Effects of Dietary Stevioside Supplementation on Feed Intake, Digestion, Ruminal Fermentation, and Blood Metabolites of Goats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Design, Animals and Diet
2.3. Sampling, Data Collection, and Chemical Analyses
2.4. Statistical Analysis
3. Results
3.1. Effects of Stevioside on Feed Intake and Mastication Activities
3.2. Effects of Stevioside on Rumen Fermentation
3.3. Effects of Stevioside on Apparent Total Tract Digestibility
3.4. Effects of Stevioside on Serum Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baumont, R. Palatability and feeding behaviour in ruminants. A review. Ann. Zootech. 1996, 45, 385–400. [Google Scholar] [CrossRef] [Green Version]
- Colucci, P.E.; Grovum, W.L. Factors affecting the voluntary intake of food by sheep 6. the effect of monosodium glutamate on the palatability of straw diets by sham-fed and normal animals. Br. J. Nutr. 1993, 69, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Arnold, G.W.; Boer, E.S.D.; Boundy, C.A.P. The influence of odor and taste on the food preferences and food-intake of sheep. Aust. J. Agric. Res. 1980, 31, 571–587. [Google Scholar] [CrossRef]
- McMeniman, J.P.; Rivera, J.D.; Schlegel, P.; Rounds, W.; Galyean, M.L. Effects of an artificial sweetener on health, performance, and dietary preference of feedlot cattle. J. Anim. Sci. 2006, 84, 2491–2500. [Google Scholar] [CrossRef] [PubMed]
- Ponce, C.H.; Brown, M.S.; Silva, J.S.; Schlegel, P.; Rounds, W.; Hallford, D.M. Effects of a dietary sweetener on growth performance and health of stressed beef calves and on diet digestibility and plasma and urinary metabolite concentrations of healthy calves. J. Anim. Sci. 2014, 92, 1630–1638. [Google Scholar] [CrossRef] [PubMed]
- Goatcher, W.D.; Church, D.C. Taste responses in ruminants 3. reactions of pygmy goats, normal goats, sheep and cattle to sucrose and sodium chloride. J. Anim. Sci. 1970, 31, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Chavez, S.J.; Huntington, G.B. Intake in cattle of a ground switchgrass and alfalfa hay mixture blended with various levels of sucrose or citric acid. Anim. Feed Sci. Technol. 2013, 184, 33–37. [Google Scholar] [CrossRef]
- Goyal, S.K.; Samsher, G.R.; Goyal, R.K. Stevia (Stevia rebaudiana) a bio-sweetener: A review. Int. J. Food Sci. Nutr. 2010, 61, 1–10. [Google Scholar] [CrossRef]
- Puri, M.; Sharma, D.; Tiwari, A.K. Downstream processing of stevioside and its potential applications. Biotechnol. Adv. 2011, 29, 781–791. [Google Scholar] [CrossRef]
- Munro, P.J.; Lirette, A.; Anderson, D.M.; Ju, H.Y. Effects of a new sweetener, Stevia, on performance of newly weaned pips. Can. J. Anim. Sci. 2000, 80, 529–531. [Google Scholar] [CrossRef]
- Geuns, J.M.; Augustijns, P.; Mols, R.; Buyse, J.G.; Driessen, B. Metabolism of stevioside in pigs and intestinal absorption characteristics of stevioside, rebaudioside A and steviol. Food. Chem. Toxicol. 2003, 41, 1599–1607. [Google Scholar] [CrossRef]
- Wang, L.S.; Shi, Z.; Shi, B.M.; Shan, A.S. Effects of dietary stevioside/rebaudioside A on the growth performance and diarrhea incidence of weaned piglets. Anim. Feed Sci. Technol. 2014, 187, 104–109. [Google Scholar] [CrossRef]
- Geuns, J.M.; Malheiros, R.D.; Moraes, V.M.; Decuypere, E.M.; Compernolle, F.; Buyse, J.G. Metabolism of stevioside by chickens. J. Agric. Food. Chem. 2003, 51, 1095–1101. [Google Scholar] [CrossRef] [PubMed]
- Atteh, J.O.; Onagbesan, O.M.; Tona, K.; Decuypere, E.; Geuns, J.M.; Buyse, J. Evaluation of supplementary stevia (Stevia rebaudiana, bertoni) leaves and stevioside in broiler diets: Effects on feed intake, nutrient metabolism, blood parameters and growth performance. J. Anim. Physiol. Anim. Nutr. 2008, 92, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Mbiriri, D.T.; Shim, K.; Lee, A.L.; Oh, S.J.; Yang, J.; Ryu, C.; Kim, Y.H.; Seo, K.S.; Chae, J.I.; et al. The influence of feed energy density and a formulated additive on rumen and rectal temperature in hanwoo steers. Asian Australas. J. Anim. Sci. 2014, 27, 1652–1662. [Google Scholar] [CrossRef] [PubMed]
- Fimbres, H.; Kawas, J.R.; Hernández-Vidal, G.; Picón-Rubio, J.F.; Lu, C.D. Nutrient intake, digestibility, mastication and ruminal fermentation of lambs fed finishing ration with various forage levels. Small Ruminant. Res. 2002, 43, 275–281. [Google Scholar] [CrossRef]
- Maekawa, M.; Beauchemin, K.A.; Christensen, D.A. Effect of concentrate level and feeding management on chewing activities, saliva production, and ruminal pH of lactating dairy cows. J. Dairy Sci. 2002, 85, 1165–1175. [Google Scholar] [CrossRef]
- Jasmin, B.H.; Boston, R.C.; Modesto, R.B.; Schaer, T.P. Perioperative ruminal pH changes in domestic sheep (Ovis aries) housed in a biomedical research setting. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 27–32. [Google Scholar]
- Wang, M.; Wang, R.; Janssen, P.H.; Zhang, X.M.; Sun, X.Z.; Pacheco, D.; Tan, Z.L. Sampling procedure for the measurement of dissolved hydrogen and volatile fatty acids in the rumen of dairy cows. J. Anim. Sci. 2016, 94, 1159–1169. [Google Scholar] [CrossRef]
- Wu, D.Q.; Xu, L.W.; Tang, S.X.; Guan, L.L.; He, Z.X.; Guan, Y.J.; Tan, Z.L.; Han, X.F.; Zhou, C.S.; Kang, J.H.; et al. Influence of oleic acid on rumen fermentation and atty acid formation in vitro. PLoS ONE 2016, 11, e0156835. [Google Scholar] [CrossRef]
- The Association Of Analytical Communities (AOAC). Official Methods of Analysis, 15th ed.; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Wang, M.; Sun, X.Z.; Janssen, P.H.; Tang, S.X.; Tan, Z.L. Responses of methane production and fermentation pathways to the increased dissolved hydrogen concentration generated by eight substrates in in vitro ruminal cultures. Anim. Feed Sci. Technol. 2014, 194, 1–11. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT User’s Guide. Release 8.02; SAS Institute Inc.: Cary, NC, USA, 2000. [Google Scholar]
- Tomita, T.; Sato, N.; Arai, T.; Shiraishi, H.; Sato, M.; Takeuchi, M.; Kamio, Y. Bactericidal activity of a fermented hot-water extract from Stevia rebaudiana Bertoni towards enterohemorrhagic Escherichia coli O157:H7 and other food-borne pathogenic bacteria. Microbiol. Immunol. 1997, 41, 1005–1009. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Matsuda, M.; Ohashi, K.; Taniguchi, K.; Nakagomi, O.; Abe, Y.; Mori, S.; Sato, N.; Okutani, K.; Shigeta, S. Analysis of anti-rotavirus activity of extract from Stevia rebaudiana. Antivir. Res. 2001, 49, 15–24. [Google Scholar] [CrossRef]
- Puri, M.; Sharma, D. Antibacterial activity of stevioside towards food-borne pathogenic bacteria. Eng. Life Sci. 2011, 11, 326–329. [Google Scholar] [CrossRef]
- Ledoux, D.R.; Williams, J.E.; Stroud, T.E.; Garner, G.B.; Paterson, J.A. Influence of forage level on passage rate, digestibility and performance of cattle. J. Anim. Sci. 1985, 61, 1559–1566. [Google Scholar] [CrossRef] [PubMed]
- Huhtanen, P.; Jaakkola, S.; Kukkonen, U. Ruminal plant cell wall digestibility estimated from digestion and passage kinetics utilizing mathematical models. Anim. Feed Sci. Technol. 1995, 52, 159–173. [Google Scholar] [CrossRef]
- Huhtanen, P.; Kukkonen, U. Comparison of methods, markers, sampling sites and models for estimating digesta passage kinetics in cattle fed at two levels of intake. Anim. Feed Sci. Technol. 1995, 52, 141–158. [Google Scholar] [CrossRef]
Items | Diet * | |
---|---|---|
Concentrate | Forage | |
Ingredient, % of DM | ||
Corn | 51.2 | |
Wheat bran | 19.6 | |
Soybean meal | 15.1 | |
Urea | 2.01 | |
Calcium carbonate | 0.42 | |
Vegetable oil | 5.16 | |
Salt | 1.51 | |
Mineral and vitamin mix | 5.02 | |
Rice straw | 100.0 | |
Chemical composition, % of DM | ||
Digestible energy (Mcal/kg) | 3.61 | 1.23 |
CP | 22.4 | 5.60 |
EE | 2.78 | 0.80 |
Ash | 10.8 | 10.8 |
NDF | 17.7 | 65.7 |
ADF | 9.94 | 48.5 |
Items | Stevioside, mg/kg Forage DM | SEM | p Value | |||
---|---|---|---|---|---|---|
0 | 400 | 800 | Linear | Quadratic | ||
Dry mater intake (DMI), g/d | ||||||
Forage | 369.9 | 387.4 | 393.4 | 6.63 | 0.03 | 0.49 |
Concentrate | 188.4 | 187.1 | 188.3 | 0.91 | 0.93 | 0.30 |
Total | 558.3 | 574.0 | 581.7 | 7.20 | 0.04 | 0.67 |
Mastication, min/d | ||||||
Eating | 422.2 | 430.6 | 428.9 | 20.99 | 0.83 | 0.85 |
Rumination | 555.2 | 572.0 | 577.6 | 23.80 | 0.53 | 0.85 |
Total mastication | 977.4 | 1002.6 | 1006.5 | 28.12 | 0.49 | 0.76 |
Items | Stevioside, mg/kg Forage DM | SEM | p Value | |||
---|---|---|---|---|---|---|
0 | 400 | 800 | Linear | Quadratic | ||
pH | 6.58 | 6.66 | 6.62 | 0.02 | 0.16 | 0.02 |
NH3-N, mg/dL | 9.40 | 9.04 | 8.99 | 0.59 | 0.63 | 0.84 |
Total VFA, μmol/mL | 73.7 | 64.8 | 70.8 | 2.05 | 0.32 | <0.01 |
VFA, mol/100 mol | ||||||
Acetate | 77.0 | 76.3 | 76.3 | 0.29 | 0.09 | 0.45 |
Propionate | 15.1 | 15.4 | 15.7 | 0.25 | 0.10 | 0.99 |
Butyrate | 5.92 | 5.89 | 6.10 | 0.17 | 0.45 | 0.55 |
Isobutyrate | 0.78 | 0.97 | 0.81 | 0.03 | 0.53 | <0.0001 |
Valerate | 0.47 | 0.51 | 0.49 | 0.02 | 0.48 | 0.21 |
Isovalerate | 0.79 | 0.86 | 0.69 | 0.04 | 0.05 | 0.02 |
A/P ratio | 5.15 | 5.07 | 4.93 | 0.09 | 0.08 | 0.78 |
Items | Stevioside, mg/kg Forage DM | SEM | p Value | |||
---|---|---|---|---|---|---|
0 | 400 | 800 | Linear | Quadratic | ||
DM, % | 59.3 | 61.3 | 58.9 | 0.87 | 0.77 | 0.08 |
OM, % | 62.8 | 64.9 | 62.7 | 0.91 | 0.95 | 0.11 |
CP, % | 64.9 | 64.4 | 64.0 | 0.76 | 0.45 | 0.95 |
NDF, % | 55.0 | 62.2 | 60.3 | 1.14 | 0.01 | 0.02 |
ADF, % | 67.2 | 75.3 | 73.8 | 1.59 | 0.01 | 0.01 |
Items | Stevioside, mg/kg Forage DM | SEM | p Value | |||
---|---|---|---|---|---|---|
0 | 400 | 800 | Linear | Quadratic | ||
GLU, mmol/L | 0.60 | 0.60 | 0.61 | 0.01 | 0.22 | 0.59 |
TP, g/L | 63.9 | 65.4 | 64.8 | 0.75 | 0.42 | 0.24 |
ALB, g/L | 29.1 | 29.5 | 29.5 | 0.27 | 0.22 | 0.50 |
GLB, g/L | 34.7 | 36.2 | 35.5 | 0.56 | 0.37 | 0.12 |
TG, mmol/L | 0.43 | 0.43 | 0.45 | 0.02 | 0.41 | 0.72 |
TC, g/L | 4.22 | 4.14 | 4.09 | 0.05 | 0.09 | 0.80 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, X.; Chen, C.; Zhang, X.; Wei, Y.; Tang, S.; Wang, J.; Tan, Z.; Xu, L. Effects of Dietary Stevioside Supplementation on Feed Intake, Digestion, Ruminal Fermentation, and Blood Metabolites of Goats. Animals 2019, 9, 32. https://doi.org/10.3390/ani9020032
Han X, Chen C, Zhang X, Wei Y, Tang S, Wang J, Tan Z, Xu L. Effects of Dietary Stevioside Supplementation on Feed Intake, Digestion, Ruminal Fermentation, and Blood Metabolites of Goats. Animals. 2019; 9(2):32. https://doi.org/10.3390/ani9020032
Chicago/Turabian StyleHan, Xuefeng, Chaoxi Chen, Xiaoli Zhang, Yuqing Wei, Shaoxun Tang, Jiurong Wang, Zhiliang Tan, and Liwei Xu. 2019. "Effects of Dietary Stevioside Supplementation on Feed Intake, Digestion, Ruminal Fermentation, and Blood Metabolites of Goats" Animals 9, no. 2: 32. https://doi.org/10.3390/ani9020032
APA StyleHan, X., Chen, C., Zhang, X., Wei, Y., Tang, S., Wang, J., Tan, Z., & Xu, L. (2019). Effects of Dietary Stevioside Supplementation on Feed Intake, Digestion, Ruminal Fermentation, and Blood Metabolites of Goats. Animals, 9(2), 32. https://doi.org/10.3390/ani9020032