 | 0.921 |
Hb 5 (g/L) | 130.60 | 135.60 | 131.40 | 5.21 | 0.601 |
HCT 6 ( L/L) | 0.22 | 0.23 | 0.22 | 0.01 | 0.383 |
Final | |||||
WBC (109/L) | 12.17 a | 28.55 b | 12.52 a | 4.88 | 0.008 |
LYM (109/L) | 3.21 a | 4.83 b | 3.00 a | 0.71 | 0.049 |
MO (109/L) | 1.28 | 1.36 | 1.26 | 0.31 | 0.947 |
RBC (1012/L) | 5.52 | 6.11 | 5.78 | 0.40 | 0.365 |
Hb (g/L) | 116.20 | 121.40 | 118.00 | 4.61 | 0.537 |
HCT (L/L) | 0.23 | 0.26 | 0.25 | 0.02 | 0.279 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Qu, J.; Xin, X.; Yin, S.; Qu, Y. Comparison of Reconstituted, Acidified Reconstituted Milk or Acidified Fresh Milk on Growth Performance, Diarrhea Rate, and Hematological Parameters in Preweaning Dairy Calves. Animals 2019, 9, 778. https://doi.org/10.3390/ani9100778
Li L, Qu J, Xin X, Yin S, Qu Y. Comparison of Reconstituted, Acidified Reconstituted Milk or Acidified Fresh Milk on Growth Performance, Diarrhea Rate, and Hematological Parameters in Preweaning Dairy Calves. Animals. 2019; 9(10):778. https://doi.org/10.3390/ani9100778
Chicago/Turabian StyleLi, Lingyan, Jiachen Qu, Xiaoyue Xin, Shuxin Yin, and Yongli Qu. 2019. "Comparison of Reconstituted, Acidified Reconstituted Milk or Acidified Fresh Milk on Growth Performance, Diarrhea Rate, and Hematological Parameters in Preweaning Dairy Calves" Animals 9, no. 10: 778. https://doi.org/10.3390/ani9100778
APA StyleLi, L., Qu, J., Xin, X., Yin, S., & Qu, Y. (2019). Comparison of Reconstituted, Acidified Reconstituted Milk or Acidified Fresh Milk on Growth Performance, Diarrhea Rate, and Hematological Parameters in Preweaning Dairy Calves. Animals, 9(10), 778. https://doi.org/10.3390/ani9100778