Polymorphisms within the Boule Gene Detected by Tetra-Primer Amplification Refractory Mutation System PCR (T-ARMS-PCR) Are Significantly Associated with Goat Litter Size
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Samples and Genomic DNA Collection
2.2. Primer Design, Genotyped for g.7254T>C by T-ARMS-PCR
2.3. Statistical Analysis
3. Results
3.1. Polymorphism Detection and Genotyping of Boule Gene via T-ARMS-PCR
3.2. Analysis of Population Genetics of g.7254T>C
3.3. Association of g.7254T>C with Goat Litter Size
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, M.; Yan, H.; Wang, K.; Cui, Y.; Chen, R.; Liu, W.; Zhu, H.; Qu, L.; Pan, C. Goat SPEF2: Expression profile, indel variants identification and association analysis with litter size. Theriogenology 2019, 139, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, X.; Jiang, E.; Yan, H.; Zhu, H.; Chen, H.; Liu, J.; Qu, L.; Pan, C.; Lan, X. InDels within caprine IGF 2 BP 1 intron 2 and the 3′-untranslated regions are associated with goat growth traits. Anim. Genet. 2019. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Zhang, S.L.; Li, J.; Wang, X.Y.; Peng, K.; Lan, X.Y.; Pan, C.Y. Development of a touch down multiples PCR method for simultaneously rapidly detecting three novel insertion/deletions (indels) within one gene: an example for goat GHR gene. Anim. Biotech. 2019, 30, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Zhang, S.; He, L.; Zhu, H.; Wang, Z.; Yan, H.; Huang, Y.; Dang, R.; Lei, C.; Chen, H.; et al. A 14-bp functional deletion within the CMTM2 gene is significantly associated with litter size in goat. Theriogenology 2019, 139, 49–57. [Google Scholar] [CrossRef]
- Cui, Y.; Yan, H.; Wang, K.; Xu, H.; Zhang, X.; Zhu, H.; Liu, J.; Qü, L.; Lan, X.; Pan, C. Insertion/Deletion Within the KDM6A Gene Is Significantly Associated with Litter Size in Goat. Front. Genet. 2018, 9, 91. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, H.; Wang, K.; Zhou, T.; Chen, M.; Zhu, H.; Pan, C.; Zhang, E. Goat CTNNB1: mRNA expression profile of alternative splicing in testis and association analysis with litter size. Gene 2018, 679, 297–304. [Google Scholar] [CrossRef]
- Cartegni, L.; Krainer, A.R. Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat. Genet. 2002, 30, 377–384. [Google Scholar] [CrossRef]
- Montgomery, S.B.; Sammeth, M.; Gutierrez-Arcelus, M.; Lach, R.P.; Ingle, C.; Nisbett, J.; Guigo, R.; Dermitzakis, E.T. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 2010, 464, 773–777. [Google Scholar] [CrossRef] [Green Version]
- Lai, F.-N.; Zhai, H.-L.; Cheng, M.; Ma, J.-Y.; Cheng, S.-F.; Ge, W.; Zhang, G.-L.; Wang, J.-J.; Zhang, R.-Q.; Wang, X.; et al. Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat (Capra hircus). Sci. Rep. 2016, 6, 38096. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, Z.; Yang, H.; Yao, X.; Yang, P.; Ren, C.; Wang, F.; Zhang, Y. Pituitary transcriptomic study reveals the differential regulation of lncRNAs and mRNAs related to prolificacy in different FecB genotyping sheep. Genes (Basel) 2019, 10, 157. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, S.; Yang, Q.; Pan, C.; Chen, H.; Qu, L.; Yan, H.; Lan, X. A novel 12-bp indel polymorphism within the GDF9 gene is significantly associated with litter size and growth traits in goats. Anim. Genet. 2017, 48, 735–736. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, Q.; Wang, K.; Yan, H.; Pan, C.; Chen, H.; Liu, J.; Zhu, H.; Qu, L.; Lan, X. Two strongly linked single nucleotide polymorphisms (Q320P and V397I) in GDF9 gene are associated with litter size in cashmere goats. Theriogenology 2019, 125, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, Y.; Bai, Y.; Yang, H.; Yan, H.; Liu, J.; Shi, L.; Song, X.; Li, L.; Dong, S.; et al. Relationship between SNPs of POU1F1 gene and litter size and growth traits in Shaanbei White Cashmere Goats. Animals (Basel) 2019, 9, 114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cui, W.; Yang, H.; Wang, M.; Yan, H.; Zhu, H.; Liu, J.; Qu, L.; Lan, X.; Pan, C. A novel missense mutation (L280V) within POU1F1 gene strongly affects litter size and growth traits in goat. Theriogenology 2019, 135, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-Q.; Lai, F.-N.; Wang, J.-J.; Zhai, H.-L.; Zhao, Y.; Sun, Y.-J.; Min, L.-J.; Shen, W. Analysis of the SNP loci around transcription start sites related to goat fecundity trait base on whole genome resequencing. Gene 2018, 643, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Cao, G.-L.; Chu, M.-X.; Di, R.; Huang, D.-W.; Liu, Q.-Y.; Pan, Z.-Y.; Jin, M.; Zhang, Y.-J.; Li, N. Identification and verification of differentially expressed genes in the caprine hypothalamic-pituitary-gonadal axis that are associated with litter size. Mol. Reprod. Dev. 2015, 82, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Cai, H.; Yang, Q.; Shi, T.; Pan, C.; Lei, C.; Dang, R.; Chen, H.; Lan, X. Identification of novel alternative splicing transcript and expression analysis of bovine TMEM95 gene. Gene 2016, 575, 531–536. [Google Scholar] [CrossRef]
- Maines, J.Z.; Wasserman, S.A. Post-transcriptional regulation of the meiotic Cdc25 protein Twine by the Dazl orthologue Boule. Nat. Cell Biol. 1999, 1, 171–174. [Google Scholar] [CrossRef]
- Kim, B.; Rhee, K. BOULE, a Deleted in Azoospermia Homolog, Is Recruited to Stress Granules in the Mouse Male Germ Cells. PLoS ONE 2016, 11, e0163015. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, S.; Yang, Q.; Wang, K.; Zhang, S.; Pan, C.; Yan, H.; Dang, R.; Lei, C.; Chen, H.; et al. Goat Boule: Isoforms identification, mRNA expression in testis and functional study and promoter methylation profiles. Theriogenology 2018, 116, 53–63. [Google Scholar] [CrossRef]
- Kuales, G.; De Mulder, K.; Glashauser, J.; Salvenmoser, W.; Takashima, S.; Hartenstein, V.; Berezikov, E.; Salzburger, W.; Ladurner, P. Boule-like genes regulate male and female gametogenesis in the flatworm Macrostomum lignano. Dev. Boil. 2011, 357, 117–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, H.; Li, C.-J.; Yue, H.-M.; Yang, X.-G.; Wei, Q.-W. Differential expression of fertility genes boule and dazl in Chinese sturgeon (Acipenser sinensis), a basal fish. Cell Tissue Res. 2015, 360, 413–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, S.M.; Saini, N.; Ashraf, S.; Singh, M.K.; Manik, R.S.; Singla, S.K.; Palta, P.; Chauhan, M.S. Cumulus cell-conditioned medium supports embryonic stem cell differentiation to germ cell-like cells. Reprod. Fertil. Dev. 2017, 29, 679. [Google Scholar] [CrossRef]
- Zhang, S.; Dang, Y.; Zhang, Q.; Qin, Q.; Lei, C.; Chen, H.; Lan, X. Tetra-primer amplification refractory mutation system PCR (T-ARMS-PCR) rapidly identified a critical missense mutation (P236T) of bovine ACADVL gene affecting growth traits. Gene 2015, 559, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, S.; Erdenee, S.; Sun, X.; Dang, R.; Huang, Y.; Lei, C.; Chen, H.; Xu, H.; Cai, Y.; et al. Nucleotide variants in prion-related protein (testis-specific) gene (PRNT) and effects on Chinese and Mongolian sheep phenotypes. Prion 2018, 12, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Wang, J.; Liu, N.; Cui, W.; Dong, W.; Xing, B.; Pan, C. Pig SOX9: Expression profiles of Sertoli cell (SCs) and a functional 18 bp indel affecting testis weight. Theriogenology 2019, 138, 94–101. [Google Scholar] [CrossRef]
- Li, Y.; Wang, K.; Jiang, Y.-Z.; Chang, X.-W.; Dai, C.-F.; Zheng, J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) inhibits human ovarian cancer cell proliferation. Cell. Oncol. (Dordr.) 2014, 37, 429–437. [Google Scholar] [CrossRef]
- Lande, R.; Thompson, R. Efficiency of Marker-Assisted Selection in the Improvement of Quantitative Traits. Genetics 1990, 124, 743–756. [Google Scholar]
- Nkrumah, J.D.; Sherman, E.L.; Bartusiak, R.; Murdoch, B.; Moore, S.S.; Li, C.; Marques, E.; Crews, D.H., Jr.; Wang, Z.; Basarab, J.A. Primary genome scan to identify putative quantitative trait loci for feedlot growth rate, feed intake, and feed efficiency of beef cattle1. J. Anim. Sci. 2007, 85, 3170–3181. [Google Scholar] [CrossRef] [Green Version]
- Medrano, R.F.V.; De Oliveira, C.A. Guidelines for the Tetra-Primer ARMS–PCR Technique Development. Mol. Biotechnol. 2014, 56, 599–608. [Google Scholar] [CrossRef]
- Lee, D.F.; Klebes, A.; Kornberg, T.B.; Xu, E.Y.; Turek, P.J.; Pera, R.A.R. Human BOULE gene rescues meiotic defects in infertile flies. Hum. Mol. Genet. 2003, 12, 169–175. [Google Scholar] [Green Version]
- Luetjens, C.M.; Xu, E.Y.; Pera, R.A.R.; Kamischke, A.; Nieschlag, E.; Gromoll, J. Association of Meiotic Arrest with Lack of BOULE Protein Expression in Infertile Men. J. Clin. Endocrinol. Metab. 2004, 89, 1926–1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerveld, G.H.; Repping, S.; Leschot, N.J.; Van Der Veen, F.; Lombardi, M.P. Mutations in the human BOULE gene are not a major cause of impaired spermatogenesis. Fertil. Steril. 2005, 83, 513–515. [Google Scholar] [CrossRef] [PubMed]
- Fromm, M.; Walbot, V.; Callis, J. Introns increase gene expression in cultured maize cells. Genes Dev. 1987, 1, 1183–1200. [Google Scholar]
- Buchman, A.R.; Berg, P. Comparison of intron-dependent and intron-independent gene expression. Mol. Cell. Boil. 1988, 8, 4395–4405. [Google Scholar] [CrossRef] [PubMed]
- Walker, V.K.; Duncker, B.; Davies, P.L. Introns boost transgene expression in Drosophila melanogaster. Mol. Genet. Genom. 1997, 254, 291–296. [Google Scholar]
- Cáceres, J.F.; Kornblihtt, A.R. Alternative splicing: Multiple control mechanisms and involvement in human disease. Trends Genet. 2002, 18, 186–193. [Google Scholar] [CrossRef]
- Mandon-Pépin, B.; Oustry-Vaiman, A.; Vigier, B.; Piumi, F.; Cribiu, E.; Cotinot, C. Expression profiles and chromosomal localization of genes controlling meiosis and follicular development in the sheep ovary. Boil. Reprod. 2003, 68, 985–995. [Google Scholar]
Loci | Primer Sequences (5′→3′) | Tm (°C) | Sizes (bp) |
---|---|---|---|
P1 | F: CGTGGTGTTGCTTCCTGGGTGT R: GGGAATCCTCAACGGCACAGAC | 61.6 | 812 |
P2 | F: TCAAATCAGACGCAAACAGA R: TTGGGATAAAGAAACAGGAC | 47.8 | 568 |
P3 | F: TAGAGTGACTGGTGGAAGCC R: CTGGTGGTCCAATGGTAAAG | 50.1 | 884 |
P4 | F: GTGCCTCAAAGAGTCGGAAAC R: CTGGGGTGGAGCTGATGTAATA | 50.0 | 944 |
P5 | F: AGCCAGCACTTCAACACTACAC R: CATTTGCCTACCACCTTCG | 49.9 | 553 |
P6 | F: GGACACGACTGAGCGACTGA R: GACCACCTGATGGGAAGAGC | 51.3 | 797 |
P7 | F: CAGTTCAGTCGCTCAGTCGT R: CTTACCCTCAACCTCCCATA | 50.2 | 1265 |
P8 | F: GTATCGGACTCTTCGCAACC R: GAAATGGTGAAGGACAGGGA | 50.5 | 1191 |
P9 | F: GGGGTCGCATAGAGTTGGA R: GGGGATTGAGTCAGGGATAGTT | 50.3 | 636 |
P10 | F: TCCTTCCAGCCATACCAAAC R: CCAGGGATTAAACTCAGACC | 49.2 | 826 |
P11 | F: AGTTTTCCGAGCACCACTTG R: CAGCTTCTAGCCGGTTCATT | 50.6 | 935 |
P12 | F: CACTGCCATGACTGGAGGA R: CTGCCAATTCAGGGGACA | 50.5 | 818 |
P13 | F: GGAGAAGGGAATGGCTAC R: CCTGATGATCTGAGGTGGA | 48.2 | 978 |
P14 | F: GTGAGTGCTCGCTGATAGT R: GGTGGTGGGACAGAAGTT | 47.2 | 615 |
P15 | F: TGCCTGGTTCAAAGTCAC R: AGCTCTGGGAAATGGTGA | 48.4 | 823 |
P16 | F: ACTGTTGAGCCTGTTGGAGA R: AGGGGATTGAGTCAGGGATA | 49.3 | 743 |
g.7254T>C | inner-F: ACCTAATGATTTCATGCACTGTTATGAC inner-R: ATGGATATAAGGATGCCTGTCAGCA outer-F: TGCCTAGTACAATTCTATCA outer-R: AACCCACTACAACTTCCTTCT | Touchdown-PCR | C allele: 364 T allele: 208 Outer primers: 521 |
Composition | Volume (μL) | ||||||
---|---|---|---|---|---|---|---|
Ratio of the inner and outer primers | 1:1 | 1:2 | 1:4 | 1:6 | 1:8 | 1:10 | |
Total volume | 10 | 10 | 10 | 10 | 10 | 10 | |
2 × Taq PCR MasterMix | 5 | 5 | 5 | 5 | 5 | 5 | |
DNA | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | |
ddH2O | 3.7 | 3.3 | 2.5 | 2.1 | 0.9 | 0.1 | |
Inner primers | forward | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
reverse | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | |
Outer primers | forward | 0.2 | 0.4 | 0.8 | 1.2 | 1.6 | 2 |
reverse | 0.2 | 0.4 | 0.8 | 1.2 | 1.6 | 2 |
Groups/Locus | Sizes | Genotypic Frequencies | Allelic Frequencies | a HWE | Population Parameters | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SNP | N | CC | CT | TT | C | T | p Values | b Ho | c He | d Ne | e PIC |
female goats with single-lamb | 176 | 0.051 (n = 9) | 0.392 (n = 69) | 0.557 (n = 98) | 0.247 | 0.753 | p = 0.478 | 0.628 | 0.372 | 1.593 | 0.303 |
female goats with multi-lamb | 181 | 0.061 (n = 11) | 0.536 (n = 97) | 0.403 (n = 73) | 0.329 | 0.671 | p = 0.004 | 0.559 | 0.441 | 1.790 | 0.344 |
Total (female goats with single-lamb + multi-lamb) | 357 | 0.056 (n = 20) | 0.465 (n = 166) | 0.479 (n = 171) | 0.288 | 0.712 | p = 0.012 | 0.589 | 0.411 | 1.697 | 0.411 |
Column Header | Single-Lamb | Multi-Lamb |
---|---|---|
Single-lamb | χ2 = 8.510 (df = 2, * p = 0.014) | |
Multi-lamb | χ2 = 2.892 (df = 1, p = 0.089) |
Growth Traits | Genotype (Mean ± SE) | p Value | ||
---|---|---|---|---|
CC (n) | CT (n) | TT (n) | ||
Litter size | a 1.55 ± 0.114 (n = 20) | a 1.60 ± 0.041 (n = 166) | b 1.46 ± 0.042 (n = 171) | p < 0.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, X.; Li, J.; Fei, P.; Zhang, X.; Pan, C.; Chen, H.; Qu, L.; Lan, X. Polymorphisms within the Boule Gene Detected by Tetra-Primer Amplification Refractory Mutation System PCR (T-ARMS-PCR) Are Significantly Associated with Goat Litter Size. Animals 2019, 9, 910. https://doi.org/10.3390/ani9110910
Song X, Li J, Fei P, Zhang X, Pan C, Chen H, Qu L, Lan X. Polymorphisms within the Boule Gene Detected by Tetra-Primer Amplification Refractory Mutation System PCR (T-ARMS-PCR) Are Significantly Associated with Goat Litter Size. Animals. 2019; 9(11):910. https://doi.org/10.3390/ani9110910
Chicago/Turabian StyleSong, Xiaoyue, Jie Li, Panfeng Fei, Xiaoyan Zhang, Chuanying Pan, Hong Chen, Lei Qu, and Xianyong Lan. 2019. "Polymorphisms within the Boule Gene Detected by Tetra-Primer Amplification Refractory Mutation System PCR (T-ARMS-PCR) Are Significantly Associated with Goat Litter Size" Animals 9, no. 11: 910. https://doi.org/10.3390/ani9110910
APA StyleSong, X., Li, J., Fei, P., Zhang, X., Pan, C., Chen, H., Qu, L., & Lan, X. (2019). Polymorphisms within the Boule Gene Detected by Tetra-Primer Amplification Refractory Mutation System PCR (T-ARMS-PCR) Are Significantly Associated with Goat Litter Size. Animals, 9(11), 910. https://doi.org/10.3390/ani9110910