Effects of Dietary Rumen-Protected Betaine Supplementation on Performance of Postpartum Dairy Cows and Immunity of Newborn Calves
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
2.2. Sample Preparation
2.3. Data Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coonen, J.M.; Maroney, M.J.; Crump, P.M.; Grummer, R.R. Short communication: Effect of a stable pen management strategy for precalving cows on dry matter intake, plasma nonesterified fatty acid levels, and milk production. J. Dairy Sci. 2011, 94, 2413–2417. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Vailati-Riboni, M.; Luchini, D.N.; Loor, J.J. Methionine and choline supply during the periparturient period alter plasma amino acid and one-carbon metabolism profiles to various extents: Potential role in hepatic metabolism and antioxidant status. Nutrients 2017, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Pinotti, L.; Baldi, A.; Dell’Orto, V. Comparative mammalian choline metabolism with emphasis on the high-yielding dairy cow. Nutr. Res. Rev. 2002, 15, 315–332. [Google Scholar] [CrossRef] [Green Version]
- Bauman, D.E.; Currie, W.B. Partitioning of nutrients during pregnancy and lactation: A review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci. 1980, 63, 1514–1529. [Google Scholar] [CrossRef]
- Engin, F.; Hotamisligil, G.S. Restoring endoplasmic reticulum function by chemical chaperones: An emerging therapeutic approach for metabolic diseases. Diabetes Obes. Metab. 2010, 12, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Eklund, M.; Bauer, E.; Wamatu, J.; Mosenthin, R. Potential nutritional and physiological functions of betaine in livestock. Nutr. Res. Rev. 2005, 18, 31–48. [Google Scholar] [CrossRef] [Green Version]
- Pas, B.J.B.; Pas, J.R.B.; Harmoney, K.R.; Pas, S.R.G. Influence of betaine on pasture, finishing, and carcass performance in steers. Prof. Anim. Sci. 2004, 20, 53–57. [Google Scholar]
- Peterson, S.E.; Rezamand, P.; Williams, J.E.; Price, W.; Chahine, M.; Mcguire, M.A. Effects of dietary betaine on milk yield and milk composition of mid-lactation Holstein dairy cows. J. Dairy Sci. 2012, 95, 6557–6562. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ying, S.J.; An, W.J.; Lian, H.; Zhou, G.B.; Han, Z.Y. Effects of dietary betaine supplementation subjected to heat stress on milk performances and physiology indices in dairy cow. Genet. Mol. Res. 2014, 13, 7577–7586. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Q.; Yang, W.Z.; Wu, J.; Zhang, W.W.; Zhang, P.; Dong, K.H.; Huang, Y.X. Effects of betaine supplementation on rumen fermentation, lactation performance, feed digestibilities and plasma characteristics in dairy cows. J. Agric. Sci. 2010, 148, 487–495. [Google Scholar] [CrossRef]
- Monteiro, A.P.A.; Bernard, J.K.; Guo, J.R.; Weng, X.S.; Emanuele, S.; Davis, R.; Dahl, G.E.; Tao, S. Effects of feeding betaine-containing liquid supplement to transition dairy cows. J. Dairy Sci. 2017, 100, 1063–1071. [Google Scholar] [CrossRef]
- Lever, M.; Slow, S. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin. Biochem. 2010, 43, 732–744. [Google Scholar] [CrossRef] [PubMed]
- Van, L.L.; Tint, M.T.; Aris, I.M.; Quah, P.L.; Fortier, M.V.; Lee, Y.S.; Yap, F.K.; Saw, S.M.; Godfrey, K.M.; Gluckman, P.D. Prospective associations of maternal betaine status with offspring weight and body composition at birth: The GUSTO (Growing Up in Singapore Toward healthy Outcomes) cohort study. Am. J. Clin. Nutr. 2016, 104, 1327–1333. [Google Scholar] [CrossRef]
- Mitchell, A.D.; Chappell, A.; Knox, K.L. Metabolism of betaine in the ruminant. J. Anim. Sci. 1979, 49, 764–774. [Google Scholar] [CrossRef]
- Liu, H. Effects of Dietary Supplementation of Rumen-Protected Betaine on Lactation Performance and Serum Metabolites of Dairy Cows. Master’s Thesis, Zhejiang University, Hangzhou, China, 2017. [Google Scholar]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001.
- Gu, F.F.; Liang, S.L.; Wei, Z.H.; Wang, C.P.; Liu, H.Y.; Liu, J.X.; Wang, D.M. Short communication: Effects of dietary addition of N-carbamylglutamate on milk composition in mid-lactating dairy cows. J. Dairy Sci. 2018, 101, 10985–10990. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Wang, D.M.; Zhang, B.X.; Wang, J.K.; Liu, H.Y.; Liu, J.X. Short communication: Effects of dietary 5,6-dimethylbenzimidazole supplementation on vitamin B 12 supply, lactation performance, and energy balance in dairy cows during the transition period and early lactation. J. Dairy Sci. 2017, 101, 1–4. [Google Scholar]
- Tyrrell, H.F.; Reid, J.T. Prediction of the energy value of cow’s milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Fouché, N.; Graubner, C.; Howard, J. Correlation between serum total globulins and gamma globulins and their use to diagnose failure of passive transfer in foals. Vet. J. 2014, 202, 384–386. [Google Scholar] [CrossRef]
- Ratriyanto, A.; Mosenthin, R.; Bauer, E.; Eklund, M. Metabolic, osmoregulatory and nutritional functions of betaine in monogastric animals. Asian-Australas. J. Anim. Sci. 2009, 22, 1461–1476. [Google Scholar] [CrossRef]
- Bernier-Dodier, P.; Girard, C.L.; Talbot, B.G.; Lacasse, P. Effect of dry period management on mammary gland function and its endocrine regulation in dairy cows. J. Dairy Sci. 2011, 94, 4922–4936. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, H.Y.; Wang, Y.M.; Yang, Z.Q.; Liu, J.X.; Wu, Y.M.; Yan, T.; Ye, H.W. Effects of dietary supplementation of methionine and lysine on milk production and nitrogen utilization in dairy cows. J. Dairy Sci. 2010, 93, 3661–3670. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Vailati-Riboni, M.; Trevisi, E.; Drackley, J.K.; Luchini, D.N.; Loor, J.J. Better postpartal performance in dairy cows supplemented with rumen-protected methionine compared with choline during the peripartal period. J. Dairy Sci. 2016, 99, 8716–8732. [Google Scholar] [CrossRef] [PubMed]
- Dann, H.M.; Litherland, N.B.; Underwood, J.P.; Bionaz, M.; D’Angelo, A.; Mcfadden, J.W.; Drackley, J.K. Diets during far-off and close-up dry periods affect periparturient metabolism and lactation in multiparous cows. J. Dairy Sci. 2006, 89, 3563–3577. [Google Scholar] [CrossRef]
- Liu, J.; Yao, Y.; Yu, B.; Mao, X.; Huang, Z.; Chen, D. Effect of maternal folic acid supplementation on hepatic proteome in newborn piglets. Nutrition 2013, 29, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Wu, Z.; Dai, Z.; Sun, K.; Wang, J.; Wu, G. Nutritional epigenetics with a focus on amino acids: Implications for the development and treatment of metabolic syndrome. J. Nutr. Biochem. 2016, 27, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Frizzo, L.S.; Soto, L.P.; Zbrun, M.V.; Signorini, M.L. Effect of lactic acid bacteria and lactose on growth performance and intestinal microbial balance of artificially reared calves. Livest. Sci. 2011, 140, 246–252. [Google Scholar] [CrossRef]
- Liu, J.; Chang, J.; Yao, A.; Hu, Y.; Yuan, Y.; Yu, F.; Ma, Z.; Wang, G.; Zhao, X. Diagnosis and clinical observation of lactose-free milk powder on treatment of neonatal diarrhea. Pak. J. Pharm. Sci. 2016, 29, 309–314. [Google Scholar] [PubMed]
- Vannucchi, C.I.; Rodrigues, J.A.; Silva, L.C.G.; Lúcio, C.F.; Veiga, G.A.L.; Furtado, P.V.; Oliveira, C.A.; Nichi, M. Association between birth conditions and glucose and cortisol profiles of periparturient dairy cows and neonatal calves. Vet. Rec. 2015, 176, 358. [Google Scholar] [CrossRef]
- Jacometo, C.B.; Zhou, Z.; Luchini, D.; Trevisi, E.; Corrêa, M.N.; Loor, J.J. Maternal rumen-protected methionine supplementation and its effect on blood and liver biomarkers of energy metabolism, inflammation, and oxidative stress in neonatal Holstein calves. J. Dairy Sci. 2016, 99, 6753–6763. [Google Scholar] [CrossRef] [PubMed]
- Hassanpour, A.; Sabegh, Y.G.; Sadeghi-nasab, A. Assessment of serum antioxidant enzymes activity in cattle suffering from Theileriosis. Eur. J. Exp. Biol. 2013, 3, 493–496. [Google Scholar]
- Batistel, F.; Alharthi, A.S.; Wang, L.; Parys, C.; Pan, Y.X.; Cardoso, F.C.; Loor, J.J. Placentome nutrient transporters and mammalian target of rapamycin signaling proteins are altered by the methionine supply during late gestation in dairy cows and are associated with newborn birth weight. J. Nutr. 2017, 147, 1640–1647. [Google Scholar] [CrossRef]
- Cai, D.; Jia, Y.; Song, H.; Sui, S.; Lu, J.; Jiang, Z.; Zhao, R. Betaine supplementation in maternal diet modulates the epigenetic regulation of hepatic gluconeogenic genes in neonatal piglets. PLoS ONE 2013, 9, e105504. [Google Scholar] [CrossRef]
Item | Prepartum | Postpartum |
---|---|---|
Ingredient, % of DM 1 | ||
Corn flour | 12.41 | 13.39 |
Steam-flaked corn | 7.15 | 11.93 |
Soybean meal | 8.61 | 13.68 |
Bran | 5.30 | - |
Sodium bicarbonate | 0.40 | 0.72 |
Calcium hydrophosphate | 0.40 | 0.48 |
Limestone | 0.60 | 0.66 |
Fatty acid calcium salts | - | 0.78 |
Salt | 0.39 | 0.46 |
Premix 2 | 0.37 | 0.44 |
Mycotoxin binder | 0.05 | 0.07 |
Active yeast | - | 0.07 |
Brewer’s grains | 7.31 | 4.55 |
Beet pulp | 6.70 | 9.26 |
Corn silage | 25.39 | 21.05 |
Alfalfa hay | 6.78 | 16.86 |
Oat grass | 18.08 | 5.62 |
Chemical composition, % of DM | ||
Crude protein | 10.99 | 17.49 |
Ether extract | 3.27 | 4.31 |
Crude ash | 7.96 | 7.84 |
Neutral detergent fiber | 48.48 | 37.08 |
Acid detergent fiber | 27.57 | 20.78 |
NEL, Mcal/kg of DM | - | 1.63 |
Lys: Met | 2.76:1 | 3.13:1 |
Items | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | BET | Treat | Week | Treat × Week | ||
DMI, kg/d | 20.33 | 20.21 | 0.76 | 0.92 | <0.01 | 0.10 |
Milk yield, kg/d | 30.44 | 32.97 | 1.68 | 0.31 | <0.01 | 0.61 |
Milk composition | ||||||
Fat, % | 4.30 | 4.18 | 0.09 | 0.35 | <0.01 | 0.44 |
Protein, % | 3.23 | 3.13 | 0.06 | 0.30 | <0.01 | 0.71 |
Lactose, % | 5.00 | 4.94 | 0.04 | 0.28 | 0.00 | 0.50 |
Total solids, % | 12.93 | 12.77 | 0.13 | 0.42 | <0.01 | 0.93 |
MUN, mgN/dL | 10.74 | 10.64 | 0.63 | 0.91 | 0.00 | 0.23 |
3.5% FCM 1, kg/d | 34.36 | 36.35 | 1.83 | 0.46 | 0.05 | 0.49 |
ECM 2, kg/d | 34.24 | 35.70 | 1.79 | 0.58 | 0.33 | 0.38 |
FE (FCM/DMI) | 1.80 | 2.00 | 0.08 | 0.09 | <0.01 | 0.22 |
FE (ECM/DMI) | 1.77 | 1.96 | 0.07 | 0.08 | <0.01 | 0.26 |
BW change, kg/d | −1.18 | −1.51 | 0.13 | 0.10 | - | - |
Items 1 | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | BET | Treat | Week | Treat × Week | ||
TP, g/L | 78.78 | 78.95 | 1.61 | 0.94 | <0.01 | 0.36 |
ALB, g/L | 25.77 | 25.42 | 0.35 | 0.50 | <0.01 | 0.28 |
GLOB, g/L | 53.01 | 53.53 | 2.02 | 0.86 | <0.01 | 0.56 |
A/G | 0.50 | 0.49 | 0.02 | 0.76 | <0.01 | 0.76 |
ALT, U/L | 14.41 | 13.90 | 0.94 | 0.71 | <0.01 | 0.81 |
AST, U/L | 71.86 | 73.67 | 4.15 | 0.76 | <0.01 | 0.40 |
ALP, U/L | 33.29 | 36.34 | 1.81 | 0.26 | <0.01 | 0.91 |
TBIL, µmol/L | 2.61 | 2.75 | 0.25 | 0.70 | <0.01 | 0.99 |
TG, mmol/L | 0.08 | 0.08 | 0.01 | 0.32 | <0.01 | 0.39 |
CHOl, mmol/L | 2.52 | 2.37 | 0.09 | 0.26 | <0.01 | 0.42 |
GLU, mmol/L | 3.34 | 3.30 | 0.07 | 0.72 | <0.01 | 0.83 |
NEFA, µmol/L | 246.57 | 243.90 | 20.74 | 0.93 | <0.01 | 0.95 |
BHB, µmol/L | 802.72 | 812.65 | 92.55 | 0.94 | <0.01 | 0.07 |
Items 1 | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON Calves | BET Calves | Treat | Hour | Treat × Hour | ||
TP, g/L | 54.71 | 59.63 | 1.48 | 0.04 | <0.01 | 0.15 |
ALB, g/L | 18.48 | 18.59 | 0.42 | 0.85 | 0.00 | 0.03 |
GLOB, g/L | 36.23 | 41.03 | 1.57 | 0.05 | <0.01 | 0.06 |
A/G | 0.58 | 0.56 | 0.02 | 0.54 | <0.01 | 0.04 |
ALT, U/L | 7.67 | 8.24 | 0.37 | 0.30 | <0.01 | 0.21 |
AST, U/L | 53.67 | 55.31 | 4.98 | 0.82 | <0.01 | 0.87 |
ALP, U/L | 265.38 | 257.78 | 35.73 | 0.88 | <0.01 | 0.86 |
TBIL, µmol/L | 6.21 | 6.60 | 0.87 | 0.76 | 0.05 | 0.97 |
GLU, mmol/L | 5.62 | 4.82 | 0.30 | 0.09 | 0.00 | 0.36 |
SOD, U/ml | 66.54 | 70.52 | 2.91 | 0.35 | 0.00 | 0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Wang, C.; Guan, R.; Shi, K.; Wei, Z.; Liu, J.; Liu, H. Effects of Dietary Rumen-Protected Betaine Supplementation on Performance of Postpartum Dairy Cows and Immunity of Newborn Calves. Animals 2019, 9, 167. https://doi.org/10.3390/ani9040167
Wang B, Wang C, Guan R, Shi K, Wei Z, Liu J, Liu H. Effects of Dietary Rumen-Protected Betaine Supplementation on Performance of Postpartum Dairy Cows and Immunity of Newborn Calves. Animals. 2019; 9(4):167. https://doi.org/10.3390/ani9040167
Chicago/Turabian StyleWang, Beibei, Chong Wang, Ruowei Guan, Kai Shi, Zihai Wei, Jianxin Liu, and Hongyun Liu. 2019. "Effects of Dietary Rumen-Protected Betaine Supplementation on Performance of Postpartum Dairy Cows and Immunity of Newborn Calves" Animals 9, no. 4: 167. https://doi.org/10.3390/ani9040167
APA StyleWang, B., Wang, C., Guan, R., Shi, K., Wei, Z., Liu, J., & Liu, H. (2019). Effects of Dietary Rumen-Protected Betaine Supplementation on Performance of Postpartum Dairy Cows and Immunity of Newborn Calves. Animals, 9(4), 167. https://doi.org/10.3390/ani9040167