Essential Oils as a Feed Additives: Pharmacokinetics and Potential Toxicity in Monogastric Animals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Influence of EOs Production on Their Chemical Composition
3. EOs Pharmacokinetics in the Organism
4. EOs Toxicity
In Vivo Toxicity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qiao, Z.Y.; Dai, S.N.; Zhang, Q.J.; Yang, W.G.; Chen, J. Predicting cytotoxicity of essential oils from traditional chinese medicine with machine learning technique. Basic Clin. Pharmacol. Toxicol. 2018, 123, 29. [Google Scholar]
- Horky, P.; Skladanka, J.; Nevrkla, P.; Slama, P. Effect of diet supplemented with antioxidants (selenium, copper, vitamins E and C) on antioxidant status and ejaculate quality of breeding boars. Ann. Anim. Sci. 2016, 16, 521–532. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Petrelli, R.; Cappellacci, L.; Canale, A.; Senthil-Nathan, S.; Maggi, F. Not just popular spices! Essential oils from cuminum cyminum and pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Ind. Crop Prod. 2018, 124, 236–243. [Google Scholar] [CrossRef]
- Nazem, V.; Sabzalian, M.R.; Saeidi, G.; Rahimmalek, M. Essential oil yield and composition and secondary metabolites in self- and open-pollinated populations of mint (Mentha spp.). Ind. Crop Prod. 2019, 130, 332–340. [Google Scholar] [CrossRef]
- Tammar, S.; Salem, N.; Rebey, I.B.; Sriti, J.; Hammami, M.; Khammassi, S.; Marzouk, B.; Ksouri, R.; Msaada, K. Regional effect on essential oil composition and antimicrobial activity of Thymus capitatus L. J. Essent. Oil Res. 2019, 31, 129–137. [Google Scholar] [CrossRef]
- Ricroch, A.E.; Henard-Damave, M.C. Next biotech plants: New traits, crops, developers and technologies for addressing global challenges. Crit. Rev. Biotechnol. 2016, 36, 675–690. [Google Scholar] [CrossRef]
- Bechtold, U. Plant life in extreme environments: How do you improve drought tolerance? Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef]
- Glass, S.; Fanzo, J. Genetic modification technology for nutrition and improving diets: An ethical perspective. Curr. Opin. Biotechnol. 2017, 44, 46–51. [Google Scholar] [CrossRef]
- Horky, P.; Skalickova, S.; Urbankova, L.; Baholet, D.; Kociova, S.; Bytesnikova, Z.; Kabourkova, E.; Lackova, Z.; Cernei, N.; Gagic, M.; et al. Zincphosphate-based nanoparticles as a novel antibacterial agent: In vivo study on rats after dietary exposure. J. Anim. Sci. Biotechnol. 2019, 10. [Google Scholar] [CrossRef]
- Cobellis, G.; Trabalza-Marinucci, M.; Yu, Z.T. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci. Total Environ. 2016, 545, 556–568. [Google Scholar] [CrossRef]
- Reyes-Jurado, F.; Franco-Vega, A.; Ramirez-Corona, N.; Palou, E.; Lopez-Malo, A. Essential oils: Antimicrobial activities, extraction methods, and their modeling. Food Eng. Rev. 2015, 7, 275–297. [Google Scholar] [CrossRef]
- Omonijo, F.A.; Ni, L.J.; Gong, J.; Wang, Q.; Lahaye, L.; Yang, C.B. Essential oils as alternatives to antibiotics in swine production. Anim. Nutr. 2018, 4, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.J.; Chen, B.C.; McClements, D.J. Improving the efficacy of essential oils as antimicrobials in foods: Mechanisms of action. Ann. Rev. Food Sci. Technol. 2019, 10, 365–387. [Google Scholar] [CrossRef] [PubMed]
- Tohidi, B.; Rahimmalek, M.; Arzani, A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 2017, 220, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fu, X.F.; Ma, X.; Geng, S.J.; Jiang, X.M.; Huang, Q.C.; Hu, C.H.; Han, X.Y. Intestinal microbiome-metabolome responses to essential oils in piglets. Front. Microbiol. 2018, 9, 1988. [Google Scholar] [CrossRef] [PubMed]
- Li, D.H.; Wu, H.J.; Dou, H.T.; Guo, L.; Huang, W. Microcapsule of sweet orange essential oil changes gut microbiota in diet-induced obese rats. Biochem. Biophys. Res. Commun. 2018, 505, 991–995. [Google Scholar] [CrossRef]
- Asli, M.Y.; Khorshidian, N.; Mortazavian, A.M.; Hosseini, H. A review on the impact of herbal extracts and essential oils on viability of probiotics in fermented milks. Curr. Nutr. Food Sci. 2017, 13, 6–15. [Google Scholar] [CrossRef]
- Zhai, H.X.; Liu, H.; Wang, S.K.; Wu, J.L.; Kluenter, A.M. Potential of essential oils for poultry and pigs. Anim. Nutr. 2018, 4, 179–186. [Google Scholar] [CrossRef]
- Horky, P.; Tmejova, K.; Kensova, R.; Cernei, N.; Kudr, J.; Ruttkay-Nedecky, B.; Sapakova, E.; Adam, V.; Kizek, R. Effect of heat stress on the antioxidant activity of boar ejaculate revealed by spectroscopic and electrochemical methods. Int. J. Electrochem. Sci. 2015, 10, 6610–6626. [Google Scholar]
- Patra, A.K.; Amasheh, S.; Aschenbach, J.R. Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds—A comprehensive review. Crit. Rev. Food Sci. Nutr. 2018, 1–30. [Google Scholar] [CrossRef]
- Abd Al-Azem, D.; Al-Derawi, K.H.; Al-Saadi, S.A.A.M. The protective effects of Syzygium aromaticum essential oil extract against methotrexate induced hepatic and renal toxicity in rats. J. Pure Appl. Microbiol. 2019, 13, 505–515. [Google Scholar] [CrossRef]
- Bellassoued, K.; Ghrab, F.; Hamed, H.; Kallel, R.; van Pelt, J.; Lahyani, A.; Ayadi, F.M.; El Feki, A. Protective effect of essential oil of Cinnamomum verum bark on hepatic and renal toxicity induced by carbon tetrachloride in rats. Appl. Physiol. Nutr. Metab. 2019, 44, 606–618. [Google Scholar] [CrossRef] [PubMed]
- Bouzenna, H.; Samout, N.; Dhibi, S.; Mbarki, S.; Akermi, S.; Khdhiri, A.; Elfeki, A.; Hfaiedh, N. Protective effect of essential oil from Citrus limon against aspirin-induced toxicity in rats. Hum. Exp. Toxicol. 2019, 38, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Rao, Z.; Xu, F.; Wen, T.; Wang, F.; Sang, W.; Zeng, N. Protective effects of essential oils from Rimulus cinnamon on endotoxin poisoning mice. Biomed. Pharmacother. 2018, 101, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.S.; Xia, M.; Zhang, X.M.; Wang, C.; Jiang, S.W.; Peng, J. Supplementing oregano essential oil in a reduced-protein diet improves growth performance and nutrient digestibility by modulating intestinal bacteria, intestinal morphology, and antioxidative capacity of growing-finishing pigs. Animals 2018, 8, 159. [Google Scholar] [CrossRef] [PubMed]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential—A review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef]
- Giacometti, J.; Kovacevic, D.B.; Putnik, P.; Gabric, D.; Bilusic, T.; Kresic, G.; Stulic, V.; Barba, F.J.; Chemat, F.; Barbosa-Canovas, G.; et al. Extraction of bioactive compounds and essential oils from Mediterranean herbs by conventional and green innovative techniques: A review. Food Res. Int. 2018, 113, 245–262. [Google Scholar] [CrossRef] [PubMed]
- Topal, U.; Sasaki, M.; Goto, M.; Otles, S. Chemical compositions and antioxidant properties of essential oils from nine species of Turkish plants obtained by supercritical carbon dioxide extraction and steam distillation. Int. J. Food Sci. Nutr. 2008, 59, 619–634. [Google Scholar] [CrossRef]
- Bozovic, M.; Navarra, A.; Garzoli, S.; Pepi, F.; Ragno, R. Esential oils extraction: A 24-hour steam distillation systematic methodology. Nat. Prod. Res. 2017, 31, 2387–2396. [Google Scholar] [CrossRef]
- Ajila, C.; Brar, K.; Verma, M.; Tyagi, R.D.; Godbout, S.; Valero, J.R. Extraction and analysis of Polyphenols: Recent trends. Crit. Rev. Biotechnol. 2010, 31, 227–249. [Google Scholar] [CrossRef]
- Tavakolpour, Y.; Moosavi-Nasab, M.; Niakousari, M.; Haghighi-Manesh, S.; Hashemi, S.M.B.; Khaneghah, A.M. Comparison of four extraction methods for essential oil from Thymus daenensis subsp. lancifoliusand chemical analysis of extracted essential oil. J. Food Process. Preserv. 2017, 41, e13046. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Khaneghah, A.M.; Koubaa, M.; Barba, F.J.; Abedi, E.; Niakousari, M.; Tavakoli, J. Extraction of essential oil from Aloysia citriodora palau leaves using continuous and pulsed ultrasound: Kinetics, antioxidant activity and antimicrobial properties. Process Biochem. 2018, 65, 197–204. [Google Scholar] [CrossRef]
- Asl, R.M.Z.; Niakousari, M.; Gahruie, H.H.; Saharkhiz, M.J.; Khaneghah, A.M. Study of two-stage ohmic hydro-extraction of essential oil from Artemisia aucheri Boiss.: Antioxidant and antimicrobial characteristics. Food Res. Int. 2018, 107, 462–469. [Google Scholar]
- Golmakani, M.T.; Moayyedi, M. Comparison of heat and mass transfer of different microwave-assisted extraction methods of essential oil from Citrus limon (Lisbon variety) peel. Food Sci. Nutr. 2015, 3, 506–518. [Google Scholar] [CrossRef] [PubMed]
- Jaimand, K.; Rezaee, M.B.; Homami, S. Comparison extraction methods of essential oils of Rosmarinus officinalis L. In Iran by microwave assisted water distillation; water distillation and steam distillation. J. Med. Plants By-Prod. JMPB 2018, 7, 9–14. [Google Scholar]
- Konoz, E.; Hajikhani, N.; Abbasi, A. Comparison of two methods for extraction of dill essential oil by gas chromatography-mass spectrometry coupled with chemometric resolution techniques. Int. J. Food Prop. 2017, 20, S1002–S1015. [Google Scholar] [CrossRef] [Green Version]
- Nekoei, M.; Mohammadhosseini, M. Chemical composition of the essential oils and volatiles of Salvia leriifolia by three different extraction methods prior to gas chromatographic-mass spectrometric determination: Comparison of HD with SFME and HS-SPME. J. Essent. Oil Bear. Plants 2017, 20, 410–425. [Google Scholar] [CrossRef]
- Samejo, M.Q.; Memon, S.; Bhanger, M.I.; Khan, K.M. Comparison of chemical composition of Aerva javanica seed essential oils obtained by different extraction methods. Pak. J. Pharm. Sci. 2013, 26, 757–760. [Google Scholar] [PubMed]
- Lanari, D.; Marcotullio, M.C.; Neri, A. A design of experiment approach for ionic liquid-based extraction of toxic components-minimized essential oil from Myristica fragrans Houtt. Fruits. Molecules 2018, 23, 2817. [Google Scholar] [CrossRef]
- Jia, B.; Xu, L.X.; Guan, W.Q.; Lin, Q.; Brennan, C.; Yan, R.X.; Zhao, H. Effect of citronella essential oil fumigation on sprout suppression and quality of potato tubers during storage. Food Chem. 2019, 284, 254–258. [Google Scholar] [CrossRef]
- Perna, A.; Simonetti, A.; Gambacorta, E. Phenolic content and antioxidant activity of donkey milk kefir fortified with sulla honey and rosemary essential oil during refrigerated storage. Int. J. Dairy Technol. 2019, 72, 74–81. [Google Scholar] [CrossRef]
- Gottschalk, P.; Brodesser, B.; Poncelet, D.; Jaeger, H.; Rennhofer, H.; Cole, S. Impact of storage on the physico-chemical properties of microparticles comprising a hydrogenated vegetable oil matrix and different essential oil concentrations. J. Microencapsul. 2019, 36, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, D.; Bautista-Banos, S. A review on the use of essential oils for postharvest decay control and maintenance of fruit quality during storage. Crop Prot. 2014, 64, 27–37. [Google Scholar] [CrossRef]
- Ami, A.S.; Bhat, S.H.; Hanif, S.; Hadi, S.M. Plant polyphenols mobilize endogenous copper in human peripheral lymphocytes leading to oxidative DNA breakage: A putative mechanism for anticancer properties. FEBS Lett. 2006, 580, 533–538. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Waomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.C.; Wang, H.F.; Yih, K.H.; Chang, L.Z.; Chang, T.M. The dual antimelanogenic and antioxidant activities of the essential oil extracted from the leaves of Acorus macrospadiceus (Yamamoto) F. N. Wei et Y. K. Li. Evid.-Based Complement. Altern. Med. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Naeem, A.; Abbas, T.; Ali, T.M.; Hasnain, A. Effect of storage on oxidation stability of essential oils derived from culinary herbs and spices. J. Food Meas. Charact. 2018, 12, 877–883. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of essential oils: A review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Chadli, S.; Mourad, L.; El-Hadj, A.; Aissou, M.; Boudjema, F. Impact of tween 60 on physicochemical properties and stability of Pistacia lentiscus fruit oil-in-water emulsion at a semi-low temperature. J. Dispers. Sci. Technol. 2019, 40, 346–354. [Google Scholar] [CrossRef]
- Olmedo, R.; Ribotta, P.; Grosso, N.R. Decrease of chemical and volatile oxidation indicators using oregano essential oil combined with BHT in sunflower oil under accelerated storage conditions. J. Food Sci. Technol. 2019, 56, 2522–2535. [Google Scholar] [CrossRef] [PubMed]
- Alloun, K.; Benchabane, O.; Hazzit, M.; Mouhouche, F.; Baaliouamer, A.; Chikhoune, A.; Benchabane, A. Effect of gamma ray irradiation on chemical composition, antioxidant, antimicrobial, and insecticidal activities of Thymus pallescens essential oil. Acta Chromatogr. 2019, 31, 57–62. [Google Scholar] [CrossRef]
- Kfoury, M.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Encapsulation in cyclodextrins to widen the applications of essential oils. Environ. Chem. Lett. 2019, 17, 129–143. [Google Scholar] [CrossRef]
- Noori, S.; Zeynali, F.; Almasi, H. Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 2018, 84, 312–320. [Google Scholar] [CrossRef]
- De Groot, A.C.; Schmidt, E. Essential oils, part III: Chemical composition. Dermatitis 2016, 27, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Rubio, L.; Macia, A.; Motilva, M.J. Impact of various factors on pharmacokinetics of bioactive polyphenols: An overview. Curr. Drug Metab. 2014, 15, 62–76. [Google Scholar] [CrossRef]
- Rodriguez-Concepcion, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gomez-Gomez, L.; Hornero-Mendez, D.; Limon, M.C.; Melendez-Martinez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [Green Version]
- Papada, E.; Gioxari, A.; Brieudes, V.; Amerikanou, C.; Halabalaki, M.; Skaltsounis, A.L.; Smyrnioudis, I.; Kaliora, A.C. Bioavailability of terpenes and postprandial effect on human antioxidant potential. An open-label study in healthy subjects. Mol. Nutr. Food Res. 2018, 62. [Google Scholar] [CrossRef]
- Liu, Y.X.; Zhang, D.; Wu, Y.P.; Wang, D.; Wei, Y.; Wu, J.L.; Ji, B.P. Stability and absorption of anthocyanins from blueberries subjected to a simulated digestion process. Int. J. Food Sci. Nutr. 2014, 65, 440–448. [Google Scholar] [CrossRef]
- Williamson, G.; Kay, C.D.; Crozier, A. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1054–1112. [Google Scholar] [CrossRef]
- Lin, S.L.; Wang, Z.Y.; Lam, K.L.; Zeng, S.X.; Tan, B.K.; Hu, J.M. Role of intestinal microecology in the regulation of energy metabolism by dietary polyphenols and their metabolites. Food Nutr. Res. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.; Spinola, V.; Llorent-Martinez, E.J.; Fernandez-de Cordova, M.L.; Molina-Garcia, L.; Castilho, P.C. Polyphenolic profile and antioxidant activities of Madeiran elderberry (Sambucus lanceolata) as affected by simulated in vitro digestion. Food Res. Int. 2017, 100, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Schindler, G.; Kohlert, C.; Bischoff, R.; Maerz, R.; Ismail, C.; Veit, M.; Hahn, E.; Brinkhaus, B. Pharmacokinetics and bioavailability of an essential oil compound (thymol) after oral administration. Focus Altern. Complement. Ther. 2001, 6, 90–91. [Google Scholar] [CrossRef]
- Michiels, J.; Missotten, J.; Dierick, N.; Fremaut, D.; Maene, P.; De Smet, S. In vitro degradation and in vivo passage kinetics of carvacrol, thymol, eugenol and trans-cinnamaldehyde along the gastrointestinal tract of piglets. J. Sci. Food Agric. 2008, 88, 2371–2381. [Google Scholar] [CrossRef]
- Li, W.; Hong, B.; Li, Z.; Li, Q.; Bi, K. GC-MS method for determination and pharmacokinetic study of seven volatile constituents in rat plasma after oral administration of the essential oil of Rhizoma Curcumae. J. Pharm Biomed. Anal. 2018, 149, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Mason, S.E.; Mullen, K.A.E.; Anderson, K.L.; Washburn, S.P.; Yeatts, J.L.; Baynes, R.E. Pharmacokinetic analysis of thymol, carvacrol and diallyl disulfide after intramammary and topical applications in healthy organic dairy cattle. Food Addit. Contam. Part A-Chem. Anal. Control. Expo. Risk Assess. 2017, 34, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Allaoua, M.; Etienne, P.; Noirot, V.; Carayon, J.L.; Tene, N.; Bonnafe, E.; Treilhou, M. Pharmacokinetic and antimicrobial activity of a new carvacrol-based product against a human pathogen, Campylobacter jejuni. J. Appl. Microbiol. 2018, 125, 1162–1174. [Google Scholar] [CrossRef] [PubMed]
- Ciganda, C.; Laborde, A. Herbal infusions used for induced abortion. J. Toxicol. Clin. Toxicol. 2003, 41, 235–239. [Google Scholar] [CrossRef]
- Laios, K.; Lytsikas-Sarlis, P.; Manes, K.; Kontaxaki, M.I.; Karamanou, M.; Androutsos, G. Drugs for mental illnesses in ancient greek medicine. Psychiatrike 2019, 30, 58–65. [Google Scholar] [CrossRef]
- Woolf, A. Essential oil poisoning. J. Toxicol. Clin. Toxicol. 1999, 37, 721–727. [Google Scholar] [CrossRef]
- Franklyne, J.; Mukherjee, A.; Chandrasekaran, N. Essential oil micro- and nanoemulsions: Promising roles in antimicrobial therapy targeting human pathogens. Lett. Appl. Microbiol. 2016, 63, 322–334. [Google Scholar] [CrossRef]
- Izgi, M.N.; Telci, I.; Elmastas, M. Variation in essential oil composition of coriander (Coriandrum sativum L.) varieties cultivated in two different ecologies. J. Essent. Oil Res. 2017, 29, 494–498. [Google Scholar] [CrossRef]
- Haeseler, G.; Maue, D.; Grosskreutz, J.; Bufler, J.; Nentwig, B.; Piepenbrock, S.; Dengler, R.; Leuwer, M. Voltage-dependent block of neuronal and skeletal muscle sodium channels by thymol and menthol. Eur. J. Anaesthesiol. 2002, 19, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Elmi, A.; Ventrella, D.; Barone, F.; Carnevali, G.; Filippini, G.; Pisi, A.; Benvenuti, S.; Scozzoli, M.; Bacci, M.L. In vitro effects of tea tree oil (Melaleuca Alternifolia essential oil) and its principal component terpinen-4-ol on swine spermatozoa. Molecules 2019, 24, 1071. [Google Scholar] [CrossRef] [PubMed]
- Elmi, A.; Ventrella, D.; Barone, F.; Filippini, G.; Benvenuti, S.; Pisi, A.; Scozzoli, M.; Bacci, M.L. Thymbra capitata (L.) cav. and Rosmarinus officinalis (L.) essential oils: In vitro effects and toxicity on swine spermatozoa. Molecules 2017, 22, 2162. [Google Scholar] [CrossRef] [PubMed]
- Touazi, L.; Aberkane, B.; Bellik, Y.; Moula, N.; Iguer-Ouada, M. Effect of the essential oil of Rosmarinus officinalis (L.) on rooster sperm motility during 4 °C short-term storage. Vet. World 2018, 11, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A.; Esmaeilizadeh, M. Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 2017, 7, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Atsumi, T.; Fujisawa, S.; Tonosaki, K. A comparative study of the antioxidant/prooxidant activities of eugenol and isoeugenol with various concentrations and oxidation conditions. Toxicol. Vitr. 2005, 19, 1025–1033. [Google Scholar] [CrossRef]
- Radulovic, N.S.; Gencic, M.S.; Stojanovic, N.M.; Randjelovic, P.J.; Stojanovic-Radic, Z.Z.; Stojiljkovic, N.I. Toxic essential oils. Part V: Behaviour modulating and toxic properties of thujones and thujone-containing essential oils of Salvia officinalis L., Artemisia absinthium L., Thuja occidentalis L. and Tanacetum vulgare L. Food Chem. Toxicol. 2017, 105, 355–369. [Google Scholar] [CrossRef]
- Mesic, A.; Mahmutovic-Dizdarevic, I.; Tahirovic, E.; Durmisevic, I.; Eminovic, I.; Jerkovic-Mujkic, A.; Besta-Gajevic, R. Evaluation of toxicological and antimicrobial activity of lavender and immortelle essential oils. Drug Chem. Toxicol. 2019, 1–8. [Google Scholar] [CrossRef]
- Houdkova, M.; Doskocil, I.; Urbanova, K.; Tulin, E.K.C.B.; Rondevaldova, J.; Tulin, A.B.; Kudera, T.; Tulin, E.E.; Zeleny, V.; Kokoska, L. Evaluation of antipneumonic effect of Philippine essential oils using broth microdilution volatilization method and their lung fibroblasts toxicity. Nat. Prod. Commun. 2018, 13, 1059–1066. [Google Scholar] [CrossRef]
- Houdkova, M.; Urbanova, K.; Doskocil, I.; Rondevaldova, J.; Novy, P.; Nguon, S.; Chrun, R.; Kokoska, L. In vitro growth-inhibitory effect of cambodian essential oils against pneumonia causing bacteria in liquid and vapour phase and their toxicity to lung fibroblasts. S. Afr. J. Bot. 2018, 118, 85–97. [Google Scholar] [CrossRef]
- Andrade, M.A.; Cardoso, M.d.G.; Prete, P.S.C.; Soares, M.J.; de Azeredo, C.M.O.; Trento, M.V.C.; Braga, M.A.; Marcussi, S. Toxicological aspects of the essential oil from Cinnamodendron dinisii. Chem. Biodivers. 2018, 15, e1800066. [Google Scholar] [CrossRef] [PubMed]
- Duarte, J.A.; de Bairros Zambrano, L.A.; Quintana, L.D.; Rocha, M.B.; Schmitt, E.G.; Boligon, A.A.; Anraku de Campos, M.M.; Souza de Oliveira, L.F.; Machado, M.M. Immunotoxicological evaluation of Schinus molle L. (Anacardiaceae) essential oil in lymphocytes and macrophages. Evid.-Based Complement. Altern. Med. 2018. [Google Scholar] [CrossRef] [PubMed]
- Binder, S.; Hanakova, A.; Tomankova, K.; Pizova, K.; Bajgar, R.; Manisova, B.; Kejlova, K.; Bendova, H.; Jirova, D.; Kolarova, H. Adverse phototoxic effect of essential plant oils on NIH 3T3 cell line after UV light exposure. Cent. Eur. J. Public Health 2016, 24, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Yousefzadi, M.; Riahi-Madvar, A.; Hadian, J.; Rezaee, F.; Rafiee, R. In vitro cytotoxic and antimicrobial activity of essential oil from Satureja sahendica. Toxicol. Environ. Chem. 2012, 94, 1735–1745. [Google Scholar] [CrossRef]
- Borges, R.S.; Ortiz, B.L.S.; Pereira, A.C.M.; Keita, H.; Carvalho, J.C.T. Rosmarinus officinalis essential oil: A review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J. Ethnopharmacol. 2019, 229, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Barros, F.J.; Costa, R.J.O.; Cesario, F.; Rodrigues, L.B.; da Costa, J.G.M.; Coutinho, H.D.M.; Galvao, H.B.F.; de Menezes, I.R.A. Activity of essential oils of Piper aduncum anf and Cinnamomum zeylanicum by evaluating osmotic and morphologic fragility of erythrocytes. Eur. J. Integr. Med. 2016, 8, 505–512. [Google Scholar] [CrossRef]
- Kazemi, M. Chemical composition and antimicrobial, antioxidant activities and anti-inflammatory potential of Achillea millefolium L., Anethum graveolens L., and Carum copticum L. essential oils. J. Herb. Med. 2015, 5, 217–222. [Google Scholar] [CrossRef]
- Chikhoune, A.; Stouvenel, L.; Iguer-Ouada, M.; Hazzit, M.; Schmitt, A.; Lores, P.; Wolf, J.P.; Aissat, K.; Auger, J.; Vaiman, D.; et al. In-vitro effects of thymus munbyanus essential oil and thymol on human sperm motility and function. Reprod. Biomed. Online 2015, 31, 411–420. [Google Scholar] [CrossRef]
- Yousefzadi, M.; Riahi-Madvar, A.; Hadian, J.; Rezaee, F.; Rafiee, R.; Biniaz, M. Toxicity of essential oil of Satureja khuzistanica: In vitro cytotoxicity and anti-microbial activity. J. Immunotoxicol. 2014, 11, 50–55. [Google Scholar] [CrossRef]
- Habibi, E.; Shokrzadeh, M.; Ahmadi, A.; Chabra, A.; Naghshvar, F.; Keshavarz-Maleki, R. Genoprotective effects of Origanum vulgare ethanolic extract against cyclophosphamide-induced genotoxicity in mouse bone marrow cells. Pharm. Biol. 2015, 53, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Kumar, M.; Kaur, P.; Kaur, V.; Kaur, S. Modulatory effects of Cassia fistula fruits against free radicals and genotoxicity of mutagens. Food Chem. Toxicol. 2016, 98, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Kalemba-Drozdz, M.; Cierniak, A. Antioxidant and genoprotective properties of extracts from edible flowers. J. Food Nutr. Res. 2019, 58, 42–50. [Google Scholar]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Zhiri, A.; Baudoux, D.; Idaomar, M. Antigenotoxic effects of three essential oils in diploid yeast (Saccharomyces cerevisiae) after treatments with UVC radiation, 8-MOP plus UVA and MMS. Mutat. Res.-Genet. Toxicol. Environ. Mutagenesis 2006, 606, 27–38. [Google Scholar] [CrossRef]
- Hollenbach, C.B.; Bing, R.S.; Stedile, R.; da Silva Mello, F.P.; Schuch, T.L.; Alves Rodrigues, M.R.; de Mello, F.B.; Braga de Mello, J.R. Reproductive toxicity assessment of Origanum vulgare essential oil on male Wistar rats. Acta Sci. Vet. 2015, 43, 1295. [Google Scholar]
- Fateh, A.H.; Mohamed, Z.; Chik, Z.; Alsalahi, A.; Zin, S.R.M.; Alshawsh, M.A. Prenatal developmental toxicity evaluation of Verbena officinalis during gestation period in female Sprague-Dawley rats. Chem.-Biol. Interact. 2019, 304, 28–42. [Google Scholar] [CrossRef] [PubMed]
- Ghadirkhomi, A.; Safaeian, L.; Zolfaghari, B.; Ghazvini, M.R.A.; Rezaei, P. Evaluation of acute and sub-acute toxicity of Pinus eldarica bark extract in Wistar rats. Avicenna J. Phytomed. 2016, 6, 558–566. [Google Scholar]
- Fallahi, S.; Beyranvand, M.; Mahmoudvand, H.; Nayebzadeh, H.; Kheirandish, F.; Jahanbakhsh, S. Chemical composition, acute and sub-acute toxicity of Satureja khuzestanica essential oil in mice. Marmara Pharm. J. 2017, 21, 515–521. [Google Scholar] [CrossRef]
- Lamichhane, R.; Lee, K.-H.; Pandeya, P.R.; Sung, K.-K.; Lee, S.; Kim, Y.-K.; Jung, H.-J. Subcutaneous injection of myrrh essential oil in mice: Acute and subacute toxicity study. Evid.-Based Complement. Altern. Med. 2019. [Google Scholar] [CrossRef]
- Mishra, A.K.; Mishra, A.; Pragya; Chattopadhyay, P. Screening of acute and sub-chronic dermal toxicity of Calendula officinalis L essential oil. Regul. Toxicol. Pharmacol. 2018, 98, 184–189. [Google Scholar] [CrossRef]
- Daneshbakhsh, D.; Asgarpanah, J.; Najafizadeh, P.; Rastegar, T.; Mousavi, Z. Safety assessment of Mentha mozaffarianii essential oil: Acute and repeated toxicity studies. Iran. J. Med Sci. 2018, 43, 479–486. [Google Scholar]
- Jain, N.; Sharma, M.; Joshi, S.C.; Kaushik, U. Chemical composition, toxicity and antidermatophytic activity of essential oil of Trachyspermum ammi. Indian J. Pharm. Sci. 2018, 80, 135–142. [Google Scholar] [CrossRef]
- Liaqat, I.; Riaz, N.; Saleem, Q.-u.-A.; Tahir, H.M.; Arshad, M.; Arshad, N. Toxicological evaluation of essential oils from some plants of Rutaceae family. Evid.-Based Complement. Altern. Med. 2018. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh, M.; Ostad, S.N.; Asemi, Z.; Mahboubi, M.; Hejazi, S.; Sharafati-Chaleshtori, R.; Rashidi, A.; Akbari, H.; Sharifi, N. Sub-chronic oral toxicity of Cuminum cyminum L.’s essential oil in female wistar rats. Regul. Toxicol. Pharmacol. 2017, 88, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Judzentiene, A.; Garjonyte, R. Compositional variability and toxic activity of Mugwort (Artemisia vulgaris) essential oils. Nat. Prod. Commun. 2016, 11, 1353–1356. [Google Scholar] [CrossRef] [PubMed]
- Dahham, S.S.; Hassan, L.E.A.; Ahamed, M.B.K.; Majid, A.S.A.; Majid, A.M.S.A.; Zulkepli, N.N. In vivo toxicity and antitumor activity of essential oils extract from agarwood (Aquilaria crassna). BMC Complement. Altern. Med. 2016, 16, 236. [Google Scholar] [CrossRef] [PubMed]
- El-Hosseiny, L.S.; Alqurashy, N.N.; Sheweita, S.A. Oxidative stress alleviation by sage essential oil in co-amoxiclav induced hepatotoxicity in rats. Int. J. Biomed. Sci. IJBS 2016, 12, 71–78. [Google Scholar] [PubMed]
- Aggarwal, M.L.; Chacko, K.M.; Kuruvilla, B.T. Systematic and comprehensive investigation of the toxicity of curcuminoid-essential oil complex: A bioavailable turmeric formulation. Mol. Med. Rep. 2016, 13, 592–604. [Google Scholar] [CrossRef] [PubMed]
- Hoff Brait, D.R.; Mattos Vaz, M.S.; Arrigo, J.d.S.; Borges de Carvalho, L.N.; Souza de Araujo, F.H.; Vani, J.M.; Mota, J.d.S.; Lima Cardoso, C.A.; Oliveira, R.J.; Negrao, F.J.; et al. Toxicological analysis and anti-inflammatory effects of essential oil from Piper vicosanum leaves. Regul. Toxicol. Pharmacol. 2015, 73, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, A.; Tesfaye, S.; Christos, S.G.; Dires, K.; Zenebe, T.; Zegeye, N.; Shiferaw, Y.; Lulekal, E. Evaluation of skin irritation and acute and subacute oral toxicity of lavandula angustifolia essential oils in rabbit and mice. J. Toxicol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudvand, H.; Mahmoudvand, H.; Oliaee, R.T.; Kareshk, A.T.; Mirbadie, S.R.; Aflatoonian, M.R. In vitro protoscolicidal effects of Cinnamomum zeylanicum essential oil and its toxicity in mice. Pharmacogn. Mag. 2017, 13, S652–S657. [Google Scholar] [PubMed]
- Llana-Ruiz-Cabello, M.; Maisanaba, S.; Puerto, M.; Pichardo, S.; Jos, A.; Moyano, R.; Camean, A.M. A subchronic 90-day oral toxicity study of Origanum vulgare essential oil in rats. Food Chem. Toxicol. 2017, 101, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Branquinho, L.S.; Santos, J.A.; Lima Cardoso, C.A.; Mota, J.d.S.; Lanza Junior, U.; Leite Kassuya, C.A.; Arena, A.C. Anti-inflammatory and toxicological evaluation of essential oil from Piper glabratum leaves. J. Ethnopharmacol. 2017, 198, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Arantes, S.; Candeias, F.; Lopes, O.; Lima, M.; Pereira, M.; Tinoco, T.; Cruz-Morais, J.; Rosario Martins, M.R. Pharmacological and toxicological studies of essential oil of Lavandula stoechas subsp luisieri. Planta Med. 2016, 82, 1266–1273. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Shukla, R.; Singh, P.; Dubey, N.K. Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. Essential oil and its safety assessment as plant based antimicrobial. Food Chem. Toxicol. 2010, 48, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Fandohan, P.; Gnonlonfin, B.; Laleye, A.; Gbenou, J.D.; Darbouxc, R.; Moudachirou, M. Toxicity and gastric tolerance of essential oils from Cymbopogon citratus, Ocimum gratissimum and Ocimum basilicum in Wistar rats. Food Chem. Toxicol. 2008, 46, 2493–2497. [Google Scholar] [CrossRef]
- Ribeiro, W.L.C.; Camurca-Vasconcelos, A.L.F.; Macedo, L.T.F.; dos Santos, J.M.L.; de Araujo, J.V.; Ribeiro, J.D.; Pereira, V.D.; Viana, D.D.; de Paula, H.C.B.; Bevilaqua, C.M.L. In vitro effects of Eucalyptus staigeriana nanoemulsion on Haemonchus contortus and toxicity in rodents. Vet. Parasitol. 2015, 212, 444–447. [Google Scholar] [CrossRef]
- Shalaby, S.E.M.; El-Din, M.M.; Abo-Donia, S.A.; Mettwally, M.; Attia, Z.A. Toxicological affects of essential oils from eucalyptus Eucalyptus globules and clove Eugenia caryophyllus on albino rats. Pol. J. Environ. Stud. 2011, 20, 429–434. [Google Scholar]
- Ostad, S.N.; Vazirian, M.; Pahlevani, R.; Hadjiakhondi, A.; Hamedani, M.P.; Almasian, A.; Manayi, A. Toxicity evaluation of aromatic water of Pinus eldarica Medw. in acute and sub-chronic toxicity experiments. Prog. Nutr. 2018, 20, 68–74. [Google Scholar]
- De Lima, R.; Guex, C.G.; da Silva, A.R.H.; Lhamas, C.L.; Moreira, K.L.D.; Casoti, R.; Dornelles, R.C.; da Rocha, M.; da Veiga, M.L.; Bauermann, L.D.; et al. Acute and subacute toxicity and chemical constituents of the hydroethanolic extract of Verbena litoralis Kunth. J. Ethnopharmacol. 2018, 224, 76–84. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, R.; Patil, R.D.; Mal, G.; Kumar, A.; Patial, V.; Kumar, P.; Singh, B. Sub-chronic toxicopathological study of lantadenes of Lantana camara weed in Guinea pigs. BMC Vet. Res. 2018, 14, 129. [Google Scholar] [CrossRef] [PubMed]
EOs | Main Substances | Cell Line | Dose | Time | Ref. |
---|---|---|---|---|---|
Lavandula angustifolia | linalool 28.9%; linalyl acetate 32.9% | human lymphocytes | 0.3 L/mL | 24 h | [79] |
Helichrysum italicum | α-Pinene; camphane; β-Pinene; myrcene; p-cyneme; borneol; thymol | ||||
Alpinia brevilabris | α-Pinene 10.1%; β-Pinene 35.3%; | human lung fibroblasts | IC50 90 µg/mL | 24 h | [80] |
Alpinia cumingii | α-Pinene; β-Pinene; ρ-Cymene; α-Terpinene; α-Pinene; α-Cubebene | IC50 70 µg/mL | |||
Alpinia elegans | α-Pinene; β-Pinene; ρ-Cymene; α-Terpinene; α-Pinene; α-Cubebene; 1,8-Cineol | IC50 30 µg/mL | |||
Callicarpa micrantha | β-pinene; caryophyllene epoxide; aristolochene; borneol; linaloo | IC50 85 µg/mL | |||
Cinnamomum mercadoi | Cinnamaldehyde; Camphene; Linalool; α-phellendrene | IC50 215 µg/mL | |||
Piper quinqueangulatum | pinene; khusimene; cadinene | IC50 40 µg/mL | |||
Alpinia oxymitra | Epicatechin; Galloepicatechin | human lung fibroblasts | IC50 10 µg/mL | 24 h | [81] |
Boesenbergia rotunda | 2′,4′-dihydroxy-6-methoxychalcone; 5-hydroxy-7-methoxyflavanone; 5,7-dihydroxyflavanone | IC50 20 µg/mL | |||
Cinnamomum cambodianum | Cinnamaldehyde; Camphene; Linalool; α-phellendrene | IC50 110 µg/mL | |||
Citrus lucida | d-limonene | IC50 180 µg/mL | |||
Limnophila aromatica | z-ocimene 39.2%; terpinolene 17.2%; camphor 12.9% | IC50 15 µg/mL | |||
Rhodamnia dumetorum | α-, β-, and γ-eudesmol; α- and β-pinene | IC50 2 µg/mL | |||
Sindora siamensis | α-copaene 41.3%; β-cubebene 15.4%; β-cadinene 7.2% | IC50 6 µg/mL | |||
Cinnamodendron dinisii | 1,8-cineole and sabinene. | IC50 30 µg/mL | |||
Gallesia integrifolia | dimethyl trisulfide 15.49%; 2,8-dithianonane; 52.63%; lenthionine; 14.69% | Chinese hamster ovary cell lines | IC50 7 µg/mL | 72 h | [82] |
Schinus molle L. | α-Phellandrene 45.7%; β-phellandrene 13.6%; Hmonene13.4%; α-phellandrene 22.1%, β-phellandrene 10.4%; limonene 9.6%; α-cadinol 5.6% | human lymphocytes | LD50 30.07 μg/mL | 72 h | [83] |
human macrophage | LD50 42.07 μg/mL | ||||
Citrus bergamia | Limonene 37.2%; Linalyl acetate 30.1%; Linalool 8.8% | mouse fibroblast cells | EC50 0.0023% v/v | 4 h | [84] |
Litsea cubeba | citral; geraniol; neral. | EC50 0.011% v/v | |||
Citrus X sinensis | A-pinene; Citronellal; Geranial; Limonene; Linalool; Myrcene; Neral | EC50 0.009% v/v | |||
Cymbopogon citratu | citral A; citral B; neral | EC50 0.013% v/v | |||
Satureja sahendica Bornm | Thymol 40%; gamma -terpinene 28%; and rho-cymene 22% | human cancer cell | IC50 15.6 µg/mL | 24 h | [85] |
Rosmarinus officinalis | 1,8-cineole; a-pinene; camphor | dermal cell | IC50 5 mL/kg | 72 h | [86] |
Piper aduncum | pinene; khusimene; cadinene | erythrocytes | observed harmful effects 200 μg/mL | 24 h | [87] |
Achillea millefolium L. | thymol 26.47% | macrophages | IC50 22.11 mg/mL | 24 h | [88] |
Thymus munbyanus | thymol 52.0%; gamma-terpinene 11.0%; rho-cymene 8.5%; carvacrol 5.2% | human spermatozoa | 500 µg/mL no observed toxicity | 30 min | [89] |
Satureja khuzistanica | Carvacrol 92.87%; limonen 1.2% | cancer cell lines | IC50 125 μg/mL | 24 h | [90] |
EOs | Main Substances | Organism | Dose | Effects | Ref. |
---|---|---|---|---|---|
Syzygium aromaticum | ugenol (64.74%), caryophyllene (14.36%), 3-Allyl-6-methoxyphenyl acetate (13.28%), 1,4,7, Cycloundecatriene, 1,5,9,9-tetramethy (2.55%). | rats | intraperitoneal injection, 0.125 mg/kg | higher levels of AST, ALT, ALP, decrease of AST hepatotoxicity | [21] |
Commiphora myrrha | a-pinene, cadinene, limonene, cuminaldehyde, eugenol, m-cresol, heerabolene, acetic acid, formic acid | mice | injection 80 μL | pathological changes on liver and kidney, weight loss | [99] |
Calendula officinalis | triterpenoid esters, carotenoids flavoxanthin, auroxanthin, lutein, zeaxanthin, flavonol glycosides, triterpene oligoglycosides, oleanane-type triterpene glycosides, saponins, sesquiterpene glucoside | rats | 20 mL/kg body weight | higher levels of AST, ALT, ALP | [100] |
Mentha mozaffarianii | α-Pinene 0.6%; Camphene 0.2%; Sabinene 0.5%; β-Pinene 1.0%; Myrcene 0.3%; Ocymene 0.6%; Limonene 0.4%; 1,8-Cineol 11.7%; Linalool 11.1%; Menthone 1.9%; δ-Terpineol 0.3; Borneol 1.0%; 4-Terpineol 0.2%; α-Terpineol 3.4%; Pulegone 0.3%; Piperitone 51.0% Thymol 1.0%; Piperitenone 8.6%; Piperitenone oxide 2.3%; Trans-Jasmone 1.9%; β-Caryophyllene 0.8% | rats | 2000 mg/kg diet | higher level of glucose, cholesterol, ALT, AST, ALP, and TSH; tissue damage of liver, kidney, stomach | [101] |
Trachyspermum ammi | Thymol 58,9%; p-cymene 24.02%; γ-terpinene 13.77 %; β-pinene 1.90% | mice | 7% acute dermal irritation | defined erythema | [102] |
Boenninghausenia albiflora | propyl ether 22%; linalool 22%; cinnamaldehyde 15%; cinnamyl alcohol 5% | rats | 400 mg/kg diet | changes in the clinical picture (RBC, MCV, triglycerides, HDL, LDL, urea, and sodium) | [103] |
Cuminum cyminum L. | Cuminaldehyde; cymene; terpenoids | rats | 1000 mg/kg diet | increase of serum levels of ALT | [104] |
Satureja khuzestanica | Carvacrol 11%; Thymol 28.2%; γ-terpinene 16%; ρ-cymene 19.6%; β-pinene 4.5%; Sabinene 4.4% | mice | injection 1.79 mL/ kg body weight | death | [98] |
Artemisia vulgaris L. | Camphor; 1,8-cineole | rats | 10.3–23.1 mg/kg body weight | anaemia | [105] |
Aquilaria crassna | sabinene; linalyl acetate; anisaldehyde; perillaldehyde; 3-carvomenthenol; 3-carvomenthenone; bornyl acetate; p-mentha-1,3-dien-7-ol; cuminic acid; p-mentha-1,3-dien-7-av | mice | 2000 mg/kg/day orally | weight loss | [106] |
Salvia officinalis | Camphor 25%; 1,8-cineole 7.5%; α-tujone 22.2% | rats | 30 mg/kg body weight | induced hepatotoxicity, lipid peroxidation | [107] |
Curcuma longa | cinnamic acid; 5 malonyl-CoA; p-coumaric acid | rats | 5000 mg/kg body weight | No changes in the monitored parameters | [108] |
Piper vicosanum | monoterpenoids 56.0–62.6%; limonene 40.0–45.5%; 1,8-cineole 10.4–15.0% | rats | 2 g/kg body weight | [109] | |
Lavandula angustifolia | Linalool, Camphor and 1,8- cineole | mice, rabbits | 2000 mg/kg diet | [110] | |
Cinnamomum zeylanicum | Cinnamaldehyde, Camphene, Linalool and α-phellendrene | mice | 1.52 mL/kg body weight | [111] | |
Origanum vulgare | Carvacrol 80%; Thymol 64%; γ-terpinene 52%; ρ-cymene 52% | rats | 200 mg/ kg body weight | [112] | |
Satureja khuzestanica | Carvacrol 11%; Thymol 28.2%; γ-terpinene 16%; ρ-cymene 19.6%; β-pinene 4.5%; Sabinene 4.4% | mice | 0.2, 0.4 and 0.8 mL/ kg diet | [98] | |
Piper glabratum | pinene 12.0%; khusimene 12.1%; cadinene 13.2% | mice | 5000 mg/kg/body weight | [113] | |
Lavandula stoechas | Linalool, Camphor and 1,8-cineole | rats | 200 mg / kg body weight | [114] | |
Ocimum sanctum L. | Oleanolic acid, Ursolic acid, Rosmarinic acid, Eugenol, Carvacrol, β-caryophyllene and β-elemene. | mice | LD50 4571.43 µL/kg | death | [115] |
Mentha mozaffarianii | Linalool 51.8%; Epoxyocimene 19.3%; Sesquiphellandrene 9.4%; Cadinene 4.0% | rats | LD50 greater than 2000 mg/kg | increases blood glucose, cholesterol, ALT, AST, ALP, and TSH | [101] |
Lavandula stoechas | 1,8-cineole; lavandulol; necrodane | rats | 200 mg/kg | No changes in the monitored parameters | [114] |
Origanum vulgare | Carvacrol 80%; Thymol 64%; γ-terpinene 52%; ρ-cymene 52% | rats | 3% diet | No changes in the monitored parameters (spermatozoa) | [95] |
Origanum vulgare | Carvacrol 80%; Thymol 64%; γ-terpinene 52%; ρ-cymene 52% | rats | 200 mg/kg b.w. | Data revealed no mortality and no treatment-related adverse effects of the EOs in food/water consumption, body weight, haematology, biochemistry, necropsy, organ weight and histopathology. | [112] |
Ocimum gratissimum | Oleanolic acid; Ursolic acid; Rosmarinic acid; Eugenol; Carvacrol; β-caryophyllene; β-elemene | rats | 1500 mg/kg body weight | No changes in the monitored parameters (functional damages to stomach and liver) | [116] |
Thymbra capitata (L.) | 1,8-cineole 19.60%; Camphor 17%; α-pinene 15.12%; Borneol 8.17%; Verbenone 9.55% | boars | 0.6 mg/mL | No changes in the monitored parameters (spermatozoa) | [74] |
Eucalyptus staigeriana | Cineole 46.8%; α-pinene 28.9%; d-limonene 4.9% | rats | LD50 3.495.9 mg/mL | death | [117] |
Eucalyptus Eucalyptus | Cineole 6.2%; α-pinene 8.3%; ρ-cymene 28.6%; Cryptone 17.8%; Cuminaldehyde 6.5% | rats | LD50 2.334 mg/kg b.w. | death | [118] |
Eugenia caryophyllus | eugenol; isoeugenol; eugenone; β-caryophyllene | rats | LD50 3.597 mg/kg b.w. | death | |
Pinus eldarica | Thymol 78.8%; karvarol 6,2% | rats | LD50 higher than 22.5 mL/kg b.w. | No changes in the monitored parameters | [119] |
Verbena officinalis | 1-octen-3-ol 30.76%; Verbenone 20.49% | pregnant female rats | 3000 mg/kg diet | asymmetrical distribution of implantation sites and embryos | [96] |
Verbena litoralis Kunth | Epicatechin; Galloepicatechin; Cadinene | rats | 400 mg/kg diet | only increase in AST | [120] |
Lantana camara | bicyclogermacrene 19.4%; isocaryophyllene; 16.7%; valencene 12.9%; germacrene D 12.3% | guinea pigs | 24 mg/kg b.w. | decrease in weekly body weights, haematology, liver and kidney marker enzymes (ALT, AST, ALP and creatinine) | [121] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horky, P.; Skalickova, S.; Smerkova, K.; Skladanka, J. Essential Oils as a Feed Additives: Pharmacokinetics and Potential Toxicity in Monogastric Animals. Animals 2019, 9, 352. https://doi.org/10.3390/ani9060352
Horky P, Skalickova S, Smerkova K, Skladanka J. Essential Oils as a Feed Additives: Pharmacokinetics and Potential Toxicity in Monogastric Animals. Animals. 2019; 9(6):352. https://doi.org/10.3390/ani9060352
Chicago/Turabian StyleHorky, Pavel, Sylvie Skalickova, Kristyna Smerkova, and Jiri Skladanka. 2019. "Essential Oils as a Feed Additives: Pharmacokinetics and Potential Toxicity in Monogastric Animals" Animals 9, no. 6: 352. https://doi.org/10.3390/ani9060352
APA StyleHorky, P., Skalickova, S., Smerkova, K., & Skladanka, J. (2019). Essential Oils as a Feed Additives: Pharmacokinetics and Potential Toxicity in Monogastric Animals. Animals, 9(6), 352. https://doi.org/10.3390/ani9060352