Effects of Dietary Betaine on Growth Performance, Digestive Function, Carcass Traits, and Meat Quality in Indigenous Yellow-Feathered Broilers under Long-Term Heat Stress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Experimental Design, Animals, and Diet
2.3. Sampling and Measurements
2.4. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Nutrient Retention
3.3. Digestive Enzyme Activity
3.4. Intestinal Morphology
3.5. Carcass Traits
3.6. Meat Quality
4. Discussion
4.1. Growth Performance
4.2. Digestive Function
4.3. Carcass Traits and Meat Quality
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nawab, A.; Ibtisham, F.; Li, G.H.; Kieser, B.; Wu, J.; Liu, W.C.; Zhao, Y.; Nawab, Y.; Li, K.Q.; Xiao, M.; et al. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol. 2018, 78, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Quinteiro-Filho, W.M.; Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Sakai, M.; Sa, L.R.M.; Ferreira, A.J.P.; Palermo-Neto, J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult. Sci. 2010, 89, 1905–1914. [Google Scholar] [CrossRef] [PubMed]
- Burkholder, K.M.; Thompson, K.L.; Einstein, M.E.; Applegate, T.J.; Patterson, J.A. Influence of stressors on normal intestinal microbiota intestinal morphology, and susceptibility to Salmonella enteritidis colonization in broilers. Poult. Sci. 2008, 87, 1734–1741. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; He, X.F.; Ma, B.B.; Zhang, L.; Li, J.L.; Jiang, Y.; Zhou, G.H.; Gao, F. Chronic heat stress impairs the quality of breast-muscle meat in broilers by affecting redox status and energy-substance metabolism. J. Agric. Food Chem. 2017, 65, 11251–11258. [Google Scholar] [CrossRef] [PubMed]
- Zaboli, G.; Huang, X.; Feng, X.; Ahn, D.U. How can heat stress affect chicken meat quality?—A review. Poult. Sci. 2019, 98, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.F.; Du, M.F.; Xu, Q.; Chen, Y.P.; Wen, C.; Zhou, Y.M. Dietary mannan oligosaccharide improves growth performance, muscle oxidative status, and meat quality in broilers under cyclic heat stress. J. Therm. Biol. 2018, 75, 106–111. [Google Scholar] [CrossRef]
- Rao, S.; Raju, M.; Panda, A.; Saharia, P.; Sunder, G.S. Effect of supplementing betaine on performance, carcass traits and immune responses in broiler chicken fed diets containing different concentrations of methionine. Asian Austral. J. Anim. Sci. 2011, 24, 662–669. [Google Scholar] [CrossRef]
- DiGiacomo, K.; Simpson, S.; Leury, B.J.; Dunshea, F.R. Dietary betaine impacts the physiological responses to moderate heat conditions in a dose dependent manner in sheep. Animals 2016, 6, 51. [Google Scholar] [CrossRef]
- Dunshea, F.R.; Oluboyede, K.; DiGiacomo, K.; Leury, B.J.; Cottrell, J.J. Betaine improves milk yield in grazing dairy cows supplemented with concentrates at high temperatures. Animals 2019, 9, 57. [Google Scholar] [CrossRef]
- Hamidi, H.; Jahanian, R.; Pourreza, J. Effect of dietary betaine on performance, immunocompetence and gut contents osmolarity of broilers challenged with a mixed coccidial infection. Asian J. Anim. Vet. Adv. 2010, 5, 193–201. [Google Scholar] [CrossRef]
- Alirezaei, M.; Reza Gheisari, H.; Reza Ranjbar, V.; Hajibemani, A. Betaine: A promising antioxidant agent for enhancement of broiler meat quality. Br. Poult. Sci. 2012, 53, 699–707. [Google Scholar] [CrossRef] [PubMed]
- Attia, Y.A.; Hassan, R.A.; Qota, E.M.A. Recovery from adverse effects of heat stress on slow-growing chicks in the tropics 1: Effect of ascorbic acid and different levels of betaine. Trop. Anim. Health Prod. 2009, 41, 807–818. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Zhao, S.; Dai, S.F.; Liu, D.; Bokhari, S.G. Effects of dietary betaine on growth performance, fat deposition and serum lipids in broilers subjected to chronic heat stress. Anim. Sci. J. 2015, 86, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Chand, N.; Naz, S.; Maris, H.; Khan, R.U.; Khan, S.; Qureshi, M.S. Effect of betaine supplementation on the performance and immune response of heat stressed broilers. Pak. J. Zool. 2017, 49, 1857–1862. [Google Scholar] [CrossRef]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Ringuet, M.; Furness, J.B.; Dunshea, F.R. Betaine and antioxidants improve growth performance, breast muscle development and ameliorate thermoregulatory responses to cyclic heat exposure in broiler chickens. Animals 2018, 8, 162. [Google Scholar] [CrossRef] [PubMed]
- Sakomura, N.; Barbosa, N.; Longo, F.; da Silva, E.; Bonato, M.; Fernandes, J. Effect of dietary betaine supplementation on the performance, carcass yield, and intestinal morphometrics of broilers submitted to heat stress. Rev. Bras. Ciência Avícola 2013, 15, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.Z.; Guan, W.Y.; Wang, Y.M.; Du, B.W. Xinyi Huaixiang chicken growth and meat performance test results. Contemp. Anim. Husb. 2016, 24, 35–39. [Google Scholar]
- Ministry of Agriculture of the People’s Republic. Chicken Feeding Standard; NY/T33-2004 [S]; China Agriculture Press: Beijing, China, 2004.
- Horwitz, W. Official Methods of Analyses, 17th ed.; AOAC: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Zhong, G.; Shi, S.R.; Shao, D.; Song, Z.G.; Tong, H.B. Effects of persistent heat stress on growth performance, meat quality and blood indexes on yellow-feathered broilers. Chin. J. Anim. Nutr. 2018, 30, 3923–3929. [Google Scholar] [CrossRef]
- Zhong, G.; Shao, D.; Hu, Y.; Shi, S.R.; Song, Z.G.; Tong, H.B. Effects of persistent heat stress on growth performance, organ indices, serum biochemical indices and antioxidant function of yellow-feathered broilers. Chin. J. Anim. Nutr. 2018, 30, 4425–4432. [Google Scholar] [CrossRef]
- Song, J.; Jiao, L.F.; Xiao, K.; Luan, Z.S.; Hu, C.H.; Shi, B.; Zhan, X.A. Cello-oligosaccharide ameliorates heat stress-induced impairment of intestinal microflora, morphology and barrier integrity in broilers. Anim. Feed Sci. Technol. 2013, 185, 175–181. [Google Scholar] [CrossRef]
- Singh, K.A.; Ghosh, T.A.; Creswell, D.C.; Haldar, S. Effects of supplementation of betaine hydrochloride on physiological performances of broilers exposed to thermal stress. Open Access Anim. Physiol. 2015, 7, 111–120. [Google Scholar] [CrossRef]
- Ratriyanto, A.; Mosenthin, R. Osmoregulatory function of betaine in alleviating heat stress in poultry. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1634–1650. [Google Scholar] [CrossRef]
- Chen, Z.; Xie, J.; Wang, B.; Tang, J. Effect of γ-aminobutyric acid on digestive enzymes, absorption function, and immune function of intestinal mucosa in heat-stressed chicken. Poult. Sci. 2014, 93, 2490–2500. [Google Scholar] [CrossRef] [PubMed]
- Eklund, M.; Bauer, E.; Wamatu, J.; Mosenthin, R. Potential nutritional and physiological functions of betaine in livestock. Nutr. Res. Rev. 2005, 18, 31–48. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.C.; Li, S.S.; Fang, S.L.; Yang, X.J.; Feng, J. Betaine improves intestinal functions by enhancing digestive enzymes, ameliorating intestinal morphology, and enriching intestinal microbiota in high-salt stressed rats. Nutrients 2018, 10, 907. [Google Scholar] [CrossRef]
- Pollard, A.; Wyn Jones, R. Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta 1979, 144, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Bruzdziak, P.; Panuszko, A.; Stangret, J. Influence of osmolytes on protein and water structure: A step to understanding the mechanism of protein stabilization. J. Phys. Chem. B. 2013, 117, 11502–11508. [Google Scholar] [CrossRef]
- Kettunen, H.; Tiihonen, K.; Peuranen, S.; Saarinen, M.T.; Remus, J.C. Dietary betaine accumulates in the liver and intestinal tissue and stabilizes the intestinal epithelial structure in healthy and coccidia-infected broiler chicks. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2001, 130, 759–769. [Google Scholar] [CrossRef]
- Lu, Z.; He, X.F.; Ma, B.B.; Zhang, L.; Li, J.L.; Jiang, Y.; Zhou, G.H.; Gao, F. Serum metabolomics study of nutrient metabolic variations in chronic heat-stressed broilers. Br. J. Nutr. 2018, 119, 771–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Wang, Z.Y.; Yang, H.M.; Zhao, F.Z.; Kong, L.L. Response of growing goslings to dietary supplementation with methionine and betaine. Br. Poult. Sci. 2016, 57, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Nofal, M.E.; Magda, A.G.; Mousa, S.M.M.; Doaa, M.M.Y.; Bealsh, A.M.A. Effect of dietary betaine supplementation on productive, physiological and immunological performance and carcass characteristic of growing developed chicks under the condition of heat stress. Egypt. Poult. Sci. J. 2015, 35, 237–259. [Google Scholar]
- Zhan, X.A.; Li, J.X.; Xu, Z.R.; Zhao, R.Q. Effects of methionine and betaine supplementation on growth performance, carcass composition and metabolism of lipids in male broilers. Br. Poult. Sci. 2006, 47, 576–580. [Google Scholar] [CrossRef] [PubMed]
Item | Contents (%) |
---|---|
Ingredients | |
Corn | 67 |
Soybean meal | 23 |
Wheat bran | 4.0 |
Fish meal | 3.0 |
Limestone | 1.5 |
CaHPO4 | 1.0 |
Premix 1 | 0.5 |
Nutrient levels 2 | |
ME (MJ/kg) | 11.94 |
Crude protein (%) | 18.2 |
Ca (%) | 0.98 |
Met (%) | 0.32 |
Cystine (%) | 0.31 |
Lys (%) | 0.90 |
Total phosphorus (%) | 0.51 |
Dietary Betaine Levels (mg/kg) | Temperature | Initial BW, g | 1–5 Weeks | 6–10 Weeks | 1–10 Weeks | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BWG, g | FI, g | FCR | BWG, g | FI, g | FCR | BWG, g | FI, g | FCR | |||
0 | TN | 404 | 426 | 1441 | 3.42 | 459 | 1729 | 3.88 | 992 | 3170 | 3.22 |
0 | HS | 393 | 328 | 1345 | 4.14 | 299 | 1248 | 4.28 | 720 | 2593 | 3.69 |
500 | HS | 399 | 369 | 1312 | 3.59 | 424 | 1575 | 3.84 | 849 | 2887 | 3.46 |
1000 | HS | 406 | 371 | 1429 | 3.88 | 363 | 1616 | 4.60 | 828 | 3046 | 3.70 |
2000 | HS | 391 | 385 | 1404 | 3.81 | 449 | 1671 | 3.66 | 939 | 3075 | 3.30 |
SEM | 9.9 | 20.5 | 30.4 | 0.187 | 35.9 | 83.1 | 0.362 | 57.9 | 85.5 | 0.214 | |
Contrast | p-value | ||||||||||
TN vs. HS | - | 0.004 | 0.042 | 0.013 | 0.005 | 0.001 | 0.435 | 0.004 | 0.001 | 0.142 | |
Linear | - | 0.078 | 0.075 | 0.468 | 0.024 | 0.037 | 0.236 | 0.042 | 0.026 | 0.276 | |
Quadratic | - | 0.581 | 0.917 | 0.279 | 0.581 | 0.516 | 0.288 | 0.885 | 0.222 | 0.589 |
Dietary Betaine Levels (mg/kg) | Temperature | Nitrogen | CF | Energy | Ash | Ca | P |
---|---|---|---|---|---|---|---|
After 5 Weeks Heat Stress | |||||||
0 | TN | 79 | 86 | 77 | 47 | 59 | 50 |
0 | HS | 70 | 83 | 79 | 45 | 61 | 37 |
500 | HS | 77 | 84 | 81 | 47 | 57 | 46 |
1000 | HS | 79 | 80 | 79 | 54 | 63 | 55 |
2000 | HS | 79 | 85 | 82 | 58 | 62 | 52 |
SEM | 2.7 | 3.1 | 2.3 | 5.1 | 4.3 | 4.7 | |
Contrast | p-value | ||||||
TN vs. HS | 0.032 | 0.579 | 0.554 | 0.786 | 0.843 | 0.065 | |
Linear | 0.027 | 0.932 | 0.486 | 0.092 | 0.686 | 0.045 | |
Quadratic | 0.215 | 0.419 | 0.905 | 0.828 | 0.828 | 0.250 | |
After 10 Weeks Heat Stress | |||||||
0 | TN | 70 | 84 | 82 | 42 | 60 | 50 |
0 | HS | 64 | 85 | 81 | 45 | 59 | 43 |
500 | HS | 69 | 84 | 84 | 46 | 58 | 42 |
1000 | HS | 66 | 82 | 81 | 52 | 57 | 51 |
2000 | HS | 70 | 85 | 79 | 50 | 65 | 47 |
SEM | 1.5 | 2.8 | 2.4 | 4.1 | 3.5 | 3.3 | |
Contrast | p-value | ||||||
TN vs. HS | 0.019 | 0.808 | 0.619 | 0.576 | 0.817 | 0.178 | |
Linear | 0.046 | 0.894 | 0.894 | 0.644 | 0.393 | 0.271 | |
Quadratic | 0.740 | 0.428 | 0.428 | 0.711 | 0.287 | 0.741 |
Dietary Betaine Levels (mg/kg) | Temperature | Duodenum | Jejunum | Ileum | |||
---|---|---|---|---|---|---|---|
Trypsin | Lipase | Trypsin | Lipase | Trypsin | Lipase | ||
After 5 Weeks Heat Stress | |||||||
0 | TN | 248 | 1.76 | 351 | 1.69 | 346 | 1.71 |
0 | HS | 179 | 1.30 | 247 | 1.33 | 315 | 1.63 |
500 | HS | 172 | 1.72 | 361 | 2.68 | 380 | 2.25 |
1000 | HS | 196 | 1.05 | 310 | 1.36 | 335 | 1.65 |
2000 | HS | 189 | 1.36 | 271 | 1.40 | 333 | 1.55 |
SEM | 33.1 | 0.518 | 32.6 | 0.491 | 54.0 | 0.462 | |
Contrast | p-value | ||||||
TN vs. HS | 0.151 | 0.537 | 0.035 | 0.605 | 0.686 | 0.904 | |
Linear | 0.590 | 0.845 | 0.898 | 0.653 | 0.975 | 0.695 | |
Quadratic | 1.000 | 0.926 | 0.038 | 0.239 | 0.559 | 0.461 | |
After 10 Weeks Heat Stress | |||||||
0 | TN | 225 | 0.89 | 414 | 1.61 | 293 | 0.64 |
0 | HS | 116 | 0.55 | 313 | 0.91 | 243 | 0.60 |
500 | HS | 183 | 1.23 | 264 | 1.31 | 216 | 0.50 |
1000 | HS | 201 | 0.43 | 418 | 2.35 | 293 | 0.54 |
2000 | HS | 250 | 0.99 | 258 | 1.85 | 263 | 0.81 |
SEM | 40.4 | 0.382 | 56.7 | 0.703 | 41.3 | 0.178 | |
Contrast | p-value | ||||||
TN vs. HS | 0.105 | 0.528 | 0.296 | 0.488 | 0.406 | 0.865 | |
Linear | 0.044 | 0.767 | 0.972 | 0.249 | 0.480 | 0.287 | |
Quadratic | 0.849 | 0.879 | 0.327 | 0.539 | 0.978 | 0.339 |
Dietary Betaine Levels (mg/kg) | Temperature | Duodenum | Jejunum | Ileum | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Villus Height, μm | Crypt Depth, μm | VH:CD | Villus Height, μm | Crypt Depth, μm | VH:CD | Villus Height, μm | Crypt Depth, μm | VH:CD | ||
After 5 Weeks Heat Stress | ||||||||||
0 | TN | 523 | 65 | 8.09 | 397 | 49 | 8.25 | 215 | 45 | 4.83 |
0 | HS | 415 | 68 | 6.14 | 335 | 46 | 7.28 | 204 | 42 | 4.99 |
500 | HS | 474 | 63 | 7.68 | 337 | 49 | 7.02 | 233 | 42 | 5.58 |
1000 | HS | 559 | 60 | 9.50 | 330 | 48 | 7.12 | 248 | 50 | 4.94 |
2000 | HS | 479 | 64 | 7.88 | 338 | 53 | 6.43 | 231 | 47 | 5.00 |
SEM | 34.7 | 3.9 | 0.679 | 25.8 | 3.1 | 0.803 | 21.9 | 4.0 | 0.352 | |
Contrast | p-value | |||||||||
TN vs. HS | 0.039 | 0.599 | 0.057 | 0.102 | 0.511 | 0.403 | 0.728 | 0.605 | 0.745 | |
Linear | 0.122 | 0.387 | 0.057 | 0.983 | 0.162 | 0.456 | 0.340 | 0.165 | 0.708 | |
Quadratic | 0.084 | 0.253 | 0.056 | 0.918 | 0.706 | 0.773 | 0.299 | 0.586 | 0.483 | |
After 10 Weeks Heat Stress | ||||||||||
0 | TN | 566 | 105 | 5.54 | 318 | 66 | 4.95 | 192 | 59 | 3.26 |
0 | HS | 480 | 106 | 4.78 | 212 | 68 | 3.27 | 177 | 58 | 3.16 |
500 | HS | 540 | 87 | 6.42 | 265 | 60 | 4.55 | 228 | 58 | 4.15 |
1000 | HS | 555 | 102 | 5.84 | 287 | 63 | 4.72 | 209 | 58 | 3.60 |
2000 | HS | 529 | 109 | 5.03 | 283 | 61 | 4.99 | 189 | 60 | 3.13 |
SEM | 22.9 | 8.4 | 0.508 | 21.9 | 6.0 | 0.434 | 23.9 | 5.9 | 0.378 | |
Contrast | p-value | |||||||||
TN vs. HS | 0.036 | 0.975 | 0.370 | 0.003 | 0.781 | 0.028 | 0.664 | 0.885 | 0.850 | |
Linear | 0.114 | 0.541 | 0.751 | 0.037 | 0.405 | 0.037 | 0.882 | 0.822 | 0.717 | |
Quadratic | 0.046 | 0.155 | 0.033 | 0.232 | 0.640 | 0.347 | 0.179 | 0.898 | 0.080 |
Dietary Betaine Levels (mg/kg) | Temperature | Slaughter Rate | Semi-Eviscerated Carcass Rate | Eviscerated Carcass Rate | Leg Muscle Yield | Breast Muscle Yield | Abdominal Fat Rate |
---|---|---|---|---|---|---|---|
0 | TN | 92.5 | 85.0 | 61.5 | 14.0 | 8.5 | 1.05 |
0 | HS | 91.0 | 83.3 | 58.5 | 14.6 | 7.4 | 1.47 |
500 | HS | 91.8 | 84.4 | 60.0 | 14.1 | 8.3 | 1.05 |
1000 | HS | 90.7 | 84.0 | 59.3 | 15.2 | 8.3 | 1.10 |
2000 | HS | 92.3 | 85.4 | 62.9 | 15.7 | 8.7 | 1.29 |
SEM | 0.82 | 0.66 | 0.99 | 0.80 | 0.33 | 0.249 | |
Contrast | p-value | ||||||
TN vs. HS | 0.197 | 0.085 | 0.044 | 0.575 | 0.047 | 0.255 | |
Linear | 0.511 | 0.048 | 0.019 | 0.223 | 0.014 | 0.702 | |
Quadratic | 0.662 | 0.592 | 0.328 | 0.485 | 0.956 | 0.304 |
Dietary Betaine Levels (mg/kg) | Temperature | Breast Muscle | Leg Muscle | ||||||
---|---|---|---|---|---|---|---|---|---|
Cooking Loss, % | Shear Force, kgf | pH45min | pH24h | Cooking Loss, % | Shear Force, kgf | pH45min | pH24h | ||
0 | TN | 38.2 | 2.83 | 5.75 | 5.30 | 40.3 | 1.99 | 5.78 | 5.71 |
0 | HS | 36.3 | 2.92 | 5.59 | 5.37 | 38.2 | 1.85 | 5.82 | 5.47 |
500 | HS | 32.5 | 2.46 | 5.87 | 5.55 | 35.0 | 1.55 | 5.76 | 5.64 |
1000 | HS | 38.4 | 2.20 | 5.74 | 5.45 | 39.1 | 1.72 | 6.00 | 5.50 |
2000 | HS | 34.8 | 2.77 | 5.58 | 5.45 | 38.4 | 2.12 | 5.97 | 5.40 |
SEM | 2.51 | 0.259 | 0.143 | 0.130 | 2.15 | 0.264 | 0.102 | 0.139 | |
Contrast | p-value | ||||||||
TN vs. HS | 0.545 | 0.809 | 0.726 | 0.413 | 0.509 | 0.698 | 0.233 | 0.818 | |
Linear | 0.913 | 0.521 | 0.773 | 0.802 | 0.618 | 0.438 | 0.153 | 0.605 | |
Quadratic | 0.969 | 0.052 | 0.107 | 0.522 | 0.558 | 0.215 | 0.930 | 0.396 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Yuan, Y.; Sun, C.; Balasubramanian, B.; Zhao, Z.; An, L. Effects of Dietary Betaine on Growth Performance, Digestive Function, Carcass Traits, and Meat Quality in Indigenous Yellow-Feathered Broilers under Long-Term Heat Stress. Animals 2019, 9, 506. https://doi.org/10.3390/ani9080506
Liu W, Yuan Y, Sun C, Balasubramanian B, Zhao Z, An L. Effects of Dietary Betaine on Growth Performance, Digestive Function, Carcass Traits, and Meat Quality in Indigenous Yellow-Feathered Broilers under Long-Term Heat Stress. Animals. 2019; 9(8):506. https://doi.org/10.3390/ani9080506
Chicago/Turabian StyleLiu, Wenchao, Yilin Yuan, Chenyu Sun, Balamuralikrishnan Balasubramanian, Zhihui Zhao, and Lilong An. 2019. "Effects of Dietary Betaine on Growth Performance, Digestive Function, Carcass Traits, and Meat Quality in Indigenous Yellow-Feathered Broilers under Long-Term Heat Stress" Animals 9, no. 8: 506. https://doi.org/10.3390/ani9080506
APA StyleLiu, W., Yuan, Y., Sun, C., Balasubramanian, B., Zhao, Z., & An, L. (2019). Effects of Dietary Betaine on Growth Performance, Digestive Function, Carcass Traits, and Meat Quality in Indigenous Yellow-Feathered Broilers under Long-Term Heat Stress. Animals, 9(8), 506. https://doi.org/10.3390/ani9080506