Effects of Fat Supplementation during Gestation on Reproductive Performance, Milk Composition of Sows and Intestinal Development of Their Offspring
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Measurements
2.3. Sample Collection
2.4. Histological Measurements
2.5. Chemical Analysis
2.6. Gene Expression
2.7. Statistical Analysis
3. Results
3.1. Performance of Sows and Their Offspring
3.2. Plasma Hormones and Metabolites
3.3. Colostrum and Milk Composition
3.4. Gut Morphology and Relative Organ Weights
3.5. Gene Expression in the Ileum
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Herrera, E.; Ortega-Senovilla, H. Maternal lipid metabolism during normal pregnancy and its implications to fetal development. Clin. Lipidol. 2010, 5, 899–911. [Google Scholar] [CrossRef]
- Tilton, S.L.; Miller, P.S.; Lewis, A.J.; Reese, D.E.; Ermer, P.M. Addition of fat to the diets of lactating sows: I. Effects on milk production and composition and carcass composition of the litter at weaning. J. Anim. Sci. 1999, 77, 2491–2500. [Google Scholar] [CrossRef]
- Shurson, G.; Hogberg, M.; DeFever, N.; Radecki, S.; Miller, E. Effects of adding fat to the sow lactation diet on lactation and rebreeding performance. J. Anim. Sci. 1986, 62, 672–680. [Google Scholar] [CrossRef]
- Rosero, D.S.; Boyd, R.D.; Odle, J.; Heugten, E.V. Optimizing dietary lipid use to improve essential fatty acid status and reproductive performance of the modern lactating sow: A review. J. Anim. Sci. Biotechnol. 2016, 7, 34. [Google Scholar] [CrossRef]
- Lawrence, N.J.; Maxwell, C.V. Effect of dietary fat source and level on the performance of neonatal and early weaned pigs. J. Anim. Sci. 1983, 57, 936. [Google Scholar] [CrossRef]
- Laws, J.; Amusquivar, E.; Laws, A.; Herrera, E.; Lean, I.J.; Dodds, P.F.; Clarke, L. Supplementation of sow diets with oil during gestation: Sow body condition, milk yield and milk composition. Livest. Sci. 2009, 123, 88–96. [Google Scholar] [CrossRef]
- Leonard, S.G.; Sweeney, T.; Bahar, B.; Lynch, B.P.; O’Doherty, J.V. Effect of maternal fish oil and seaweed extract supplementation on colostrum and milk composition, humoral immune response, and performance of suckled piglets. J. Anim. Sci. 2010, 88, 2988. [Google Scholar] [CrossRef]
- Lauridsen, C.; Danielsen, V. Lactational dietary fat levels and sources influence milk composition and performance of sows and their progeny. Livest. Prod. Sci. 2004, 91, 95–105. [Google Scholar] [CrossRef]
- Park, M.S.; Shinde, P.L.; Yang, Y.X.; Kim, J.S.; Choi, J.Y.; Yun, K.; Kim, Y.W.; Lohakare, J.D.; Yang, B.K.; Lee, J.K.; et al. Reproductive Performance, Milk Composition, Blood Metabolites and Hormone Profiles of Lactating Sows Fed Diets with Different Cereal and Fat Sources. Asian Australas. J. Anim. Sci. 2010, 23, 226–233. [Google Scholar] [CrossRef]
- Williams, L.; Seki, Y.; Vuguin, P.M.; Charron, M.J. Animal models of in utero exposure to a high fat diet: A review. Biochim. Biophys. Acta 2014, 1842, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Che, L.; Liu, P.; Yang, Z.; Che, L.; Hu, L.; Qin, L.; Wang, R.; Fang, Z.; Lin, Y.; Xu, S.; Feng, B. Maternal high fat intake affects the development and transcriptional profile of fetal intestine in late gestation using pig model. Lipids Health Dis. 2016, 15, 90. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Zhao, J.; Luo, G.; Xuan, Y.; Fang, Z.; Lin, Y.; Xu, S.; Wu, D.; He, J.; Che, L. Effects of oil quality and antioxidant supplementation on sow performance, milk composition and oxidative status in serum and placenta. Lipids Health Dis. 2017, 16, 107. [Google Scholar] [CrossRef]
- Mateo, R.D.; Wu, G.; Bazer, F.W.; Park, J.C.; Shinzato, I.; Kim, S.W. Dietary L-arginine supplementation enhances the reproductive performance of gilts. J. Nutr. 2007, 137, 652–656. [Google Scholar] [CrossRef]
- Liu, P.; Che, L.; Yang, Z.; Feng, B.; Che, L.; Xu, S.; Lin, Y.; Fang, Z.; Li, J.; Wu, D. A Maternal High-Energy Diet Promotes Intestinal Development and Intrauterine Growth of Offspring. Nutrients 2016, 8, 258. [Google Scholar] [CrossRef]
- Peng, X.; Hu, L.; Liu, Y.; Yan, C.; Fang, Z.F.; Lin, Y.; Xu, S.Y.; Li, J.; Wu, C.M.; Chen, D.W.; et al. Effects of low-protein diets supplemented with indispensable amino acids on growth performance, intestinal morphology and immunological parameters in 13 to 35 kg pigs. Animal 2016, 10, 1812–1820. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Fainberg, H.P.; Almond, K.L.; Li, D.; Rauch, C.; Bikker, P.; Symonds, M.E.; Mostyn, A. Impact of maternal dietary fat supplementation during gestation upon skeletal muscle in neonatal pigs. BMC Physiol. 2014, 14, 6. [Google Scholar] [CrossRef]
- Jin, C.; Fang, Z.; Lin, Y.; Che, L.; Wu, C.; Xu, S.; Feng, B.; Li, J.; Wu, D. Influence of dietary fat source on sow and litter performance, colostrum and milk fatty acid profile in late gestation and lactation. Anim. Sci. J. 2017, 88, 1768–1778. [Google Scholar] [CrossRef] [PubMed]
- Neal, S.; Irvin, K.; Shurson, G.; Harris, B.; Hatfield, E. Effect of Lactation Diet Fat Level on Sow and Litter Performance1. Prof. Anim. Sci. 1999, 15, 7–13. [Google Scholar] [CrossRef]
- Rosero, D.; Van Heugten, E.; Odle, J.; Arellano, C.; Boyd, R. Response of the modern lactating sow and progeny to source and level of supplemental dietary fat during high ambient temperatures. J. Anim. Sci. 2012, 90, 2609–2619. [Google Scholar] [CrossRef] [PubMed]
- Farmer, C.; Robert, S.; Rushen, J. Bromocriptine given orally to periparturient of lactating sows inhibits milk production. J. Anim. Sci. 1998, 76, 750–757. [Google Scholar] [CrossRef]
- Kruse, P.; Danielsen, V.; Nielsen, H.; Christensen, K. The influence of different dietary levels of linoleic acid on reproductive performance and fatty acid composition of milk fat and plasma lipids in pigs. Acta Agric. Scand. 1977, 27, 289–296. [Google Scholar] [CrossRef]
- Jones, G.M.; Edwards, S.A.; Sinclair, A.G.; Gebbie, F.E.; Rooke, J.A.; Hoste, S.J.S. The effect of maize starch or soya-bean oil as energy sources in lactation on sow and piglet performance in association with sow metabolic state around peak lactation. Anim. Sci. 2002, 75, 76–82. [Google Scholar] [CrossRef]
- Rezaei, R.; Wu, Z.; Hou, Y.; Bazer, F.W.; Wu, G. Amino acids and mammary gland development: Nutritional implications for milk production and neonatal growth. J. Anim. Sci. Biotechnol. 2016, 7, 20. [Google Scholar] [CrossRef]
- Knazek, R.A.; Liu, S.C.; Bodwin, J.S.; Vonderhaar, B.K. Requirement of essential fatty acids in the diet for development of the mouse mammary gland. Jnci J. Natl. Cancer Inst. 1980, 64, 377. [Google Scholar] [CrossRef]
- McFadden, T.; Daniel, T.; Akers, R. Effects of plane of nutrition, growth hormone and unsaturated fat on mammary growth in prepubertal lambs. J. Anim. Sci. 1990, 68, 3171–3179. [Google Scholar] [CrossRef] [PubMed]
- Devillers, N.; Le Dividich, J.; Prunier, A. Influence of colostrum intake on piglet survival and immunity. Animal 2011, 5, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, D.P.; Cotter, P.F.; Mulvihill, D.M. Porcine milk proteins: A review. Int. Dairy J. 1997, 7, 99–118. [Google Scholar] [CrossRef]
- Xia, M.S.; Hu, C.H.; Xu, Z.R. Effects of copper bearing montmorillonite on the growth performance, intestinal microflora and morphology of weanling pigs. Anim. Feed Sci. Technol. 2005, 118, 307–317. [Google Scholar] [CrossRef]
- Innis, S.M.; Dai, C.; Wu, X.; Buchan, A.M.J.; Jacobson, K. Perinatal lipid nutrition alters early intestinal development and programs the response to experimental colitis in young adult rats. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 299, G1376–G1385. [Google Scholar] [CrossRef] [PubMed]
- Boudry, G.; Douard, V.; Mourot, J.; Lalles, J.P.; Le Huërou-Luron, I. Linseed oil in the maternal diet during gestation and lactation modifies fatty acid composition, mucosal architecture, and mast cell regulation of the ileal barrier in piglets. J. Nutr. 2009, 139, 1110–1117. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.; Coutts, A. Early nutrition and the development of immune function in the neonate. Proc. Nutr. Soc. 2000, 59, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Newburg, D.S.; Walker, W.A. Protection of the neonate by the innate immune system of developing gut and of human milk. Pediatric Res. 2007, 61, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Kawai, T.; Akira, S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 2009, 21, 317–337. [Google Scholar] [CrossRef]
Item | Days 1–90 of Gestation | Day 91 of Gestation to Parturition | ||
---|---|---|---|---|
CON | HF | CON | HF | |
Ingredient, % | ||||
Corn, 7.8% CP | 63.60 | 59.51 | 64.11 | 59.38 |
Soybean meal, 44.2% CP | 5.00 | 5.00 | 11.67 | 12.89 |
Wheat bran | 28.76 | 30.76 | 20.66 | 22.18 |
Soybean oil | - | 2.00 | - | 2.00 |
L-Lysine·HCl, 75% | 0.10 | 0.11 | 0.15 | 0.14 |
L-Threonine | 0.01 | 0.02 | 0.05 | 0.05 |
Calcium carbonate | 0.61 | 0.64 | 0.96 | 0.96 |
Dicalcium phosphate | 0.97 | 1.01 | 1.45 | 1.45 |
Salt | 0.40 | 0.40 | 0.40 | 0.40 |
Choline chloride (50%) | 0.15 | 0.15 | 0.15 | 0.15 |
Vitamins and trace minerals premix1 | 0.4 | 0.4 | 0.4 | 0.4 |
Total | 100.00 | 100.00 | 100.00 | 100.00 |
Nutrient levels | ||||
NE, Mcal/kg | 2.22 | 2.30 | 2.24 | 2.31 |
CP, % | 11.10 | 11.08 | 13.00 | 13.38 |
EE, % | 3.47 | 5.37 | 3.29 | 5.17 |
NDF, % | 17.30 | 17.80 | 14.90 | 15.32 |
Ca, % | 0.47 | 0.49 | 0.72 | 0.72 |
Available P, % | 0.24 | 0.25 | 0.36 | 0.36 |
Lys, % | 0.51 | 0.52 | 0.69 | 0.71 |
Met, % | 0.18 | 0.18 | 0.21 | 0.21 |
Thr, % | 0.40 | 0.41 | 0.52 | 0.54 |
Trp, % | 0.12 | 0.12 | 0.14 | 0.15 |
Val, % | 0.51 | 0.50 | 0.59 | 0.61 |
Item | Lactation |
---|---|
Ingredient, % | |
Corn, 7.8% CP | 59.86 |
Soybean meal, 44.2% CP | 17.68 |
Fishmeal | 2.00 |
Extruded soybean | 6.00 |
Wheat | 3.59 |
Soybean bran | 5.00 |
Soybean oil | 2.00 |
L-Lysine·HCl, 75% | 0.25 |
L-Threonine | 0.09 |
DL-Methionine | 0.05 |
Calcium carbonate | 0.87 |
Dicalcium phosphate | 0.93 |
Salt | 0.40 |
Potassium chloride | 0.50 |
Choline chloride (50%) | 0.15 |
Vitamins and trace minerals premix1 | 0.63 |
Total | 100.00 |
Nutrient levels | |
ME, Mcal/kg | 3.41 |
CP, % | 17.20 |
EE, % | 6.10 |
NDF, % | 11.00 |
Ca, % | 0.90 |
Available P, % | 0.45 |
Lys, % | 1.00 |
Met, % | 0.27 |
Thr, % | 0.63 |
Trp, % | 0.18 |
Day of Gestation | CON | HF |
---|---|---|
Days 1~30, kg/days | 2.13 | 2.06 |
Days 31~60, kg/days | 2.38 | 2.31 |
Days 61~90, kg/days | 2.63 | 2.56 |
Day 91~farrowing, kg/days | 3.01 | 2.93 |
Items | CON | HF | p-Value |
---|---|---|---|
Sow backfat thickness, mm | |||
Day 1 of gestation | 17.1 ± 1.05 | 17.9 ± 0.64 | 0.46 |
Day 90 of gestation | 17.9 ± 1.02 | 19.8 ± 0.59 | 0.10 |
Farrowing day | 18.7 ± 1.38 | 20.1 ± 0.62 | 0.37 |
Weaning day | 17.5 ± 1.26 | 19.0 ± 0.60 | 0.34 |
Backfat thickness changes, mm | |||
Days 1–90 of gestation | 0.81 ± 0.44 a | 1.91 ± 0.54 b | <0.05 |
Day 1 of gestation to farrowing | 1.61 ± 0.56 | 2.15 ± 0.64 | 0.41 |
Farrowing day to weaning day | −1.26 ± 0.34 | −1.02 ± 0.47 | 0.60 |
Litter size at birth, No/litter | |||
Total born | 12.11 ± 0.45 | 12.74 ± 0.53 | 0.32 |
Born alive | 11.31 ± 0.44 | 12.00 ± 0.50 | 0.31 |
Stillborn piglets | 0.79 ± 0.20 | 0.74 ± 0.25 | 0.52 |
Piglets < 1.0 kg | 1.42 ± 0.36 | 0.96 ± 0.35 | 0.20 |
Mean litter weight at birth, kg | 15.45 ± 0.68 | 16.95 ± 0.85 | 0.30 |
Piglet mean BW at birth, kg | 1.37 ± 0.05 | 1.41 ± 0.03 | 0.71 |
ADFI during lactation, kg | 5.09 ± 0.17 | 5.46 ± 0.22 | 0.18 |
Items | CON | HF | p-Value |
---|---|---|---|
Day 90 of gestation | |||
Progesterone | 51.77 ± 6.52 | 54.81 ± 7.24 | 0.69 |
Farrowing | |||
Prolactin | 262.00 ± 31.92 a | 432.70 ± 41.81 b | <0.01 |
Leptin | 28.80 ± 4.68 | 35.62 ± 6.78 | 0.33 |
Triacylglycerol | 0.21 ± 0.03 | 0.29 ± 0.05 | 0.10 |
Urea | 3.72 ± 0.31 | 3.97 ± 0.44 | 0.65 |
Glucose | 5.34 ± 0.21 | 5.20 ± 0.31 | 0.66 |
Items | CON | HF | p-Value |
---|---|---|---|
Colostrum | |||
Fat, % | 3.88 ± 0.52 | 3.56 ± 0.43 | 0.66 |
No-fat solids, % | 15.53 ± 1.92 a | 22.90 ± 2.01 b | <0.01 |
Protein, % | 5.85 ± 0.75 a | 8.79 ± 0.82 b | <0.01 |
Lactose, % | 9.36 ± 1.19 | 12.11 ± 1.60 | 0.11 |
Milk at day 10 of lactation | |||
Fat, % | 5.71 ± 0.34 | 6.69 ± 0.94 | 0.32 |
No-fat solids, % | 10.04 ± 0.24 | 9.83 ± 0.52 | 0.73 |
Protein, % | 3.74 ± 0.09 | 3.76 ± 0.21 | 0.92 |
Lactose, % | 5.49 ± 0.22 | 5.76 ± 0.42 | 0.60 |
Milk at day 20 of lactation | |||
Fat, % | 5.40 ± 0.32 | 6.35 ± 0.69 | 0.35 |
No-fat solids, % | 9.50 ± 0.86 | 10.43 ± 0.46 | 0.44 |
Protein, % | 3.52 ± 0.32 | 3.89 ± 0.18 | 0.42 |
Lactose, % | 5.27 ± 0.55 | 5.83 ± 0.38 | 0.49 |
Items | CON | HF | p-Value |
---|---|---|---|
Jejunum | |||
Villous height, μm | 717 ± 42 a | 923 ± 68 b | 0.02 |
Crypt depth, μm | 76 ± 3 a | 88 ± 2 b | 0.01 |
VCR | 9.60 ± 0.53 | 10.67 ± 0.86 | 0.29 |
Ileum | |||
Villous height, μm | 610 ± 57 | 567 ± 53 | 0.58 |
Crypt depth, μm | 75 ± 5 | 86 ± 7 | 0.29 |
VCR | 8.29 ± 0.72 | 6.81 ± 0.66 | 0.15 |
Colon | |||
Villous height, μm | 196 ± 9 | 176 ± 13 | 0.24 |
Crypt depth, μm | 32 ± 2 a | 41 ± 1 b | <0.01 |
VCR | 6.53 ± 0.60 a | 4.40 ± 0.40 b | 0.01 |
Items | CON | HF | p-Value |
---|---|---|---|
TLR-2 | 1.00 ± 0.10 | 0.81 ± 0.12 | 0.61 |
TLR-4 | 1.00 ± 0.08 a | 1.48 ± 0.14 b | 0.04 |
TLR-9 | 1.00 ± 0.10 a | 1.40 ± 0.08 b | 0.03 |
MyD88 | 1.00 ± 0.06 a | 1.22 ± 0.07 b | 0.04 |
TRAF-6 | 1.00 ± 0.05 | 0.89 ± 0.10 | 0.42 |
NF-κB | 1.00 ± 0.10 | 1.12 ± 0.10 | 0.46 |
IL-1β | 1.00 ± 0.11 | 0.84 ± 0.13 | 0.50 |
IL-6 | 1.00 ± 0.09 | 1.23 ± 0.11 | 0.19 |
SIGIRR | 1.00 ± 0.10 | 1.22 ± 0.09 | 0.21 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, X.; Yan, C.; Hu, L.; Liu, Y.; Xu, Q.; Wang, R.; Qin, L.; Wu, C.; Fang, Z.; Lin, Y.; et al. Effects of Fat Supplementation during Gestation on Reproductive Performance, Milk Composition of Sows and Intestinal Development of Their Offspring. Animals 2019, 9, 125. https://doi.org/10.3390/ani9040125
Peng X, Yan C, Hu L, Liu Y, Xu Q, Wang R, Qin L, Wu C, Fang Z, Lin Y, et al. Effects of Fat Supplementation during Gestation on Reproductive Performance, Milk Composition of Sows and Intestinal Development of Their Offspring. Animals. 2019; 9(4):125. https://doi.org/10.3390/ani9040125
Chicago/Turabian StylePeng, Xie, Chuan Yan, Liang Hu, Yan Liu, Qin Xu, Ru Wang, Linlin Qin, Cheng Wu, Zhengfeng Fang, Yan Lin, and et al. 2019. "Effects of Fat Supplementation during Gestation on Reproductive Performance, Milk Composition of Sows and Intestinal Development of Their Offspring" Animals 9, no. 4: 125. https://doi.org/10.3390/ani9040125
APA StylePeng, X., Yan, C., Hu, L., Liu, Y., Xu, Q., Wang, R., Qin, L., Wu, C., Fang, Z., Lin, Y., Xu, S., Feng, B., Zhuo, Y., Li, J., Wu, D., & Che, L. (2019). Effects of Fat Supplementation during Gestation on Reproductive Performance, Milk Composition of Sows and Intestinal Development of Their Offspring. Animals, 9(4), 125. https://doi.org/10.3390/ani9040125