High Connectivity of the White Seabream (Diplodus sargus, L. 1758) in the Aegean Sea, Eastern Mediterranean Basin
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Sampling Design and Molecular Techniques
2.2. Statistics
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Moura, A.E.; Natoli, A.; Rogan, E.; Hoelzel, A.R. Atypical panmixia in a European dolphin species (Delphinus delphis): Implications for the evolution of diversity across oceanic boundaries. J. Evol. Biol. 2013, 26, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Gkafas, G.A.; Exadactylos, A.; Rogan, E.; Raga, J.A.; Reid, R.; Hoelzel, A.R. Biogeography and temporal progression during the evolution of striped dolphin population structure in European waters. J. Biogeogr. 2017, 44, 2681–2691. [Google Scholar] [CrossRef]
- Bailleul, D.; Mackenzie, A.; Sacchi, O.; Poisson, F.; Bierne, N.; Arnaud-Haond, S. Large-scale genetic panmixia in the blue shark (Prionace glauca): A single worldwide population or a genetic lag-time effect of the “grey zone” of differentiation? Evol. Appl. 2018, 11, 614–630. [Google Scholar] [CrossRef] [PubMed]
- Lenfant, P. Demographic and genetic structures of white seabream populations (Diplodus sargus, Linnaeus, 1758) inside and outside a Mediterranean marine reserve. Comptes Rendus Biol. 2003, 325, 239–252. [Google Scholar] [CrossRef]
- González-Wangüemert, M.; Pérez-Ruzafa, A.; Cánovas, F.; García-Charton, J.A.; Marcos, C. Temporal genetic variation in populations of Diplodus sargus from the SW Mediterranean Sea. Mar. Ecol. Prog. Ser. 2006, 334, 237–244. [Google Scholar] [CrossRef]
- Hernández-García, R.; Muñoz, I.; López-Capel, A.; Marcos, C.; Pérez-Ruzafa, Á. The influence of environmental variability of a coastal lagoon ecosystem on genetic diversity and structure of white seabream [Diplodus sargus (Linnaeus 1758)] populations. Mar. Ecol. 2015, 36, 1144–1154. [Google Scholar] [CrossRef]
- Gkafas, G.A.; Tsigenopoulos, C.; Magoulas, A.; Panagiotaki, P.; Vafidis, D.; Mamuris, Z.; Exadactylos, A. Population subdivision of saddled seabream oblada melanura in the Aegean Sea revealed by genetic and morphometric analyses. Aquat. Biol. 2013, 18, 69–80. [Google Scholar] [CrossRef]
- Gagnaire, P.; Broquet, T.; Aurelle, D.; Viard, F.; Souissi, A.; Bonhomme, F.; Arnaud-Haond, S.; Bierne, N. Using neutral, selected, and hitchhiker loci to assess connectivity of marine populations in the genomic era. Evol. Appl. 2015, 8, 769–786. [Google Scholar] [CrossRef]
- Konstantinidis, I.; Gkafas, G.A.; Karamitros, G.; Lolas, A.; Antoniadou, C.; Vafidis, D.; Exadactylos, A. Population structure of two benthic species with different larval stages in the eastern Mediterranean Sea. J. Environ. Prot. Ecol. 2017, 18, 930–939. [Google Scholar]
- Miller, A.D.; Versace, V.L.; Matthews, T.G.; Montgomery, S.; Bowie, K.C. Ocean currents influence the genetic structure of an intertidal mollusc in southeastern Australia-implications for predicting the movement of passive dispersers across a marine biogeographic barrier. Ecol. Evol. 2013, 3, 1248–1261. [Google Scholar] [CrossRef]
- Macpherson, E. Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. J. Exp. Mar. Biol. Ecol. 1998, 220, 127–150. [Google Scholar] [CrossRef]
- Vigliola, L.; HarmelinVivien, M.L.; Biagi, F.; Galzin, R.; GarciaRubies, A.; Harmelin, J.G.; Jouvenel, J.Y.; LeDireachBoursier, L.; Macpherson, E.; Tunesi, L. Spatial and temporal patterns of settlement among sparid fishes of the genus Diplodus in the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 1998, 168, 45–56. [Google Scholar] [CrossRef]
- Bargelloni, L.; Alarcon, J.A.; Alvarez, M.C.; Penzo, E.; Magoulas, A.; Reis, C.; Patarnello, T. Discord in the family sparidae (Teleostei): Divergent phylogeographical patterns across the Atlantic-Mediterranean divide. J. Evol. Biol. 2003, 16, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Waples, R.S.; Gaggiotti, O. Invited review: What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol. Ecol. 2006, 15, 1419–1439. [Google Scholar] [CrossRef] [PubMed]
- Secor, D.H. The year-class phenomenon and the storage effect in marine fishes. J. Sea Res. 2007, 57, 91–103. [Google Scholar] [CrossRef]
- Kerr, L.A.; Cadrin, S.X.; Secor, D.H. Simulation modelling as a tool for examining the consequences of spatial structure and connectivity on local and regional population dynamics. ICES J. Mar. Sci. 2010, 67, 1631–1639. [Google Scholar] [CrossRef]
- González-Wanguemert, M.; Perez-Ruzafa, A.; Marcos, C.; Garcia-Charton, J.A. Genetic differentiation of Diplodus sargus (Pisces: Sparidae) populations in the south-west Mediterranean. Biol. J. Linn. Soc. 2004, 82, 249–261. [Google Scholar] [CrossRef]
- Planes, S.; Macpherson, E.; Biagi, F.; Garcia, R.A.; Harmelin, J.; Harmelin, V.M.; Jouvenel, J.Y.; Tunesi, L.; Vigliola, L.; Galzin, L. Spatio temporal variability in growth of juvenile sparid fishes from Mediterranean littoral zone. J. Mar. Biol. Assoc. UK 1999, 79, 137–149. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 1998; Volume I. [Google Scholar]
- Adcock, G.J.; Bernal-Ramirez, J.H.; Hauser, L.; Smith, P.; Carvalho, G.R. Screening of DNA polymorphism in samples of archived scales from New Zealand snapper. J. Fish. Biol. 2000, 56, 1283–1287. [Google Scholar] [CrossRef]
- Brown, R.C.; Tsalavouta, M.; Terzoglou, V.; Magoulas, A.; McAndrew, B.J. Additional microsatellites for Sparus aurata and cross-species amplification within the Sparidae family. Mol. Ecol. Notes 2005, 5, 605–607. [Google Scholar] [CrossRef]
- Toonen, R.J.; Hughes, S. Increased throughput for fragment analysis on ABI Prism 377 Automated Sequencer using a membrane comb and STR and Software. Biotechniques 2001, 31, 1320–1324. [Google Scholar] [PubMed]
- van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.M.; Shipley, P. Microchecker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Raymond, M.; Rousset, F. Genepop (version 1.2) population genetics software for exact tests and ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [PubMed]
- Goudet, J. Fstat, A Program to Estimate and Test Gene Diversities and Fixation Indices (version 2.9.3). Available online: http://www.unil.ch/izea/softwares/Fstat.html (accessed on 15 November 2019).
- Frichot, E.; Francois, O. Lea: An R package for landscape and ecological association studies. Methods Ecol. Evol. 2015, 6, 925–929. [Google Scholar] [CrossRef]
- Rice, W.R. Analyzing tables of statistical tests. Evolution 1989, 43, 223–225. [Google Scholar] [CrossRef]
- Cowen, R.K.; Paris, C.B.; Srinivasan, A. Scaling of connectivity in marine populations. Science 2006, 522–527. [Google Scholar] [CrossRef]
- Vafidis, D. Biogeography of the Anthozoa coelenterate fauna of the Mediterranean Sea. In Proceedings of the 9th Int Congr Zoogeography and Ecology of Greece and Adjacent Regions (ICZEGAR), Thessaloniki, Greece, 22–25 May 2002; p. 159. [Google Scholar]
- Theocharis, A.; Georgopoulos, D.; Lascaratos, A.; Nittis, K. Water masses and circulation in the central region of the Eastern Mediterranean (E.; Ionian, S. Aegean and NW Levantine). Deep Sea Res. 1993, 40 Pt 2, 1121–1142. [Google Scholar] [CrossRef]
- Bodur, T.; Tsigenopoulos, C.; Çagatay, T. Genetic structure of wild european sea bass (Dicentrarchus labrax L, 1758) populations in Aegean and Levantine Sea using microsatellite markers. Turk. J. Fish. Aquat. Sci. 2016, 1, 1–11. [Google Scholar]
- Stamatis, C.; Triantafyllidis, A.; Moutou, K.A.; Mamuris, Z. Mitochondrial DNA variation in northeast Atlantic and Mediterranean populations of Norway lobster, Nephrops norvegicus. Mol. Ecol. 2004, 13, 1377–1390. [Google Scholar] [CrossRef]
- Viret, A.; Tsaparis, D.; Tsigenopoulos, C.S.; Berrebi, P.; Sabatini, A.; Arculeo, M.; Caill-Milly, N. Absence of spatial genetic structure in common dentex (Dentex dentex Linnaeus, 1758) in the Mediterranean Sea as evidenced by nuclear and mitochondrial molecular markers. PLoS ONE 2018, 13, e0203866. [Google Scholar] [CrossRef] [PubMed]
- Selkoe, K.A.; Watson, J.R.; White, C.; Horin, T.B.; Iacchei, M.; Mitarai, S.; Siegel, D.A.; Gaines, S.D.; Toonen, R.J. Taking the chaos out of genetic patchiness: Seascape genetics reveals de La Puente-Yagueecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol. Ecol. 2010, 19, 3708–3726. [Google Scholar] [CrossRef]
- André, C.; Svedäng, H.; Knutsen, H.; Dahle, G.; Jonsson, P.; Ring, A.K.; Sköld, M.; Jorde, P.E. Population structure in Atlantic cod in the eastern North Sea-Skagerrak-Kattegat: Early life stage dispersal and adult migration. BMC Res. Notes 2016, 3, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robichaud, D.; Rose, G.A. Migratory behaviour and range in Atlantic cod: Inference from a century of tagging. Fish. Fish. 2004, 5, 185–214. [Google Scholar] [CrossRef]
- Costa, C.; Cataudella, S. Relationship between shape and trophic ecology of selected species of Sparids of the Caprolace coastal lagoon (Central Tyrrhenian sea). Environ. Biol. Fish. 2007, 78, 115. [Google Scholar] [CrossRef]
- Helm, B.; Ben-Shlomo, R.; Sheriff, M.J.; Hut, R.A.; Foster, R.; Barnes, B.M.; Dominoni, D. Annual rhythms that underlie phenology: Biological time-keeping meets environmental change. Proc. R. Soc. Lond. B 2013, 280, 20130016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sbragaglia, V.; Nuñez, J.D.; Dominoni, D.; Coco, S.; Fanelli, E.; Azzurro, E.; Marini, S.; Nogueras, M.; Ponti, M.; del Rio Fernandez, J.; et al. Annual rhythms of temporal niche partitioning in the Sparidae family are correlated to different environmental variables. Sci. Rep. UK 2019, 9, 1708. [Google Scholar] [CrossRef]
- Lipcius, R.N.; Eggleston, D.B.; Schreiber, S.J.; Seitz, R.D.; Shen, J.; Sisson, M.; Stockhausen, W.T.; Wang, H.V. Importance of metapopulation connectivity to restocking and restoration of marine species. Rev. Fish. Sci. 2008, 16, 101–110. [Google Scholar] [CrossRef]
- Lorenzen, K.; Steneck, R.S.; Warner, R.R.; Parma, A.M.; Coleman, F.C.; Leber, K.M. The spatial dimensions of fisheries: Putting it all in place. Bull. Mar. Sci. 2010, 86, 169–177. [Google Scholar]
- Reiss, H.; Hoarau, G.; Dickey-Collas, M.; Wolff, W.J. Genetic population structure of marine fish: Mismatch between biological and fisheries management units. Fish Fish. 2009, 10, 361–395. [Google Scholar] [CrossRef]
- Sterner, T. Unobserved diversity, depletion and irreversibility: The importance of subpopulations for management of cod stocks. Ecol. Econ. 2007, 61, 566–574. [Google Scholar] [CrossRef]
- Kovach, A.I.; Breton, T.S.; Berlinsky, D.L.; Maceda, L.; Wirgin, I. Fine-scale spatial and temporal genetic structure of Atlantic cod off the Atlantic coast of the USA. Mar. Ecol. Prog. Ser. 2010, 410, 177–195. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Fanning, L.P. Spatial considerations in the management of Atlantic cod off Nova Scotia, Canada. N. Am. J. Fish. Manag. 2004, 24, 775–784. [Google Scholar] [CrossRef]
Microsatellite DNA Markers | Genetic Indices | TRI | SPO | THA | KAV | CHA | SAM |
---|---|---|---|---|---|---|---|
Pma1 (57 °C) | NoA | 10 | 15 | 14 | 13 | 19 | 7 |
HEXP | 0.970 | 0.974 | 0.949 | 0.921 | 0.957 | 0.909 | |
HOBS | 1.000 | 0.900 | 0.667 | 0.714 | 0.833 | 0.833 | |
Pma2 (57 °C) | NoA | 9 | 11 | 10 | 13 | 17 | 9 |
HEXP | 0.955 | 0.895 | 0.866 | 0.812 | 0.924 | 0.955 | |
HOBS | 1.000 | 0.900 | 0.917 | 0.714 | 0.833 | 1.000 | |
SAI10 (58 °C) | NoA | 9 | 11 | 11 | 12 | 18 | 11 |
HEXP | 0.955 | 0.932 | 0.917 | 0.910 | 0.952 | 0.985 | |
HOBS | 0.667 | 0.700 | 0.500 | 0.428 | 0.647 | 1.000 | |
SAI12 (59 °C) | NoA | 8 | 10 | 12 | 14 | 16 | 9 |
HEXP | 0.939 | 0.889 | 0.942 | 0.951 | 0.928 | 0.955 | |
HOBS | 0.500 | 0.500 | 0.583 | 0.462 | 0.667 | 0.833 |
Populations | TRI | SPO | THA | KAV | CHA | SAM |
---|---|---|---|---|---|---|
SPO | −0.0074 | 0 | ||||
THA | −0.0111 | −0.0006 | 0 | |||
KAV | −0.0148 | 0.0039 | 0.0096 | 0 | ||
CHA | −0.0057 | 0.0192 | 0.0053 | 0.0151 | 0 | |
SAM | 0.0047 | 0.0105 | 0.0213 | 0.0169 | 0.0060 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Exadactylos, A.; Vafidis, D.; Tsigenopoulos, C.S.; Gkafas, G.A. High Connectivity of the White Seabream (Diplodus sargus, L. 1758) in the Aegean Sea, Eastern Mediterranean Basin. Animals 2019, 9, 979. https://doi.org/10.3390/ani9110979
Exadactylos A, Vafidis D, Tsigenopoulos CS, Gkafas GA. High Connectivity of the White Seabream (Diplodus sargus, L. 1758) in the Aegean Sea, Eastern Mediterranean Basin. Animals. 2019; 9(11):979. https://doi.org/10.3390/ani9110979
Chicago/Turabian StyleExadactylos, Athanasios, Dimitrios Vafidis, Costas S. Tsigenopoulos, and Georgios A. Gkafas. 2019. "High Connectivity of the White Seabream (Diplodus sargus, L. 1758) in the Aegean Sea, Eastern Mediterranean Basin" Animals 9, no. 11: 979. https://doi.org/10.3390/ani9110979
APA StyleExadactylos, A., Vafidis, D., Tsigenopoulos, C. S., & Gkafas, G. A. (2019). High Connectivity of the White Seabream (Diplodus sargus, L. 1758) in the Aegean Sea, Eastern Mediterranean Basin. Animals, 9(11), 979. https://doi.org/10.3390/ani9110979