Optimal Dietary Fiber Intake to Retain a Greater Ovarian Follicle Reserve for Gilts
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Measurement of Growth Traits and Pubertal Onset
2.3. Collection and Measurement of Ovarian Samples
2.4. Morphological Classification of Follicles
2.5. Detection of Gene Expressions
2.6. Western Blot Analysis
2.7. Statistical Analysis
3. Results
3.1. The Growth Performance and Pubertal Onset
3.2. Development of Ovarian Follicles
3.3. Gene Expressions
3.4. Protein Expressions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lucia, T.; Dial, G.D.; Marsh, W.E. Lifetime reproductive performance in female pigs having distinct reasons for removal. Livest. Prod. Sci. 2000, 63, 213–222. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Liu, X.H.; Mo, D.L.; Chen, Q.S.; Chen, Y.S. Analysis of reasons for sow culling and seasonal effects on reproductive disorders in Southern China. Anim. Reprod. Sci. 2015, 159, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Amanvermez, R.; Tosun, M. An Update on Ovarian Aging and Ovarian Reserve Tests. Int. J. Fertil. Steril. 2016, 9, 411–415. [Google Scholar] [PubMed]
- Depmann, M.; Broer, S.L.; van der Schouw, Y.T.; Tehrani, F.R.; Eijkemans, M.J.; Mol, B.W.; Broekmans, F.J. Can we predict age at natural menopause using ovarian reserve tests or mother’s age at menopause? A systematic literature review. Menopause 2016, 23, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, K. Cellular and molecular regulation of the activation of mammalian primordial follicles: Somatic cells initiate follicle activation in adulthood. Hum. Reprod. Update 2015, 21, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Hua, L.; Feng, B.; Jiang, X.M.; Li, J.; Jiang, D.D.; Huang, X.H.; Zhu, Y.G.; Li, Z.; Yan, L.J.; et al. Fibroblast growth factor 21 coordinates adiponectin to mediate the beneficial effects of low-protein diet on primordial follicle reserve. Ebiomedicine 2019, 41, 623–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buttriss, J.L.; Stokes, C.S. Dietary fibre and health: An overview. Nutr. Bull. 2010, 33, 186–200. [Google Scholar] [CrossRef]
- Galisteo, M.; Duarte, J.; Zarzuelo, A. Effects of dietary fibers on disturbances clustered in the metabolic syndrome. J. Nutr. Biochem. 2008, 19, 71–84. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis, R.H.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef]
- Ferguson, E.M.; Slevin, J.; Edwards, S.A.; Hunter, M.G.; Ashworth, C.J. Effect of alterations in the quantity and composition of the pre-mating diet on embryo survival and foetal growth in the pig. Anim. Reprod. Sci. 2006, 96, 89–103. [Google Scholar] [CrossRef]
- Ferguson, E.M.; Slevin, J.; Hunter, M.G.; Edwards, S.A.; Ashworth, C.J. Beneficial effects of a high fibre diet on oocyte maturity and embryo survival in gilts. Reproduction 2007, 133, 433–439. [Google Scholar] [CrossRef]
- Zhuo, Y.; Shi, X.L.; Lv, G.; Hua, L.; Zhou, P.; Che, L.Q.; Fang, Z.F.; Lin, Y.; Xu, S.Y.; Li, J.; et al. Beneficial effects of dietary soluble fiber supplementation in replacement gilts: Pubertal onset and subsequent performance. Anim. Reprod. Sci. 2017, 186, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Weaver, A.C.; Kelly, J.M.; Kind, K.L.; Gatford, K.L.; Kennaway, D.J.; Herde, P.J.; van Wettere, W. Oocyte maturation and embryo survival in nulliparous female pigs (gilts) is improved by feeding a lupin-based high-fibre diet. Reprod. Fertil. Dev. 2013, 25, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Zhou, D.S.; Che, L.Q.; Fang, Z.F.; Lin, Y.; Wu, D. Feeding prepubescent gilts a high-fat diet induces molecular changes in the hypothalamus-pituitary-gonadal axis and predicts early timing of puberty. Nutrition 2014, 30, 890–896. [Google Scholar] [CrossRef]
- Kirkwood, R.N.; Aherne, F.X. Energy-intake, body-composition and reproductive-performance of the gilt. J. Anim. Sci. 1985, 60, 1518–1529. [Google Scholar] [CrossRef] [PubMed]
- Tummaruk, P.; Tantasuparuk, W.; Techakumphu, A.; Kunavongkrit, A. Age, body weight and backfat thickness at first observed oestrus in crossbred Landrace x Yorkshire gilts, seasonal variations and their influence on subsequence reproductive performance. Anim. Reprod. Sci. 2007, 99, 167–181. [Google Scholar] [CrossRef] [PubMed]
- Ford, E.; Beckett, E.L.; Roman, S.; Mclaughlin, E.A.; Sutherland, J. Advances in human primordial follicle activation and premature ovarian insufficiency. Reproduction 2019. [Google Scholar] [CrossRef]
- Warren, L.; Murawski, M.; Wilk, K.; Zieba, D.A.; Bartlewski, P.M. Suitability of antral follicle counts and computer-assisted analysis of ultrasonographic and magnetic resonance images for estimating follicular reserve in porcine, ovine and bovine ovaries ex situ. Exp. Biol. Med. 2015, 240, 576–584. [Google Scholar] [CrossRef]
- Adhikari, D.; Liu, K. Molecular Mechanisms Underlying the Activation of Mammalian Primordial Follicles. Endocr. Rev. 2009, 30, 438–464. [Google Scholar] [CrossRef]
- Adhikari, D.; Zheng, W.J.; Shen, Y.; Gorre, N.; Hamalainen, T.; Cooney, A.J.; Huhtaniemi, I.; Lan, Z.J.; Liu, K. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum. Mol. Genet. 2010, 19, 397–410. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Li, J.; Zheng, N.N.; Xu, X.T.; Yang, J.; Xia, G.L.; Zhang, M.J. MAPK3/1 participates in the activation of primordial follicles through mTORC1-KITL signaling. J. Cell. Physiol. 2018, 233, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Ireland, J.L.; Scheetz, D.; Jimenez-Krassel, F.; Themmen, A.P.; Ward, F.; Lonergan, P.; Smith, G.W.; Perez, G.I.; Evans, A.C.; Ireland, J.J. Antral follicle count reliably predicts number of morphologically healthy oocytes and follicles in ovaries of young adult cattle. Biol. Reprod. 2008, 79, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
- Kaipia, A.; Hsueh, A.J.W. Regulation of ovarian follicle atresia. Annu. Rev. Physiol. 1997, 59, 349–363. [Google Scholar] [CrossRef]
- Park, C.S.; Han, S.R.; Kim, S.I.; Cho, K.J.; Kim, W.S. A Morphological Study on the Granulosa Cell Apoptosis and Macrophages during Follicular Atresia in Pig Ovary. J. Anim. Sci. Technol. 2004, 46, 571–584. [Google Scholar] [Green Version]
- Hu, G.X.; Chen, G.R.; Xu, H.; Ge, R.S.; Lin, J. Activation of the AMP activated protein kinase by short-chain fatty acids is the main mechanism underlying the beneficial effect of a high fiber diet on the metabolic syndrome. Med. Hypotheses 2010, 74, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.Z.; Hu, M.W.; Ma, X.S.; Schatten, H.; Fan, H.Y.; Wang, Z.B.; Sun, Q.Y. LKB1 acts as a critical gatekeeper of ovarian primordial follicle pool. Oncotarget 2016, 7, 5738–5753. [Google Scholar] [CrossRef]
- Carroll, B.; Nelson, G.; Rabanal-Ruiz, Y.; Kucheryavenko, O.; Dunhill-Turner, N.A.; Chesterman, C.C.; Zahari, Q.; Zhang, T.; Conduit, S.E.; Mitchell, C.A.; et al. Persistent mTORC1 signaling in cell senescence results from defects in amino acid and growth factor sensing. J. Cell Biol. 2017, 216, 1949–1957. [Google Scholar] [CrossRef]
Ingredients (g/kg) | 1–60 Days | 61 Days–Slaughter 4 | ||||||
---|---|---|---|---|---|---|---|---|
1.0 DF 5 | 1.5 DF | 1.75 DF | 2.0 DF | 1.0 DF | 1.5 DF | 1.75 DF | 2.0 DF | |
Corn | 720 | 720 | 720 | 720 | 780 | 780 | 780 | 780 |
Soybean (44%CP) | 208 | 208 | 208 | 208 | 160 | 160 | 160 | 160 |
Fish meal (65%CP) | 25 | 25 | 25 | 25 | 20 | 20 | 20 | 20 |
Soybean oil | 20 | 20 | 20 | 20 | 17 | 17 | 17 | 17 |
L-Lys HCl (98%) | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2 |
DL-Methionine (99%) | 1 | 1 | 1 | 1 | 0.4 | 0.4 | 0.4 | 0.4 |
L-Threonine (98%) | 0.6 | 0.6 | 0.6 | 0.6 | 0.2 | 0.2 | 0.2 | 0.2 |
L-Trptophan (98%) | 0.1 | 0.1 | 0.1 | 0.1 | 0 | 0 | 0 | 0 |
Choline chloride (50%) | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Salt | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
Limestone | 6.2 | 6.2 | 6.2 | 6.2 | 5.9 | 5.9 | 5.9 | 5.9 |
Monocalcium phosphate | 8.6 | 8.6 | 8.6 | 8.6 | 7 | 7 | 7 | 7 |
Vitamin-mineral premix 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Dietary fiber mixture 2 | 0 | 63 | 94 | 125 | 0 | 62 | 93 | 124 |
Total | 1000 | 1063 | 1094 | 1125 | 1000 | 1062 | 1093 | 1124 |
Nutrient composition, g/kg 3 | ||||||||
Digestible energy, Mcal/kg | 3.40 | 3.20 | 3.11 | 3.02 | 3.40 | 3.20 | 3.11 | 3.02 |
Crude protein | 169.0 | 159.0 | 154.5 | 150.2 | 147.0 | 138.4 | 134.5 | 130.8 |
Total Lysine | 10.8 | 10.2 | 9.9 | 9.6 | 8.6 | 8.1 | 7.9 | 7.6 |
Standardized ileal digestible lysine | 9.8 | 9.2 | 9.0 | 8.7 | 7.8 | 7.3 | 7.1 | 6.9 |
Calcium | 6.9 | 6.5 | 6.3 | 6.1 | 5.9 | 5.6 | 5.4 | 5.2 |
Total phosphorus | 5.9 | 5.6 | 5.4 | 5.2 | 5.3 | 5.0 | 4.8 | 4.7 |
Soluble fiber | 10.2 | 21.4 | 26.5 | 31.3 | 10.3 | 21.4 | 26.4 | 31.2 |
Insoluble fiber | 115.0 | 155.6 | 173.8 | 191.1 | 113.9 | 154.0 | 172.3 | 189.6 |
Total dietary fiber 3 | 125.2 | 177.0 | 200.4 | 222.4 | 124.2 | 175.3 | 198.7 | 220.8 |
Nutrient Intake | 1.0 DF 1 | 1.5 DF | 1.75 DF | 2.0 DF |
---|---|---|---|---|
Day 1 to 30 of experiment (g/day) | ||||
Feed intake | 1600 | 1700 | 1750 | 1800 |
DE 2 intake (Mcal/day) | 5.44 | 5.44 | 5.44 | 5.44 |
Total lysine intake | 17.28 | 17.28 | 17.28 | 17.28 |
Soluble fiber intake | 16.32 | 36.38 | 46.38 | 56.34 |
Insoluble fiber intake | 184.00 | 264.52 | 304.15 | 343.98 |
Total dietary fiber (soluble + insoluble) intake | 200.32 | 300.90 | 350.7 | 400.32 |
Day 31 to 60 of experiment (g/day) | ||||
Feed intake | 2100 | 2232 | 2297 | 2362 |
DE intake (Mcal/day) | 7.14 | 7.14 | 7.14 | 7.14 |
Total lysine intake | 22.68 | 22.68 | 22.68 | 22.68 |
Soluble fiber intake | 21.42 | 47.76 | 60.87 | 73.93 |
Insoluble fiber intake | 241.50 | 347.30 | 399.22 | 451.38 |
Total dietary fiber (soluble + insoluble) intake | 262.92 | 395.06 | 460.32 | 525.31 |
Day 61 to 120 of experiment (g/day) | ||||
Feed intake | 2500 | 2655 | 2732 | 2810 |
DE intake (Mcal/day) | 8.5 | 8.5 | 8.5 | 8.5 |
Total lysine intake | 21.5 | 21.5 | 21.5 | 21.5 |
Soluble fiber intake | 25.75 | 56.82 | 72.12 | 87.67 |
Insoluble fiber intake | 284.75 | 408.87 | 470.72 | 532.78 |
Total dietary fiber (soluble + insoluble) intake | 310.5 | 465.42 | 542.85 | 620.45 |
Day 121 to slaughter 3 (g/day) | ||||
Feed intake | 2800 | 2974 | 3060 | 3174 |
DE intake (Mcal/day) | 9.52 | 9.52 | 9.52 | 9.52 |
Total lysine intake | 24.08 | 24.08 | 24.08 | 24.08 |
Soluble fiber intake | 28.84 | 63.64 | 80.78 | 99.03 |
Insoluble fiber intake | 318.92 | 458.00 | 527.24 | 601.79 |
Total dietary fiber (soluble + insoluble) intake | 347.76 | 521.34 | 608.02 | 700.82 |
Primers | Sequences (5′–3′) | Gene Bank No. |
---|---|---|
Bax | F: CGCATTGGAGATGAACTGGA R: CCAGTTGAAGTTGCCGTCAG | XM_003127290.5 |
Bcl-2 | F: GCCTTTGTGGAGCTGTATGG R: CCCGTGGACTTCACTTATGG | XM_021099593.1 |
Caspase-3 | F: GCCGAGGCACAGAATTGGACTG R: GCCAGGAATAGTAACCAGGTGCTG | NM_214131.1 |
GDF-9 | F: GGTATGGCTCTCCGGTTCACAC R: CTTGGCAGGTACGCAGGATGG | NM_001001909.1 |
AMH | F: GACTCTGGCTTCCTGGCGTTG R: ATCCGTGTGAAGCAGCGAGAG | NM_214310.3 |
β-actin | F: CCAGCACGATGAAGATCAAGA R: AATGCAACTAACAGTCCGCCTA | XM_003124280.5 |
Items | Treatments | p-Value | ||||
---|---|---|---|---|---|---|
1.0 DF | 1.5 DF | 1.75 DF | 2.0 DF | Linear | Quadratic | |
Initial age, days | 92.7 ± 0.2 | 92.6 ± 0.1 | 92.6 ± 0.2 | 92.6 ± 0.1 | 0.810 | 0.709 |
BW, kg | ||||||
Initial | 33.8 ± 0.8 | 33.8 ± 0.9 | 33.8 ± 0.9 | 33.8 ± 0.9 | 0.980 | 0.994 |
Day 30 | 54.1 ± 0.9 | 53.6 ± 0.7 | 53.6 ± 0.8 | 53.1 ± 0.8 | 0.397 | 0.938 |
Day 60 | 75.6 ± 1.3 | 76.2 ± 1.0 | 75.9 ± 1.2 | 76.0 ± 1.2 | 0.826 | 0.814 |
Day 90 | 99.3 ± 1.3 | 100.0 ± 1.4 | 99.8 ± 1.2 | 100.3 ± 1.4 | 0.634 | 0.999 |
Day 120 | 120.9 ± 1.7 | 121.5 ± 1.6 | 121.2 ± 1.5 | 121.4 ± 1.5 | 0.861 | 0.892 |
ADG, kg/day | ||||||
Day 0–30 | 0.68 ± 0.02 | 0.66 ± 0.02 | 0.66 ± 0.01 | 0.64 ± 0.02 | 0.173 | 0.893 |
Day 30–60 | 0.72 ± 0.03 | 0.74 ± 0.03 | 0.73 ± 0.04 | 0.75 ± 0.02 | 0.613 | 0.964 |
Day 60–90 | 0.79 ± 0.04 | 0.79 ± 0.02 | 0.80 ± 0.02 | 0.81 ± 0.03 | 0.651 | 0.735 |
Day 90–120 | 0.74 ± 0.03 | 0.72 ± 0.03 | 0.74 ± 0.02 | 0.72 ± 0.02 | 0.721 | 0.720 |
ADFI, kg/day | 2.41 + 0.01 d | 2.56 + 0.01 c | 2.65 + 0.01 b | 2.73 + 0.01 a | <0.001 | 0.837 |
BF at day 30, mm | 9.63 ± 0.18 | 9.55 ± 0.20 | 9.50 ± 0.22 | 9.53 ± 0.22 | 0.669 | 0.870 |
BF at day 120, mm | 14.56 ± 0.43 | 14.41 ± 0.38 | 13.91 ± 0.44 | 14.15 ± 0.35 | 0.332 | 0.848 |
Age at puberty, days | 198.3 ± 6.4 | 190.4 ± 4.1 | 195.5 ± 4.0 | 197.3 ± 7.0 | 0.627 | 0.612 |
BW at puberty, kg | 110.6 ± 4.2 | 108.0 ± 4.4 | 111.7 ± 3.7 | 113.1 ± 5.7 | 0.682 | 0.552 |
BF at puberty, mm | 13.32 ± 0.47 | 12.67 ± 0.51 | 12.84 ± 0.46 | 13.19 ± 0.44 | 0.773 | 0.289 |
Items | Treatments | p-Value | ||||
---|---|---|---|---|---|---|
1.0 DF | 1.5 DF | 1.75 DF | 2.0 DF | Linear | Quadratic | |
Weight of ovaries, g | 7.85 ± 0.57 | 7.46 ± 1.02 | 6.35 ± 0.45 | 6.63 ± 0.66 | 0.154 | 0.951 |
Relative weight of ovaries, g/kg | 0.114 ± 0.09 | 0.116 ± 0.013 | 0.094 ± 0.005 | 0.103 ± 0.011 | 0.266 | 0.929 |
No. of follicle with diameter of 1–3 mm, n | 125.8 ± 5.8 b | 131.7 ± 11.3 ab | 130.4 ± 12.3 ab | 166.5 ± 9.7 a | 0.020 | 0.087 |
Follicle percentage | ||||||
Primordial follicle | 63.65 ± 2.14 | 64.72 ± 3.19 | 66.12 ± 3.26 | 71.67 ± 1.52 | 0.059 | 0.264 |
Primary follicle | 11.41 ± 0.79 | 9.62 ± 0.47 | 10.57 ± 1.34 | 9.51 ± 0.70 | 0.196 | 0.699 |
Secondary follicle | 9.17 ± 0.45 | 10.03 ± 1.67 | 9.78 ± 1.16 | 8.66 ± 0.82 | 0.848 | 0.364 |
Antral follicle | 8.85 ± 2.30 | 9.76 ± 1.26 | 9.24 ± 1.80 | 7.36 ± 0.51 | 0.596 | 0.347 |
Atretic follicle | 6.91 ± 0.76 a | 5.86 ± 0.91 a | 4.28 ± 0.62 ab | 2.82 ± 0.42 b | <0.001 | 0.278 |
Number of ovarian follicles, 103/cm | ||||||
Primordial follicle | 40.17 ± 2.61 b | 43.34 ± 6.45 b | 45.77 ± 3.28 ab | 64.51 ± 10.59 a | 0.028 | 0.147 |
Primary follicle | 7.36 ± 1.03 | 6.23 ± 0.64 | 7.32 ± 0.98 | 8.45 ± 1.24 | 0.474 | 0.190 |
Secondary follicle | 5.84 ± 0.61 | 6.26 ± 0.76 | 6.90 ± 1.00 | 7.61 ± 1.27 | 0.190 | 0.688 |
Antral follicle | 5.79 ± 1.63 | 6.04 ± 0.63 | 6.47 ± 1.41 | 6.35 ± 0.71 | 0.688 | 0.956 |
Atretic follicle | 4.47 ± 0.65 a | 3.67 ± 0.40 ab | 2.96 ± 0.41 bc | 2.33 ± 0.22 c | 0.002 | 0.662 |
Total follicles | 63.64 ± 5.08 b | 65.55 ± 7.03 ab | 69.42 ± 3.91 ab | 89.25 ± 13.43 a | 0.059 | 0.183 |
Items | Treatments | p-Value | ||||
---|---|---|---|---|---|---|
1.0 DF | 1.5 DF | 1.75 DF | 2.0 DF | Linear | Quadratic | |
BW at slaughter, kg | 146.7 ± 1.6 | 145.3 ± 1.8 | 145.8 ± 3.0 | 142.3 ± 1.7 | 0.209 | 0.549 |
Weight of ovaries, g | 16.78 ± 0.71 | 14.96 ± 0.62 | 14.58 ± 0.75 | 14.88 ± 1.15 | 0.081 | 0.341 |
Relative weight of ovaries, g/kg | 0.114 ± 0.004 | 0.103 ± 0.004 | 0.100 ± 0.005 | 0.105 ± 0.009 | 0.186 | 0.287 |
No. of follicle, n | ||||||
Diameter 1–3 mm | 25.8 ± 3.4 | 25.0 ± 5.4 | 33.8 ± 6.5 | 31.7 ± 10.1 | 0.424 | 0.856 |
Diameter ≥3 mm | 39.5 ± 3.5 | 40.0 ± 1.3 | 37.3 ± 5.7 | 40.7 ± 1.9 | 0.978 | 0.773 |
No. of corpora lutea, n | 21.2 ± 1.8 | 24.7 ± 1.7 | 29.5 ± 2.5 | 22.8 ± 3.0 | 0.243 | 0.102 |
Follicle percentage, % | ||||||
Primordial follicle | 56.93 ± 5.18 | 63.37 ± 2.00 | 63.07 ± 3.17 | 68.12 ± 4.32 | 0.065 | 0.961 |
Primary follicle | 12.05 ± 1.15 | 10.93 ± 1.11 | 12.73 ± 1.22 | 11.67 ± 2.22 | 0.976 | 0.839 |
Secondary follicle | 9.01 ± 2.08 | 10.99 ± 0.84 | 9.11 ± 0.34 | 9.07 ± 1.27 | 0.934 | 0.317 |
Antral follicle | 15.25 ± 2.31 | 10.39 ± 1.57 | 11.06 ± 1.27 | 9.48 ± 0.82 | 0.020 | 0.449 |
Atretic follicle | 6.75 ± 1.00 a | 4.40 ± 0.41 ab | 3.91 ± 0.92 a,b | 2.42 ± 0.46 b | 0.001 | 0.989 |
Number of ovarian follicles, 103/cm | ||||||
Primordial follicle | 9.88 ± 1.40 b | 16.20 ± 1.78 ab | 19.33 ± 3.60 a | 18.55 ± 4.20 ab | 0.054 | 0.494 |
Primary follicle | 2.72 ± 0.38 bc | 2.52 ± 0.20 c | 3.50 ± 0.29 ab | 3.84 ± 0.27 a | 0.010 | 0.110 |
Secondary follicle | 2.21 ± 0.69 | 2.65 ± 0.26 | 2.72 ± 0.28 | 3.05 ± 0.47 | 0.210 | 0.957 |
Antral follicle | 3.37 ± 0.56 | 2.58 ± 0.40 | 3.11 ± 0.37 | 3.18 ± 0.54 | 0.818 | 0.318 |
Atretic follicle | 1.48 ± 0.20 a | 1.09 ± 0.12 ab | 1.05 ± 0.15b | 0.74 ± 0.05 b | 0.002 | 0.839 |
Total follicles | 18.97 ± 3.06 | 25.04 ± 2.06 | 29.71 ± 4.21 | 28.34 ± 4.71 | 0.073 | 0.593 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, M.; Zhuo, Y.; Gong, L.; Tang, L.; Li, Z.; Li, Y.; Yang, M.; Xu, S.; Li, J.; Che, L.; et al. Optimal Dietary Fiber Intake to Retain a Greater Ovarian Follicle Reserve for Gilts. Animals 2019, 9, 881. https://doi.org/10.3390/ani9110881
Cao M, Zhuo Y, Gong L, Tang L, Li Z, Li Y, Yang M, Xu S, Li J, Che L, et al. Optimal Dietary Fiber Intake to Retain a Greater Ovarian Follicle Reserve for Gilts. Animals. 2019; 9(11):881. https://doi.org/10.3390/ani9110881
Chicago/Turabian StyleCao, Meng, Yong Zhuo, Lechan Gong, Lianchao Tang, Zipeng Li, Yang Li, Min Yang, Shengyu Xu, Jian Li, Lianqiang Che, and et al. 2019. "Optimal Dietary Fiber Intake to Retain a Greater Ovarian Follicle Reserve for Gilts" Animals 9, no. 11: 881. https://doi.org/10.3390/ani9110881
APA StyleCao, M., Zhuo, Y., Gong, L., Tang, L., Li, Z., Li, Y., Yang, M., Xu, S., Li, J., Che, L., Lin, Y., Feng, B., Fang, Z., & Wu, D. (2019). Optimal Dietary Fiber Intake to Retain a Greater Ovarian Follicle Reserve for Gilts. Animals, 9(11), 881. https://doi.org/10.3390/ani9110881