The Spatiotemporal Characteristics of 0–24-Goal Polo
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Population
2.2. GPS Data Collection
2.3. Data Processing and Analysis
3. Results
3.1. Distance Characteristics
3.2. Speed Characteristics
3.3. High-Intensity Activities
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cummins, C.; Orr, R.; O’Connor, H.; West, C. Global Positioning Systems (GPS) and Microtechnology Sensors in Team Sports: A Systematic Review. Sports Med. 2013, 43, 1025–1042. [Google Scholar] [CrossRef] [PubMed]
- Henderson, T.; Vernes, K.; Körtner, G.; Rajaratnam, R. Using GPS Technology to Understand Spatial and Temporal Activity of Kangaroos in a Peri-Urban Environment. Animals 2018, 8, 97. [Google Scholar] [CrossRef] [PubMed]
- Coutts, A.J.; Duffield, R. Validity and reliability of GPS devices for measuring movement demands of team sports. J. Sci. Med. Sport 2010, 13, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Kingston, J.K.; Soppet, G.M.; Rogers, C.W.; Firth, E.C. Use of a global positioning and heart rate monitoring system to assess training load in a group of thoroughbred raceponies. Equine Vet. J. Suppl. 2006, 38, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Bolwell, C.F.; Rogers, C.W.; Rosanowski, S.M.; Weston, J.F.; Gee, E.K.; Gordon, S.J.G. Cross-Sectional Survey of the Management and Training Practices of Endurance Ponies in New Zealand: A Pilot Study. J. Equine Vet. Sci. 2015, 35, 801–806. [Google Scholar] [CrossRef]
- Foreman, J.H. Use of technological innovations in broadening the application of equine exercise physiology. Comp. Exerc. Physiol. 2017, 13, 137–148. [Google Scholar] [CrossRef]
- Best, R.; Standing, R. Feasibility of a Global Positioning System to Assess the Spatiotemporal Characteristics of Polo Performance. J. Equine Vet. Sci. 2019, 79, 59–62. [Google Scholar] [CrossRef]
- Kusunose, R.; Takahashi, T. Reliability of EquiPILOT® for Measuring Aerobic Fitness in Raceponies. J. Equine Sci. 2002, 13, 117–121. [Google Scholar] [CrossRef]
- Buzas, A.M.; Cawdell-Smith, A.J.; McL Dryden, G.; Bryden, W.L. Physiological responses and energy expenditure of polocrosse ponies during competition. J. Equine Vet. Sci. 2009, 29, 303–304. [Google Scholar] [CrossRef]
- Vermeulen, A.D.; Evans, D.L. Measurements of fitness in Thoroughbred raceponies using field studies of heart rate and velocity with a global positioning system. Equine Vet. J. 2006, 38, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Hebenbrock, M.; Düe, M.; Holzhausen, H.; Sass, A.; Stadler, P.; Ellendorff, F. A new tool to monitor training and performance of sport ponies using global positioning system (GPS) with integrated GSM capabilities. DTW Deutsche tierarztliche Wochenschrift 2005, 112, 262–265. [Google Scholar] [PubMed]
- Rogers, C.; Bolwell, C.; Gee, E. Proactive Management of the Equine Athlete. Animals 2012, 2, 640–655. [Google Scholar] [CrossRef] [PubMed]
- Hurlingham Polo Association. Outdoor Rule and Regulations 2018; Hurlingham Polo Association: Oxon, UK, 2018; pp. 1–83.
- Polo Series-Retraining of Raceponies. Available online: https://www.ror.org.uk/series/polo (accessed on 20 June 2019).
- Standing, R.J.; Maulder, P.S. The Biomechanics of Standing Start and Initial Acceleration: Reliability of the Key Determining Kinematics. J. Sports Sci. Med. 2017, 16, 154–162. [Google Scholar] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Best, R.; Standing, R. Distance, Speed and High Intensity Characteristics of 0 to 24-Goal, Mixed and Women’s Polo. Data 2019, 4, 95. [Google Scholar] [CrossRef]
- Marlin, D.J.; Allen, J.C. Cardiovascular demands of competition on low-goal (non-elite) polo ponies. Equine Vet. J. 1999, 31, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Zobba, R.; Ardu, M.; Niccolini, S.; Cubeddu, F.; Dimauro, C.; Bonelli, P.; Dedola, C.; Visco, S.; Pinna Parpaglia, M.L. Physical, Hematological, and Biochemical Responses to Acute Intense Exercise in Polo Ponies. J. Equine Vet. Sci. 2011, 31, 542–548. [Google Scholar] [CrossRef]
- Ferraz, G.C.; Soares, O.A.B.; Foz, N.S.B.; Pereira, M.C.; Queiroz-Neto, A. The workload and plasma ion concentration in a training match session of high-goal (elite) polo ponies. Equine Vet. J. Suppl. 2010, 42, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Gondin, M.R.; Foz, N.S.B.; Pereira, M.C.; Flagliari, J.J.; Orozco, C.A.G.; D’Angelis, F.H.F.; Queiroz-Neto, A.; Ferraz, G.C. Acute Phase Responses of Different Positions of High-Goal (Elite) Polo Ponies. J. Equine Vet. Sci. 2013, 33, 956–961. [Google Scholar] [CrossRef] [Green Version]
- Best, R.; Standing, R. Performance Characteristics of a Winning Polo Team. N. Z. J. Sport Exerc. Sci. 2019, 2, 1–11. [Google Scholar]
- Chanda, M.; Srikuea, R.; Cherdchutam, W.; Chairoungdua, A.; Piyachaturawat, P. Modulating effects of exercise training regimen on skeletal muscle properties in female polo ponies. BMC Vet. Res. 2016, 12, 245. [Google Scholar] [CrossRef] [PubMed]
- Eto, D.; Yamano, S.; Mukai, K.; Sugiura, T.; Nasu, T.; Tokuriki, M.; Miyata, H. Effect of high intensity training on anaerobic capacity of middle gluteal muscle in Thoroughbred ponies. Res. Vet. Sci. 2004, 76, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Inness, C.M.; Morgan, K.L. Falls and injuries to Polo players: Risk perception, mitigation and risk factors. Sports Med.-Open 2015, 1, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Inness, C.M.; Morgan, K.L. Polo pony injuries: Player-owner reported risk, perception, mitigation and risk factors. Equine Vet. J. 2015, 47, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Birch, H.L.; Wilson, A.M.; Goodship, A.E. Physical activity: Does long-term, high-intensity exercise in ponies result in tendon degeneration? J. Appl. Physiol. 2008, 105, 1927–1933. [Google Scholar] [CrossRef]
- Hausberger, M.; Roche, H.; Henry, S.; Visser, E.K. A review of the human–horse relationship. Appl. Anim. Behav. Sci. 2008, 109, 1–24. [Google Scholar] [CrossRef]
- Butler, D.; Valenchon, M.; Annan, R.; Whay, H.R.; Mullan, S. Living the ‘Best Life’ or “One Size Fits All-” Stakeholder Perceptions of Racehorse Welfare. Animals 2019, 9, 134. [Google Scholar] [CrossRef]
- Chateau, H.; Camus, M.; Holden-Douilly, L.; Falala, S.; Ravary, B.; Vergari, C.; Lepley, J.; Denoix, J.-M.; Pourcelot, P.; Crevier-Denoix, N. Kinetics of the forelimb in ponies circling on different ground surfaces at the trot. Vet. J. 2013, 198, e20–e26. [Google Scholar] [CrossRef]
- Brocklehurst, C.; Weller, R.; Pfau, T. Effect of turn direction on body lean angle in the horse in trot and canter. Vet. J. 2014, 199, 258–262. [Google Scholar] [CrossRef]
Level of Play | Speed Zone 1 | Speed Zone 2 | Speed Zone 3 | Speed Zone 4 | Speed Zone 5 |
---|---|---|---|---|---|
0 goal | 377.2 ± 27.5 | 1036.9 ± 72.8 | 981.2 ± 114.9 | 287.7 ± 56.6 | 15.1 ± 8.4 |
6 goal | 410.9 ± 35.2 | 927.7 ± 55.5 | 914.9 ± 77.2 | 397.0 ± 62.1 | 41.4 ± 17.1 |
10 goal | 381.4 ± 19.5 | 1044.6 ± 36.5 | 1003.3 ± 43.5 | 461.6 ± 43.0 | 46.4 ± 11.1 |
16 goal | 604.9 ± 34.0 | 690.7 ± 45.0 | 744.9 ± 49.2 | 717.8 ± 43.1 | 88.6 ± 12.9 |
24 goal | 460.3 ± 34.4 | 1101.5 ± 92.2 | 1251.8 ± 108.4 | 796.4 ± 94.3 | 150.8 ± 32.6 |
Level of Play | Speed Zone 1 | Speed Zone 2 | Speed Zone 3 | Speed Zone 4 | Speed Zone 5 |
---|---|---|---|---|---|
0 goal | 5:28 ± 0:27 | 3:23 ± 0:14 | 2:02 ± 0:14 | 0:25 ± 0:05 | 0:01 ± 0:00 |
6 goal | 5:22 ± 0:27 | 3:03 ± 0:10 | 1:52 ± 0:09 | 0:35 ± 0:05 | 0:02 ± 0:01 |
10 goal | 4:51 ± 0:17 | 3:25 ± 0:07 | 2:04 ± 0:05 | 0:41 ± 0:03 | 0:03 ± 0:00 |
16 goal | 5:37 ± 0:14 | 2:11 ± 0:09 | 1:35 ± 0:05 | 1:09 ± 0:04 | 0:06 ± 0:00 |
24 goal | 5:44 ± 0:22 | 3:33 ± 0:17 | 2:34 ± 0:13 | 1:10 ± 0:08 | 0:10 ± 0:02 |
0 Goal | 6 Goal | 10 Goal | 16 Goal | 24 Goal | |
---|---|---|---|---|---|
Sprints | 32.9 ± 2.0 | 30.3 ± 2.0 | 34.2 ± 1.2 | 36.4 ± 0.9 | 39.9 ± 2.5 |
Accelerations | 55.6 ± 4.7 | 52.6 ± 4.2 | 51.5 ± 1.9 | 66.9 ± 2.0 | 57.0 ± 3.8 |
Decelerations | 48.8 ± 3.3 | 48.7 ± 3.7 | 53.3 ± 2.0 | 60.5 ± 2.0 | 65.4 ± 5.3 |
Impacts | 0.4 ± 0.2 | 0.8 ± 0.4 | 0.6 ± 0.2 | 1.2 ± 0.2 | 1.2 ± 0.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Best, R.; Standing, R. The Spatiotemporal Characteristics of 0–24-Goal Polo. Animals 2019, 9, 446. https://doi.org/10.3390/ani9070446
Best R, Standing R. The Spatiotemporal Characteristics of 0–24-Goal Polo. Animals. 2019; 9(7):446. https://doi.org/10.3390/ani9070446
Chicago/Turabian StyleBest, Russ, and Regan Standing. 2019. "The Spatiotemporal Characteristics of 0–24-Goal Polo" Animals 9, no. 7: 446. https://doi.org/10.3390/ani9070446
APA StyleBest, R., & Standing, R. (2019). The Spatiotemporal Characteristics of 0–24-Goal Polo. Animals, 9(7), 446. https://doi.org/10.3390/ani9070446