Pregnancy-Associated Alterations of Peripheral Blood Immune Cell Numbers in Domestic Sows Are Modified by Social Rank
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Blood Collection
2.3. Cortisol Measurement
2.4. Differential Blood Count
2.5. Behavioral Recording and Rank Classification
2.6. Statistical Analyses
3. Results
3.1. Pregnancy-Induced Alterations in Numbers of Blood Immune Cells and Cortisol Concentration
3.2. Effects of Social Status on Numbers of Blood Immune Cells and Cortisol Concentration
3.3. Correlation between Cortisol Concentration and Blood Immune Cell Numbers
4. Discussion
4.1. Immune Cell Numbers and Cortisol Concentration during Pregnancy
4.2. Changes in Immune Cell Numbers and Cortisol Concentration Associated with Social Status
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Luppi, P. How immune mechanisms are affected by pregnancy. Vaccine 2003, 21, 3352–3357. [Google Scholar] [CrossRef]
- Ramsay, M. Normal and the cellular puerperium changes during pregnancy. In The Obstetric Hematology Manual; Pavord, S., Hunt, B., Eds.; Cambridge University Press: New York, NY, USA, 2018; pp. 3–59. ISBN 1108547273. [Google Scholar]
- Nakamura, H.; Seto, T.; Nagase, H.; Yoshida, M.; Dan, S.; Ogino, K. Inhibitory effect of pregnancy on stress-induced immunosuppression through corticotropin releasing hormone (CRH) and dopaminergic systems. J. Neuroimmunol. 1997, 75, 1–8. [Google Scholar] [CrossRef]
- Stefanski, V.; Raabe, C.; Schulte, M. Pregnancy and social stress in female rats: Influences on blood leukocytes and corticosterone concentrations. J. Neuroimmunol. 2005, 162, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Iwatani, Y.; Kaneda, T.; Hidaka, Y.; Mitsuda, N.; Morimoto, Y.; Amino, N. Changes in T, B, and NK lymphocyte subsets during and after normal pregnancy. Am. J. Reprod. Immunol. 1997, 37, 368–377. [Google Scholar] [CrossRef]
- Pazos, M.; Sperling, R.S.; Moran, T.M.; Kraus, T.A. The influence of pregnancy on systemic immunity. Immunol. Res. 2012, 54, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Kwak-Kim, J.; Bao, S.; Lee, S.K.; Kim, J.W.; Gilman-Sachs, A. Immunological modes of pregnancy loss: Inflammation, immune effectors, and stress. Am. J. Reprod. Immunol. 2014, 72, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Kühnert, M.; Strohmeier, R.; Stegmüller, M.; Halberstadt, E. Changes in lymphocyte subsets during normal pregnancy. Eur. J. Obstet. Gynecol. Reprod. Biol. 1998, 76, 147–151. [Google Scholar] [CrossRef]
- Sacks, G.; Sargent, I.; Redman, C. An innate view of human pregnancy. Immunol. Today 1999, 20, 114–118. [Google Scholar] [CrossRef]
- Luppi, P.; Haluszczak, C.; Trucco, M.; Deloia, J.A. Normal pregnancy is associated with peripheral leukocyte activation. Am. J. Reprod. Immunol. 2002, 47, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Elbers, A.R.W.; Geudeke, M.J.; van Rossem, H.; Kroon, M.C.; Counotte, C.H.M. Haematology and biochemistry reference values for sows kept under modern management conditions. Vet. Q. 1994, 16, 127–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgieva, R. Dynamics of T-suppressor and T-helper lymphocytes and haemolytic plaque-forming cells during normal pregnancy in the sow. J. Reprod. Immunol. 1984, 6, 151–156. [Google Scholar] [CrossRef]
- Schollenberger, A.; Degorski, A.; Bielecki, W.; Stempniak, M. Lymphocyte subpopulations in peripheral blood of pregnant sows. Arch. Vet. Pol. 1992, 32, 35–46. [Google Scholar] [PubMed]
- Žvorc, Z.; Mrljak, V.; Sušic, V.; Gotal, J.P. Haematological and biochemical parameters during pregnancy and lactation in sows. Vet. Arh. 2006, 76, 245–253. [Google Scholar]
- Couret, D.; Otten, W.; Puppe, B.; Prunier, A.; Merlot, E. Behavioural, endocrine and immune responses to repeated social stress in pregnant gilts. Animal 2009, 3, 118–127. [Google Scholar] [CrossRef]
- Grün, V.; Schmucker, S.; Schalk, C.; Flauger, B.; Weiler, U.; Stefanski, V. Influence of different housing systems on distribution, function and mitogen-response of leukocytes in pregnant sows. Animals 2013, 3, 1123–1141. [Google Scholar] [CrossRef] [PubMed]
- Engler, H.; Bailey, M.T.; Engler, A.; Sheridan, J.F. Effects of repeated social stress on leukocyte distribution in bone marrow, peripheral blood and spleen. J. Neuroimmunol. 2004, 148, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Stefanski, V. Social stress in laboratory rats: Hormonal responses and immune cell distribution. Psychoneuroendocrinology 2000, 25, 389–406. [Google Scholar] [CrossRef]
- Grün, V.; Schmucker, S.; Schalk, C.; Flauger, B.; Stefanski, V. Characterization of the adaptive immune response following immunization in pregnant sows (Sus scrofa) kept in two different housing systems. J. Anim. Sci. 2014, 92, 3388–3397. [Google Scholar] [CrossRef] [PubMed]
- Schalk, C.; Pfaffinger, B.; Schmucker, S.; Weiler, U.; Stefanski, V. Effects of repeated social mixing on behavior and blood immune cells of group-housed pregnant sows (Sus scrofa domestica). Livest. Sci. 2018, 217, 148–156. [Google Scholar] [CrossRef]
- Chebel, R.C.; Silva, P.R.B.; Endres, M.I.; Ballou, M.A.; Luchterhand, K.L. Social stressors and their effects on immunity and health of periparturient dairy cows1. J. Dairy Sci. 2016, 99, 3217–3228. [Google Scholar] [CrossRef]
- O’Connell, N.E.; Beattie, V.E.; Moss, B.W. Influence of social status on the welfare of sows in static and dynamic groups. Anim. Welf. 2003, 12, 239–249. [Google Scholar]
- Li, Y.Z.; Wang, L.H.; Johnston, L.J. Effects of social rank on welfare and performance of gestating sows housed in two group sizes. J. Swine Health Prod. 2017, 6, 290–298. [Google Scholar]
- Hoy, S.; Bauer, J.; Borberg, C.; Chonsch, L.; Weirich, C. Investigations on dynamics of social rank of sows during several parities. Appl. Anim. Behav. Sci. 2009, 121, 103–107. [Google Scholar] [CrossRef]
- Tsuma, V.T.; Einarsson, S.; Madej, A.; Kindahl, H.; Lundeheim, N.; Rojkittikhun, T. Endocrine changes during group housing of primiparous sows in early pregnancy. Acta Vet. Scand. 1996, 37, 481. [Google Scholar] [PubMed]
- Zanella, A.J.; Brunner, P.; Unshelm, J.; Mendl, M.T.; Broom, D.M. The relationship between housing and social rank on cortisol, β-endorphin and dynorphin (1–13) secretion in sows. Appl. Anim. Behav. Sci. 1998, 59, 1–10. [Google Scholar] [CrossRef]
- Mendl, M.; Zanella, A.J.; Broom, D.M. Physiological and reproductive correlates of behavioural strategies in female domestic pigs. Anim. Behav. 1992, 44, 1107–1121. [Google Scholar] [CrossRef]
- Verdon, M.; Morrison, R.S.; Rice, M.; Hemsworth, P.H. Individual variation in sow aggressive behavior and its relationship with sow welfare. J. Anim. Sci. 2016, 94, 1203–1214. [Google Scholar] [CrossRef] [PubMed]
- Dhabhar, F.S.; Miller, A.H.; McEwen, B.S.; Spencer, R.L. Stress-induced changes in blood leukocyte distribution. Role of adrenal steroid hormones. J. Immunol. 1996, 157, 1638–1644. [Google Scholar]
- Dhabhar, F.S. Stress-induced augmentation of immune function—The role of stress hormones, leukocyte trafficking, and cytokines. Brain Behav. Immun. 2002, 16, 785–798. [Google Scholar] [CrossRef]
- Zhao, Y.; Flowers, W.L.; Saraiva, A.; Yeum, K.-J.; Kim, S.W. Effect of social ranks and gestation housing systems on oxidative stress status, reproductive performance, and immune status of sows1. J. Anim. Sci. 2013, 91, 5848–5858. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, E.; Salak-Johnson, J.L. Social status affects welfare metrics of group-housed gestating sows. J. Vet. Res. Anim. Husb. 2016, 1, 103. [Google Scholar]
- Sutherland, M.A.; Niekamp, S.R.; Johnson, R.W.; van Alstine, W.G.; Salak-Johnson, J.L. Heat and social rank impact behavior and physiology of PRRS-virus-infected pigs. Physiol. Behav. 2007, 90, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Hjarvard, B.M.; Larsen, O.N.; Juul-Madsen, H.R.; Jørgensen, E.; Jensen, K.H. Social rank influences the distribution of blood leukocyte subsets in female growing pigs. Scandinavian J. Lab. Anim. Sci. 2009, 36, 309–320. [Google Scholar]
- Engert, L.C.; Weiler, U.; Stefanski, V.; Schmucker, S.S. Glucocorticoid receptor number and affinity differ between peripheral blood mononuclear cells and granulocytes in domestic pigs. Domest. Anim. Endocrinol. 2017, 61, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Engert, L.C.; Weiler, U.; Pfaffinger, B.; Stefanski, V.; Schmucker, S.S. Diurnal rhythms in peripheral blood immune cell numbers of domestic pigs. Dev. Comp. Immunol. 2018, 79, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Horback, K.M.; Parsons, T.D. Temporal stability of personality traits in group-housed gestating sows. Animal 2016, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, P. An ethogram of social interaction patterns in group-housed dry sows. Appl. Anim. Ethol. 1980, 6, 341–350. [Google Scholar] [CrossRef]
- De Silva, S.; Schmid, V.; Wittemyer, G. Fission–fusion processes weaken dominance networks of female Asian elephants in a productive habitat. Behav. Ecol. 2017, 28, 243–252. [Google Scholar] [CrossRef]
- Hemelrijk, C.K.; Wantia, J.; Gygax, L. The construction of dominance order: Comparing performance of five methods using an individual-based model. Behaviour 2005, 142, 1037–1058. [Google Scholar] [CrossRef]
- Zumpe, D.; Michael, R.P. Dominance index: A simple measure of relative dominance status in primates. Am. J. Primatol. 1986, 10, 291–300. [Google Scholar] [CrossRef]
- R Development Core Team. R: A language and Environment for Statistical Computing (3.1.0). 2015. Available online: http://www.r-project.org (accessed on 31 January 2015).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. lme4: Linear Mixed-Effects Models Using Eigen and S4. 2016. Available online: http://CRAN.R-project.org/package=lme4 (accessed on 31 January 2016).
- Langer, F.; Havenstein, N.; Fietz, J. Flexibility is the key: Metabolic and thermoregulatory behaviour in a small endotherm. J. Comp. Physiol. B 2018, 188, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Charerntantanakul, W.; Roth, J.A. Biology of porcine T lymphocytes. Anim. Health Res. Rev. 2006, 7, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Gerner, W.; Käser, T.; Saalmüller, A. Porcine T lymphocytes and NK cells—An update. Dev. Comp. Immunol. 2009, 33, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Papworth, T.A.; Clubb, S.K. Clinical pathology in the female rat during the pre-and postnatal period. Comp. Haematol. Int. 1995, 5, 13–24. [Google Scholar] [CrossRef]
- Shibuya, T.; Izuchi, K.; Kuroiwa, A.; Okabe, N.; Shirakawa, K. Study on nonspecific immunity in pregnant women: Increased chemiluminescence response of peripheral blood phagocytes. Am. J. Reprod. Immunol. 1987, 15, 19. [Google Scholar] [CrossRef]
- Sargent, I.L.; Borzychowski, A.M.; Redman, C.W.G. Immunoregulation in normal pregnancy and pre-eclampsia: An overview. Reprod. Biomed. Online 2006, 13, 680–686. [Google Scholar] [CrossRef]
- McLean, J.M.; Mosley, J.G.; Gibbs, A.C. Changes in the thymus, spleen and lymph nodes during pregnancy and lactation in the rat. J. Anat. 1974, 118, 223. [Google Scholar] [PubMed]
- Lee, S.K.; Kim, C.J.; Kim, D.-J.; Kang, J.-H. Immune cells in the female reproductive tract. Immune Netw. 2015, 15, 16–26. [Google Scholar] [CrossRef]
- Tilburgs, T.; Roelen, D.L.; van der Mast, B.J.; de Groot-Swings, G.M.; Kleijburg, C.; Scherjon, S.A.; Claas, F.H. Evidence for a Selective Migration of Fetus-Specific CD4+CD25bright Regulatory T Cells from the Peripheral Blood to the Decidua in Human Pregnancy. J. Immunol. 2008, 180, 5737–5745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bischof, R.J.; Lee, R.; Lee, C.-S.; Meeusen, E. Dynamic changes in the lymphocyte subpopulations of pig uterine lymph nodes. Vet. Immunol. Immunopathol. 1996, 51, 315–324. [Google Scholar] [CrossRef]
- Zhang, M.-Y.; Li, X.; Zhang, X.-H.; Liu, H.-G.; Li, J.-H.; Bao, J. Effects of confinement duration and parity on stereotypic behavioral and physiological responses of pregnant sows. Physiol. Behav. 2017, 179, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, L.K.; Turner, J.G.; Kalin, N.H. Prolonged stress-induced elevation in plasma corticosterone during pregnancy in the rat: Implications for prenatal stress studies. Psychoneuroendocrinology 1998, 23, 571–581. [Google Scholar] [CrossRef]
- Mastorakos, G.; Ilias, I. Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann. N. Y. Acad. Sci. 2003, 997, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.P.; Klein, S.L. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm. Behav. 2012, 62, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossman, C.J. Interactions between the gonadal steroids and the immune system. Science 1985, 227, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Piccinni, M.-P.; Giudizi, M.-G.; Biagiotti, R.; Beloni, L.; Giannarini, L.; Sampognaro, S.; Parronchi, P.; Manetti, R.; Annunziato, F.; Livi, C. Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. J. Immunol. 1995, 155, 128–133. [Google Scholar] [PubMed]
- Schumacher, A.; Costa, S.-D.; Zenclussen, A.C. Endocrine factors modulating immune responses in pregnancy. Front. Immunol. 2014, 5, 196. [Google Scholar] [CrossRef] [PubMed]
- Muzzio, D.; Zenclussen, A.C.; Jensen, F. The role of B cells in pregnancy: The good and the bad. Am. J. Reprod. Immunol. 2013, 69, 408–412. [Google Scholar] [CrossRef]
- Stefanski, V. Social stress in loser rats: Opposite immunological effects in submissive and subdominant males. Physiol. Behav. 1998, 63, 605–613. [Google Scholar] [CrossRef]
- Ottaway, C.A.; Husband, A.J. Central nervous system influences on lymphocyte migration. Brain Behav. Immun. 1992, 6, 97–116. [Google Scholar] [CrossRef]
- Freitas, A.A.; Rocha, B.; Coutinho, A.A. Life span of B lymphocytes: The experimental basis for conflicting results. J. Immunol. 1986, 136, 470–476. [Google Scholar] [PubMed]
- Sachser, N.; Dürschlag, M.; Hirzel, D. Social relationships and the management of stress. Psychoneuroendocrinology 1998, 23, 891–904. [Google Scholar] [CrossRef]
- Stefanski, V.; Engler, H. Social stress, dominance and blood cellular immunity. J. Neuroimmunol. 1999, 94, 144–152. [Google Scholar] [CrossRef]
- Anderson, B.H.; Watson, D.L.; Colditz, I.G. The effect of dexamethasone on some immunological parameters in cattle. Vet. Res. Commun. 1999, 23, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Landmann, R.M.; Müller, F.B.; Perini, C.H.; Wesp, M.; Erne, P.; Bühler, F.R. Changes of immunoregulatory cells induced by psychological and physical stress: Relationship to plasma catecholamines. Clin. Exp. Immunol. 1984, 58, 127. [Google Scholar] [PubMed]
- Dhabhar, F.S.; Miller, A.H.; McEwen, B.S.; Spencer, R.L. Effects of stress on immune cell distribution. Dynamics and hormonal mechanisms. J. Immunol. 1995, 154, 5511–5527. [Google Scholar] [PubMed]
- Mormède, P.; Andanson, S.; Aupérin, B.; Beerda, B.; Guémené, D.; Malmkvist, J.; Manteca, X.; Manteuffel, G.; Prunet, P.; van Reenen, C.G.; et al. Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare. Physiol. Behav. 2007, 92, 317–339. [Google Scholar] [CrossRef] [PubMed]
Behavior | Description |
---|---|
Aggressive | |
Biting | Biting with teeth at another sow’s head and body. Mouth of the acting sow is open. The attempt is also evaluated. |
Head-to-body/head knocking | A rapid, heavy thrust or push upwards or sideways with head or snout against another sow’s body or head. |
Parallel pressing | Two sows standing side by side and pushing their shoulders and bodies against each other. With or without biting and head-to-head knock. |
Inverse parallel pressing | Two sows standing face front to front and push their shoulders, bodies and heads against each other. With or without biting and head-to-body knock. |
Following/Chasing | Moving at a walking or running pace more than 3 steps in pursuit of another sow and reducing the distance between both animals to less than 1 m. The receiver sow withdraws or flees. |
Displacing | Forcing another sow to leave and avoid its current location, lying place, trough, or drinker by appearance alone, without any physical contact. The receiver sow avoids the intruder. |
Submissive | |
Avoiding | Result of “displacing”. Leaving and avoiding (>2 steps) the current location, lying place, trough, or drinker caused only by another sow’s appearance, not by any physical contact. |
Withdrawing | Possible result of any aggressive behavior. Moving away (>2 steps) from another sow at a walking pace. |
Fleeing | Possible result of any aggressive behavior. Moving away (>3 steps) from another sow at a running pace. |
Count/µL Blood | Weeks Pre Partum | p-Value | |||||
---|---|---|---|---|---|---|---|
12 | 10 | 7 | 4 | 2 | Pooled SEM | Week of Pregnancy | |
Lymphocytes (L) † | 5488 a | 5349 a | 5298 a | 4882 b | 4170 c | 356 | <0.001 |
T cells ‡ | 4537 a | 4458 a | 4316 ab | 4100 b | 3383 c | 162 | <0.001 |
B cells † | 840 ab | 774 a | 860 b | 683 c | 689 c | 167 | <0.001 |
NK cells † | 121 a | 112 a | 120 a | 108 a | 86 b | 20 | <0.001 |
Cytotoxic T cells ‡ | 1162 a | 1099 ab | 1111 a | 1011 b | 847 c | 100 | <0.001 |
Total TH cells † | 2359 a | 2291 ab | 2101 b | 2121 b | 1699 c | 91 | <0.001 |
Naive TH cells † | 549 a | 573 a | 518 a | 537 a | 433 b | 56 | <0.001 |
CD8α+ TH cells † | 1736 a | 1647 ab | 1523 b | 1518 b | 1225 c | 72 | <0.001 |
Total γδ-T cells | 1002 ab | 1046 a | 1032 a | 913 b | 805 c | 102 | <0.001 |
CD8+ γδ-T cells ‡ | 751 a | 759 a | 745 a | 645 b | 563 c | 78 | <0.001 |
CD8− γδ-T cells ‡ | 202 a | 233 b | 242 b | 224 ab | 198 a | 20 | <0.001 |
Neutrophils (N) † | 3101 a | 2985 a | 2908 a | 2947 a | 3552 b | 143 | <0.001 |
Eosinophils ‡ | 532 a | 457 bc | 428 bc | 483 ab | 412 c | 34 | <0.001 |
Monocytes † | 668 a | 641 ab | 663 ab | 614 ab | 602 b | 50 | <0.05 |
Ratio of N:L † | 0.6 a | 0.6 a | 0.6 a | 0.6 a | 0.9 b | 0.05 | <0.001 |
Cortisol †, ng/mL plasma | 16.4 a | 16.9 a | 18.9 a | 19.0 a | 25.0 b | 1.92 | <0.001 |
Item (Count/µL) | Rank Position | 12 | Pooled SEM | p-Value | 10 | Pooled SEM | p-Value | 7 | Pooled SEM | p-Value | 4 | Pooled SEM | p-Value | 2 | Pooled SEM | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lymphocytes | HR | † 5048 | 533 | 0.2 | 5831 | 440 | 0.7 | † 5634 | 410 | 0.64 | † 5199 | 512 | 0.67 | † 4482 | 386 | 0.49 |
MR | † 5827 | 5541 | † 5349 | † 4802 | † 4044 | |||||||||||
LR | † 5846 | 5490 | † 5045 | † 4764 | † 4112 | |||||||||||
T cells | HR | † 4701 | 355 | 0.13 | 4701 | 340 | 0.77 | † 4444 | 353 | 0.72 | 4385 | 331 | 0.74 | 3576 | 267 | 0.45 |
MR | † 4090 | 4361 | † 4152 | 4067 | 3240 | |||||||||||
LR | † 4837 | 4531 | † 4300 | 4100 | 3515 | |||||||||||
B cells | HR | † 977 | 153 | 0.47 | 936 ab | 163 | 0.05 | 887 ab | 131 | 0.02 | 751 | 160 | 0.12 | 746 ab | 127 | 0.04 |
MR | † 843 | 919 a | 1108 a | 793 | 821 a | |||||||||||
LR | † 769 | 670 b | 730 b | 624 | 619 b | |||||||||||
NK cells | HR | † 159 | 34 | 0.08 | † 144 | 30 | 0.23 | † 152 | 19 | 0.31 | † 123 | 26 | 0.4 | † 99 | 30 | 0.24 |
MR | † 101 | † 100 | † 114 | † 96 | † 73 | |||||||||||
LR | † 139 | † 110 | † 106 | † 112 | † 93 | |||||||||||
Neutrophils | HR | 3108 | 294 | 0.74 | 2916 | 328 | 0.81 | 3001 | 244 | 0.98 | † 2499 | 245 | 0.14 | † 2957 | 333 | 0.2 |
MR | 3353 | 3277 | 2960 | † 3096 | † 3690 | |||||||||||
LR | 3110 | 3140 | 2950 | † 3078 | † 3781 | |||||||||||
Monocytes | HR | † 689 | 53 | 0.38 | † 593 ab | 45 | 0.08 | 759 ab | 46 | 0.02 | 604 at | 55 | 0.003 | 589 | 67 | 0.26 |
MR | † 703 | † 705 a | 745 a | 728 b | 656 | |||||||||||
LR | † 623 | † 593 bt | 570 b | 534 a | 585 | |||||||||||
Cortisol, ng/mL plasma | HR | † 31.8 a | 2.9 | 0.02 | 20.7 ab | 3.3 | 0.09 | 22.5 | 3.1 | 0.13 | 24.4 | 2.9 | 0.26 | 32.7 a | 2.3 | 0.06 |
MR | † 26.0 ab | 22.0 at | 23.1 | 18.4 | 27.4 a | |||||||||||
LR | † 20.0 b | 14.6 b | 17.5 | 21.0 | 20.4 bt |
Item (Count/µL) | Rank Position | 12 | Pooled SEM | p-Value | 10 | Pooled SEM | p-Value | 7 | Pooled SEM | p-Value | 4 | Pooled SEM | p-Value | 2 | Pooled SEM | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total TH cells | HR | † 2374 | 194 | 0.52 | 2500 | 237 | 0.69 | † 2078 | 181 | 0.99 | † 2377 | 225 | 0.28 | † 1854 | 144 | 0.47 |
MR | † 2215 | 2299 | † 2062 | † 2074 | † 1637 | |||||||||||
LR | † 2477 | 2286 | † 2090 | † 2050 | † 1722 | |||||||||||
Naive TH cells | HR | † 420 | 80 | 0.14 | † 495 | 120 | 0.59 | † 406 | 70 | 0.23 | 508 | 121 | 0.74 | † 303 a | 51 | 0.02 |
MR | † 568 | † 599 | † 550 | 585 | † 429 bt | |||||||||||
LR | † 682 | † 620 | † 578 | 645 | † 508 b | |||||||||||
CD8α+ TH cells | HR | † 1859 | 158 | 0.60 | † 1797 | 161 | 0.33 | † 1694 | 153 | 0.76 | † 1867 | 175 | 0.21 | 1609 a | 119 | 0.04 |
MR | † 1642 | † 1650 | † 1486 | † 1504 | 1201 b | |||||||||||
LR | † 1681 | † 1488 | † 1403 | † 1392 | 1246 bt | |||||||||||
CTL | HR | † 1161 | 163 | 0.22 | 1090 | 147 | 0.98 | 1092 | 123 | 0.95 | 1072 | 146 | 0.85 | 966 | 94 | 0.32 |
MR | † 1023 | 1122 | 1132 | 1004 | 812 | |||||||||||
LR | † 1245 | 1125 | 1137 | 1057 | 879 | |||||||||||
Total γδ-T cells | HR | 1094 at | 176 | 0.006 | 1146 ab | 152 | 0.07 | 1020 | 102 | 0.75 | 905 | 182 | 0.38 | 750 | 189 | 0.15 |
MR | 803 b | 890 a | 1005 | 828 | 707 | |||||||||||
LR | 1236 a | 1172 bt | 1092 | 972 | 885 | |||||||||||
CD8+ γδ-T cells | HR | 793 | 158 | 0.64 | 845 | 106 | 0.07 | 774 | 130 | 0.88 | 689 | 130 | 0.34 | † 555 | 118 | 0.70 |
MR | 655 | 683 a | 744 | 608 | † 514 | |||||||||||
LR | 917 | 837 bt | 785 | 689 | † 561 | |||||||||||
CD8− γδ-T cells | HR | †150 at | 32 | 0.02 | † 178 | 38 | 0.26 | 257 | 52 | 0.68 | 224 | 57 | 0.34 | 166 | 67 | 0.11 |
MR | †160 a | † 194 | 259 | 210 | 177 | |||||||||||
LR | †266 b | † 248 | 303 | 288 | 276 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schalk, C.; Pfaffinger, B.; Schmucker, S.; Weiler, U.; Stefanski, V. Pregnancy-Associated Alterations of Peripheral Blood Immune Cell Numbers in Domestic Sows Are Modified by Social Rank. Animals 2019, 9, 112. https://doi.org/10.3390/ani9030112
Schalk C, Pfaffinger B, Schmucker S, Weiler U, Stefanski V. Pregnancy-Associated Alterations of Peripheral Blood Immune Cell Numbers in Domestic Sows Are Modified by Social Rank. Animals. 2019; 9(3):112. https://doi.org/10.3390/ani9030112
Chicago/Turabian StyleSchalk, Christiane, Birgit Pfaffinger, Sonja Schmucker, Ulrike Weiler, and Volker Stefanski. 2019. "Pregnancy-Associated Alterations of Peripheral Blood Immune Cell Numbers in Domestic Sows Are Modified by Social Rank" Animals 9, no. 3: 112. https://doi.org/10.3390/ani9030112
APA StyleSchalk, C., Pfaffinger, B., Schmucker, S., Weiler, U., & Stefanski, V. (2019). Pregnancy-Associated Alterations of Peripheral Blood Immune Cell Numbers in Domestic Sows Are Modified by Social Rank. Animals, 9(3), 112. https://doi.org/10.3390/ani9030112