A New Method of Assessing Sheep Red Blood Cell Types from Their Morphology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics and Welfare Approval Statement
2.2. Animals. The Research is Part of the Project
2.3. Study Design and Collection of Blood from the Sheep
2.4. Haematological Analyses
2.5. Morphometric Analysis of RBCs
2.6. Statistical Analyses
3. Results
3.1. Morphometric Size and Shape Parameters of Ovine RBCs
3.2. Principal Component and Cluster Analysis Based on Morphometric Size and Shape Parameters of Ovine RBCs
3.3. Distribution of Subpopulations of Ovine RBCs in Groups Categorized According to the Values of Haematological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sinković, T.; Čačić, M. Annual Report for Sheep, Goats and Small Animals Breeding 2017; Croatian agricultural agency: Križevci, Croatia, 2018; p. 20. (In Croatian) [Google Scholar]
- Polizopoulou, Z.S. Haematological tests in sheep health management. Small Rumin. Res. 2010, 92, 88–91. [Google Scholar] [CrossRef]
- Adili, N.; Melizi, M.; Belabbas, H.; Bala, A.; Merad, S.; Bouali, F.; Bennoune, O. Morphometric study of red blood cells in Sloughi and German shepherd dogs. Bulg. J. Vet. Med. 2017, 20, 125–130. [Google Scholar] [CrossRef]
- Parmar, D.; Sawke, N.; Sawke, G.K. Diagnostic application of computerised nuclear morphometric image analysis in fine needle aspirates of breast lesions. Saudi. J. Health Sci. 2015, 4, 51–55. [Google Scholar] [CrossRef]
- Poljičak-Milas, N.; Kardum-Skelin, I.; Vuđan, M.; Marenjak, T.S.; Ballarin-Perharić, A.; Milas, Z. Blood cell count analyses and erythrocyte morphometry in New Zealand white rabbits. Vet. Arhiv 2009, 79, 561–571. [Google Scholar]
- Russack, V. Image cytometry: Current applications and future trends. Crit. Rev. Clin. Lab. Sci. 1994, 31, 1–34. [Google Scholar] [CrossRef]
- Zaets, S.B.; Berezina, T.L.; Morgan, C.; Kamiyama, M.; Spolarics, Z.; Xu, D.Z.; Deitch, G.E.A.; Machiedo, W. Effect of trauma-hemorrhagic shock on red blood cell deformability and shape. Shock 2003, 19, 268–273. [Google Scholar] [CrossRef]
- Manjunatha, M.; Singh, M. Digital analysis of induced erythrocyte shape changes in hypercholesterolemia under in vitro conditions. Curr. Sci. 2000, 79, 1588–1591. [Google Scholar]
- Berezina, T.L.; Zaets, S.B.; Kozhura, V.L.; Novoderzhkina, I.S.; Kirsanova, A.K.; Deitch, E.A.; Machiedo, G.W. Morphologic changes of red blood cells during hemorrhagic shock replicate changes of aging. Shock 2001, 15, 467–470. [Google Scholar] [CrossRef] [Green Version]
- Adili, N.; Melizi, M.; Belabbas, H. Morphometry and Comparison of blood samples in sheep and goat. Vet. World 2016, 9, 960–963. [Google Scholar] [CrossRef] [Green Version]
- Dal’bó, G.A.; Sampaio, F.G.; Losekann, M.E.; Queiroz, J.F.; Luiz, A.J.B.; Wolf, V.H.G.; Gonçalves, V.T.; Carra, M.L. Hematological and morphometric blood value of four cultured species of economically important tropical foodfish. Neotrop. Ichthyol. 2015, 13, 439–446. [Google Scholar] [CrossRef]
- Buslovskaya, L.K.; Belyaeva, E.Y.; Kovtunenko, A.Y. Adaptive dynamics of blood cell parameters in hens upon changes in the lighting conditions. Glob. Vet. 2013, 11, 441–445. [Google Scholar] [CrossRef]
- Connor, J.; Pak, C.C.; Schroit, A.J. Exposure of phosphatidylserine in the outer leaflet of human red blood cells. Relationship to cell density, cell age, and clearance by mononuclear cells. J. Biol. Chem. 1994, 269, 2399–2404. [Google Scholar] [PubMed]
- Bosch, F.H.; Werre, J.M.; Roerdinkholder-Stoelwinder, B.; Huls, T.H.; Willekens, F.L.; Halie, M.R. Characteristics of red blood cell populations fractionated with a combination of counterflow centrifugation and Percoll separation. Blood 1992, 79, 254–260. [Google Scholar] [CrossRef] [Green Version]
- D’Alessandro, A.; Blasi, B.; D’Amici, G.M.; Marrocco, C.; Zolla, L. Red blood cell subpopulations in freshly drawn blood: Application of proteomics and metabolomics to a decades-long biological issue. Blood Transfus. 2013, 11, 75–87. [Google Scholar]
- Van Oss, C.J. Shape of ageing erythrocytes. Biorheology 1982, 19, 725. [Google Scholar] [CrossRef]
- Marshall, P.N. Romanowsky-type stains in haematology. Histochem, J. 1978, 10, 1–29. [Google Scholar] [CrossRef]
- Piaton, E.; Fabre, M.; Goubin-Versini, I.; Bretz-Grenier, M.F.; Courtade-Saïdi, M.; Vincent, S.; Belleannée, G.; Thivolet, F.; Boutonnat, J.; Debaque, H.; et al. Technical recommendations and best practice guidelines for May-Grünwald-Giemsa staining: Literature review and insights from the quality assurance. Ann. Pathol. 2015, 35, 294–305. (In French) [Google Scholar] [CrossRef]
- Jackson, P.G.G.; Cockcroft, P.D. Clinical Examination of Farm Animals; Blackwell science Ltd.: Ames, IN, USA, 2002; p. 302. [Google Scholar]
- Gallo, S.S.M.; Ederli, N.B.; Oliveira, F.C.R. Hematological and morphometric differences of blood cells from rheas, Rhea americana (Struthioniformes: Rheidae) on two conservation farms. Braz. J. Biol. 2017, 77, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Ermilio, E.M.; Smith, M.C. Treatment of emergency conditions in sheep and goats. Vet. Clin. Food Anim. 2011, 27, 33–45. [Google Scholar] [CrossRef]
- Albertini, M.C.; Teodori, L.; Piatti, E.; Piacentini, M.P.; Accorsi, A.; Rocchi, M.B.L. Automated analysis of morphometric parameters for accurate definition of erythrocyte cell shape. Cytometry 2003, 52A, 12–18. [Google Scholar] [CrossRef]
- Thrall, M.A. Hematology of Common Domestic Species. In Veterinary Hematology and Clinical Chemistry, 2nd ed.; Thrall, M.A., Weiser, G., Allison, R., Campbell, T., Eds.; Willey Blackwell: Ames, IN, USA, 2012; pp. 61–117. [Google Scholar]
- Reece, W.O. The composition and functions of blood. In Dukes’ Physiology of Domestic Animals, 13th ed.; Reece, W.O., Ed.; Willey Blackwell: Ames, IN, USA, 2015; pp. 114–136. [Google Scholar]
- Thamer, I.K.H.; Jassium, O.A.; Dawood, T.N. Morphometry and Comparison of blood samples in sheep and goat. Al-Anbar J. Vet. Sci. 2016, 9, 37–42. [Google Scholar]
- Ravi Sarma, P. Red Cell Indices. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths Publishers: Boston, MA, USA, 1990; pp. 720–723. [Google Scholar]
- Byers, S.R.; Kramer, J.W. Normal hematology of sheep and goats. In Schalm’s Veterinary Hematology, 6th ed.; Weiss, D.J., Wardrop, K.J., Eds.; Willey Blackwell: Ames, IN, USA, 2010; pp. 836–842. [Google Scholar]
Parameter | Mean | Median | Standard Deviation | Coefficient of Variation% | Minimaland Maximal Values | 95% Confidence Interval | Variations between Sheep | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean Value Interval | Median Value Interval | Standard Deviation Interval | Coefficient of Variation Interval% | ||||||||
Rbcs’ Size Measures | Area, µm2 | 21.19 | 20.96 | 3.45 | 11.95 | 11.17–48.97 | 21.09–21.30 | 16.86–25.62 | 16.67–25.57 | 2.16–4.41 | 4.69–19.48 |
Outline, µm | 17.32 | 17.26 | 1.45 | 2.12 | 12.72–27.49 | 17.28–17.37 | 15.46–18.99 | 15.40–18.92 | 0.94–1.94 | 0.88–3.78 | |
Convex | 21.49 | 21.25 | 3.49 | 12.19 | 11.39–49.80 | 21.39–21.60 | 17.12–25.94 | 16.86–25.80 | 2.24–4.43 | 5.03–17.69 | |
Minimal Radius, µm | 2.27 | 2.27 | 0.21 | 0.04 | 1.37–3.43 | 2.26–2.28 | 2.00–2.53 | 1.99–2.52 | 0.14–0.28 | 0.02–0.08 | |
Maximal Radius, µm | 2.86 | 2.85 | 0.25 | 0.06 | 2.11–4.56 | 2.85–2.87 | 2.58–3.12 | 2.56–3.11 | 0.16–0.29 | 0.02–0.08 | |
Length, µm | 5.51 | 5.49 | 0.47 | 0.22 | 3.90–8.92 | 5.49–5.52 | 4.93–6.03 | 4.93–5.98 | 0.31–0.58 | 0.09–0.34 | |
Breadth, µm | 4.90 | 4.88 | 0.42 | 0.18 | 3.61–7.28 | 4.89–4.91 | 4.39–5.41 | 4.36–5.37 | 0.29–0.50 | 0.08–0.25 | |
Ellipticity | 1.125 | 1.118 | 0.064 | 0.004 | 0.962–1.455 | 1.123–1.127 | 1.106–1.154 | 1.102–1.149 | 0.042–0.083 | 0.001–0.007 | |
Elongation | 0.0584 | 0.0558 | 0.0278 | 0.0007 | 0.000–0.1855 | 0.0575–0.0592 | 0.0504–0.0702 | 0.0487–0.0696 | 0.0190–0.0355 | 0.0003–0.0012 | |
Solidity | 0.985 | 0.988 | 0.008 | 0.000072 | 0.859–0.996 | 0.985–0.986 | 0.975–0.990 | 0.981–0.990 | 0.002–0.015 | 0.000006–0.000177 | |
Roundness | 0.820 | 0.828 | 0.059 | 0.0035 | 0.459–0.955 | 0.818–0.822 | 0.764–0.855 | 0.766–0.863 | 0.037–0.079 | 0.0014–0.0062 | |
form Factor | 0.882 | 0.889 | 0.035 | 0.001 | 0.405–0.932 | 0.881–0.883 | 0.852–0.896 | 0.857–0.900 | 0.013–0.115 | 0.000–0.013 | |
Contour Index | 3.77 | 3.75 | 0.098 | 0.009 | 3.67–5.56 | 3.773–3.779 | 3.74–3.94 | 3.73–3.82 | 0.029–0.405 | 0.000–0.1647 |
Reference Values | Group | N Sheep | Group Mean ± STD | N Rbcs | RBC Mean ± Stderr | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Area (µm2) | Outline (µm) | Convex | Minimal Radius (µm) | Maximal Radius (µm) | Length (µm) | Breadth (µm) | ||||||
HGB g/L | 90-150 | HGB_1 | 7 | 84.67 ± 4.07 | 784 | 20.71 ± 0.12 *** | 17.19 ± 0.05 * | 21.01 ± 0.12 *** | 2.236 ± 0.007 *** | 2.839 ± 0.008 *** | 5.45 ± 0.01 ** | 4.844 ± 0.015 *** |
HGB_2 | 29 | 99.91 ± 6.91 | 3233 | 21.31 ± 0.06 | 17.35 ± 0.02 | 21.65 ± 0.06 | 2.283 ± 0.003 | 2.870 ± 0.004 | 5.52 ± 0.01 | 4.919 ± 0.007 | ||
HCT | 0.27-0.45 | HCT_1 | 11 | 0.26 ± 0.01 | 1226 | 20.94 ± 0.09 * | 17.21 ± 0.04 * | 21.23 ± 0.10 * | 2.260 ± 0.006 * | 2.839 ± 0.007 *** | 5.46 ± 0.01 *** | 4.873 ± 0.012 * |
HCT_2 | 25 | 0.29 ± 0.01 | 2791 | 21.30 ± 0.06 | 17.37 ± 0.02 | 21.61 ± 0.06 | 2.280 ± 0.004 | 2.875 ± 0.004 | 5.53 ± 0.01 | 4.918 ± 0.008 | ||
MCV ƒL/cell | 28.0-40.0 | MCV_1 | 16 | 29.31 ± 1.15 | 1781 | 20.43 ± 0.08 *** | 17.04 ± 0.03 *** | 20.73 ± 0.08 *** | 2.222 ± 0.005 *** | 2.817 ± 0.005 *** | 5.41 ± 0.01 *** | 4.813 ± 0.009 *** |
MCV_2 | 20 | 31.40 ± 0.49 | 2236 | 21.80 ± 0.07 | 17.55 ± 0.03 | 22.10 ± 0.07 | 2.315 ± 0.004 | 2.900 ± 0.005 | 5.59 ± 0.01 | 4.978 ± 0.008 | ||
MCH pg/cell | 8.0-12.0 | MCH_1 | 14 | 9.82 ± 0.12 | 1563 | 20.40 ± 0.08 *** | 17.03 ± 0.03 *** | 20.71 ± 0.08 *** | 2.222 ± 0.005 *** | 2.815 ± 0.006 *** | 5.41 ± 0.01 *** | 4.815 ± 0.010 *** |
MCH_2 | 22 | 10.63 ± 0.29 | 2454 | 21.69 ± 0.06 | 17.51 ± 0.02 | 22.00 ± 0.07 | 2.307 ± 0.004 | 2.895 ± 0.004 | 5.58 ± 0.01 | 4.962 ± 0.008 | ||
MCHC g/L | 310-340 | MCHC_1 | 17 | 329.54 ± 7.60 | 1897 | 20.62 ± 0.07 *** | 17.11 ± 0.03 *** | 20.91 ± 0.08 *** | 2.242 ± 0.005 *** | 2.825 ± 0.005 *** | 5.43 ± 0.01 *** | 4.842 ± 0.009 *** |
MCHC_2 | 19 | 350.07 ± 9.50 | 2120 | 21.71 ± 0.07 | 17.51 ± 0.03 | 22.01 ± 0.07 | 2.303 ± 0.004 | 2.898 ± 0.005 | 5.58 ± 0.01 | 4.960 ± 0.009 | ||
RDW% | 16-22 | RDW_1 | 18 | 21.13 ± 0.43 | 2019 | 22.07 ± 0.07 *** | 17.69 ± 0.03 *** | 22.37 ± 0.07 *** | 2.330 ± 0.004 *** | 2.921 ± 0.005 *** | 5.62 ± 0.01 *** | 5.012 ± 0.009 *** |
RDW_2 | 18 | 22.75 ± 0.47 | 1998 | 20.30 ± 0.07 | 16.95 ± 0.01 | 20.60 ± 0.07 | 2.217 ± 0.004 | 2.805 ± 0.005 | 5.39 ± 0.01 | 4.796 ± 0.009 | ||
Reference Values | Group | N Sheep | Group Mean ± STD | N Rbcs | RBC Mean ± Stderr | |||||||
Ellipticity | Elongation | Solidity | Roundness | form Factor | Contour Index | |||||||
HGB g/L | 90–150 | HGB_1 | 7 | 84.67 ± 4.07 | 784 | 1.128 ± 0.002 | 0.0592 ± 0.0009 | 0.9851 ± 0.0003 * | 0.8149 ± 0.0021 * | 0.8761 ± 0.0012 *** | 3.795 ± 0.003 *** | |
HGB_2 | 29 | 99.91 ± 6.91 | 3233 | 1.125 ± 0.001 | 0.0582 ± 0.0004 | 0.9860 ± 0.0001 | 0.8215 ± 0.0010 | 0.8840 ± 0.0006 | 3.771 ± 0.001 | |||
HCT | 0.27–0.45 | HCT_1 | 11 | 0.26 ± 0.01 | 1226 | 1.124 ± 0.001 | 0.0575 ± 0.0008 | 0.9863 ± 0.0002 * | 0.8230 ± 0.0017 | 0.8829 ± 0.0010 | 3.777 ± 0.002 | |
HCT_2 | 25 | 0.29 ± 0.01 | 2791 | 1.126 ± 0.001 | 0.0587 ± 0.0005 | 0.9856 ± 0.0001 | 0.8194 ± 0.0011 | 0.8823 ± 0.0006 | 3.775 ± 0.001 | |||
MCV ƒL/cell | 28.0–40.0 | MCV_1 | 16 | 29.31 ± 1.15 | 1781 | 1.127 ± 0.001 | 0.0590 ± 0.0006 | 0.9850 ± 0.0002 *** | 0.8155 ± 0.0014 *** | 0.8786 ± 0.0008 *** | 3.786 ± 0.002 *** | |
MCV_2 | 20 | 31.40 ± 0.49 | 2236 | 1.124 ± 0.001 | 0.0579 ± 0.0005 | 0.9865 ± 0.0001 | 0.8239 ± 0.0012 | 0.8856 ± 0.0007 | 3.768 ± 0.002 | |||
MCH pg/cell | 8.0–12.0 | MCH_1 | 14 | 9.82 ± 0.12 | 1563 | 1.125 ± 0.001 | 0.0582 ± 0.0007 | 0.9852 ± 0.0002 ** | 0.8165 ± 0.0015 * | 0.8789 ± 0.0008 *** | 3.786 ± 0.002 *** | |
MCH_2 | 22 | 10.63 ± 0.29 | 2454 | 1.126 ± 0.001 | 0.0585 ± 0.0005 | 0.9863 ± 0.0001 ** | 0.8226 ± 0.0012 | 0.8847 ± 0.0007 | 3.769 ± 0.001 | |||
MCHC g/L | 310–340 | MCHC_1 | 17 | 329.54 ± 7.60 | 1897 | 1.124 ± 0.001 | 0.0579 ± 0.0006 | 0.9858 ± 0.0001 | 0.8207 ± 0.0013 | 0.8813 ± 0.0008 | 3.780 ± 0.002* | |
MCHC_2 | 19 | 350.07 ± 9.50 | 2120 | 1.126 ± 0.001 | 0.0588 ± 0.0006 | 0.9859 ± 0.0001 | 0.8197 ± 0.0013 | 0.8836 ± 0.0007 | 3.772 ± 0.002 | |||
RDW% | 16–22 | RDW_1 | 18 | 21.13 ± 0.43 | 2019 | 1.124 ± 0.001 | 0.0578 ± 0.0006 | 0.9864 ± 0.0001 *** | 0.8221 ± 0.0013 * | 0.8832 ± 0.0007 | 3.775 ± 0.002 | |
RDW_2 | 18 | 22.75 ± 0.47 | 1998 | 1.127 ± 0.001 | 0.0589 ± 0.0006 | 0.9852 ± 0.0001 * | 0.8183 ± 0.0013 | 0.8817 ± 0.0007 | 3.776 ± 0.002 |
RBC Values | RBC Size | RBC Shape | |
---|---|---|---|
Factor 1 | Factor 2 | Factor 3 | |
Outline, µm | 0.98 * | ||
Convex, µm2 | 0.98 | ||
Area, µm2 | 0.97 | ||
Length, µm | 0.94 | ||
Breadth, µm | 0.92 | ||
Roundness | 0.86 * | ||
form Factor | 0.80 | ||
Contour Index | −0.75 | ||
Elongation | −0.69 | 0.70 * | |
Ellipticity | −0.70 | 0.69 | |
Solidity | 0.68 | ||
Characteristic ROOT (λ) and Explained Variance (%) | 4.70 (42.8) | 3.58 (32.5) | 2.04 (18.5) |
Cumulative Variance% | 42.8 | 75.3 | 93.8 |
RBC Subpopulation (Cluster) | RBC Size | RBC Shape | ||
---|---|---|---|---|
N (%) | Outline, µm | Roundness | Elongation | |
ES 1 | 778 (19.5) | 15.38 ± 0.59 | 0.814 ± 0.059 | 0.059 ± 0.029 |
ES 2 | 915 (22.9) | 19.11 ± 0.73 | 0.823 ± 0.058 | 0.057 ± 0.025 |
ES 3 | 2292 (57.6) | 17.21 ± 0.73 | 0.820 ± 0.060 | 0.058 ± 0.027 |
Reference Values [19] | Group | Group Description | RBC Subpopulation % | Chi-Square Value | p-Value | |||
---|---|---|---|---|---|---|---|---|
ES 1 | ES 2 | ES 3 | ||||||
HGB g/L | 90–150 | HGB_1 | ≤90 | 26.1 | 20.8 | 53.1 | 26.477 | <0.0001 |
HGB_2 | >90 | 17.9 | 23.5 | 58.6 | ||||
HCT | 0.27–0.45 | HCT_1 | ≤0.27 | 25.8 | 21.2 | 53.0 | 43.855 | <0.0001 |
HCT_2 | >0.27 | 16.8 | 23.7 | 59.5 | ||||
MCV ƒL/cell | 28.0–40.0 | MCV_1 | ≤30 | 29.1 | 17.4 | 53.5 | 200.664 | <0.0001 |
MCV_2 | >30 | 11.9 | 27.4 | 60.7 | ||||
MCH pg/cell | 8.0–12.0 | MCH_1 | ≤10 | 28.3 | 17.0 | 54.7 | 141.439 | <0.0001 |
MCH_2 | >10 | 14.0 | 26.7 | 59.3 | ||||
MCHC g/L | 310–340 | MCHC_1 | <340 | 21.6 | 16.9 | 61.5 | 76.274 | <0.0001 |
MCHC_2 | ≥340 | 17.6 | 28.5 | 53.9 | ||||
RDW% | 16–22 | RDW_1 | ≤22 | 10.0 | 29.0 | 61.0 | 260.308 | <0.0001 |
RDW_2 | >22 | 29.2 | 16.8 | 54.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žura Žaja, I.; Vince, S.; Poljičak Milas, N.; Lobpreis, I.R.A.; Špoljarić, B.; Shek Vugrovečki, A.; Milinković-Tur, S.; Šimpraga, M.; Pajurin, L.; Mikuš, T.; et al. A New Method of Assessing Sheep Red Blood Cell Types from Their Morphology. Animals 2019, 9, 1130. https://doi.org/10.3390/ani9121130
Žura Žaja I, Vince S, Poljičak Milas N, Lobpreis IRA, Špoljarić B, Shek Vugrovečki A, Milinković-Tur S, Šimpraga M, Pajurin L, Mikuš T, et al. A New Method of Assessing Sheep Red Blood Cell Types from Their Morphology. Animals. 2019; 9(12):1130. https://doi.org/10.3390/ani9121130
Chicago/Turabian StyleŽura Žaja, Ivona, Silvijo Vince, Nina Poljičak Milas, Ingo Ralph Albin Lobpreis, Branimira Špoljarić, Ana Shek Vugrovečki, Suzana Milinković-Tur, Miljenko Šimpraga, Luka Pajurin, Tomislav Mikuš, and et al. 2019. "A New Method of Assessing Sheep Red Blood Cell Types from Their Morphology" Animals 9, no. 12: 1130. https://doi.org/10.3390/ani9121130
APA StyleŽura Žaja, I., Vince, S., Poljičak Milas, N., Lobpreis, I. R. A., Špoljarić, B., Shek Vugrovečki, A., Milinković-Tur, S., Šimpraga, M., Pajurin, L., Mikuš, T., Vlahović, K., Popović, M., & Špoljarić, D. (2019). A New Method of Assessing Sheep Red Blood Cell Types from Their Morphology. Animals, 9(12), 1130. https://doi.org/10.3390/ani9121130