Landslide Susceptibility Mapping Using Statistical Methods along the Asian Highway, Bhutan
Abstract
:1. Introduction
2. Study Area
3. Data
3.1. Landslide Inventory
3.2. Causative Factor Selection
4. Methodology
4.1. Information Value Method
4.2. Weights of Evidence Model
4.3. Logistic Regression Model
4.4. Validation of the Models
5. Results
5.1. Information Value Method
5.2. Weights of Evidence Model
5.3. Logistic Regression Model
5.4. Validation
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
No. of Landslide Pixels in Class | Total No. of Pixels in Class | Landslide Ratio Area | Total Ratio Area | Information Value | Frequency Ratio (FR) | Standar- Dized FR | Weight of Evidence (C) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Slope angle (degree) | 0–10 | 96 | 10,750 | 4.447 | 5.102 | −0.060 | 0.871 | 0.071 | −0.138 | 0.007 | −0.144 |
10–20 | 405 | 44,423 | 18.759 | 21.085 | −0.051 | 0.890 | 0.079 | −0.117 | 0.029 | −0.146 | |
20–30 | 556 | 76,822 | 25.753 | 36.463 | −0.151 | 0.706 | 0.000 | −0.348 | 0.156 | −0.504 | |
30–40 | 574 | 54,488 | 26.586 | 25.863 | 0.012 | 1.028 | 0.138 | 0.028 | −0.010 | 0.037 | |
40–50 | 374 | 19,257 | 17.323 | 9.140 | 0.278 | 1.895 | 0.509 | 0.639 | −0.094 | 0.734 | |
>50 | 154 | 4943 | 7.133 | 2.346 | 0.483 | 3.040 | 1.000 | 1.112 | −0.050 | 1.162 | |
Aspect | Flat | 2 | 294 | 0.093 | 0.140 | 0.000 | 0.664 | 0.355 | −0.410 | 0.000 | −0.410 |
North | 2 | 17,654 | 0.093 | 8.379 | −1.956 | 0.011 | 0.000 | −4.505 | 0.087 | −4.591 | |
North East | 88 | 27,963 | 4.076 | 13.273 | −0.513 | 0.307 | 0.161 | −1.181 | 0.101 | −1.281 | |
East | 168 | 30,236 | 7.781 | 14.351 | −0.266 | 0.542 | 0.289 | −0.612 | 0.074 | −0.686 | |
South East | 450 | 31,550 | 20.843 | 14.975 | 0.144 | 1.392 | 0.751 | 0.331 | −0.072 | 0.402 | |
South | 655 | 34,561 | 30.338 | 16.404 | 0.267 | 1.849 | 1.000 | 0.615 | −0.182 | 0.797 | |
South West | 494 | 30,132 | 22.881 | 14.302 | 0.204 | 1.600 | 0.864 | 0.470 | −0.105 | 0.575 | |
West | 238 | 21,278 | 11.024 | 10.100 | 0.038 | 1.091 | 0.588 | 0.088 | −0.010 | 0.098 | |
North West | 62 | 17,015 | 2.872 | 8.076 | −0.449 | 0.356 | 0.187 | −1.034 | 0.055 | −1.089 | |
Elevation (m) | 0–300 | 108 | 4796 | 5.002 | 2.276 | 0.342 | 2.197 | 0.610 | 0.787 | −0.028 | 0.816 |
300–600 | 554 | 15,863 | 25.660 | 7.529 | 0.533 | 3.408 | 1.000 | 1.226 | −0.218 | 1.444 | |
600–900 | 254 | 12,265 | 11.765 | 5.822 | 0.306 | 2.021 | 0.553 | 0.704 | −0.065 | 0.769 | |
900–1200 | 166 | 17,450 | 7.689 | 8.283 | −0.032 | 0.928 | 0.201 | −0.074 | 0.006 | −0.081 | |
1200–1500 | 260 | 33,634 | 12.043 | 15.964 | −0.122 | 0.754 | 0.145 | −0.282 | 0.046 | −0.328 | |
1500–1800 | 316 | 39,074 | 14.636 | 18.546 | −0.103 | 0.789 | 0.156 | −0.237 | 0.047 | −0.284 | |
1800–2100 | 338 | 35,574 | 15.655 | 16.885 | −0.033 | 0.927 | 0.200 | −0.076 | 0.015 | −0.090 | |
>2100 | 163 | 52,027 | 7.550 | 24.694 | −0.515 | 0.306 | 0.000 | −1.185 | 0.205 | −1.390 | |
Distance to road (m) | 0–100 | 368 | 31,726 | 17.045 | 15.059 | 0.054 | 1.132 | 0.536 | 0.124 | −0.024 | 0.148 |
100–200 | 300 | 23,159 | 13.895 | 10.992 | 0.102 | 1.264 | 0.780 | 0.234 | −0.033 | 0.268 | |
200–300 | 265 | 18,694 | 12.274 | 8.873 | 0.141 | 1.383 | 1.000 | 0.324 | −0.038 | 0.363 | |
300–400 | 158 | 16,087 | 7.318 | 7.636 | −0.018 | 0.958 | 0.216 | −0.042 | 0.003 | −0.046 | |
400–500 | 147 | 14,199 | 6.809 | 6.740 | 0.004 | 1.010 | 0.312 | 0.010 | −0.001 | 0.011 | |
>500 | 921 | 106,818 | 42.659 | 50.701 | −0.075 | 0.841 | 0.000 | −0.173 | 0.151 | −0.324 | |
Distance to drainage (m) | 0–100 | 1107 | 91,695 | 51.274 | 43.523 | 0.071 | 1.178 | 1.000 | 0.164 | −0.148 | 0.312 |
100–200 | 502 | 60,914 | 23.252 | 28.913 | −0.095 | 0.804 | 0.027 | −0.218 | 0.077 | −0.295 | |
200–300 | 281 | 29,545 | 13.015 | 14.023 | −0.032 | 0.928 | 0.350 | −0.075 | 0.012 | −0.086 | |
300–400 | 135 | 14,204 | 6.253 | 6.742 | −0.033 | 0.927 | 0.348 | −0.075 | 0.005 | −0.081 | |
400–500 | 78 | 7440 | 3.613 | 3.531 | 0.010 | 1.023 | 0.597 | 0.023 | −0.001 | 0.024 | |
>500 | 56 | 6885 | 2.594 | 3.268 | −0.100 | 0.794 | 0.000 | −0.231 | 0.007 | −0.238 | |
Distance to fault lines (m) | 0–500 | 773 | 39,183 | 35.804 | 18.639 | 0.285 | 1.921 | 1.000 | 0.653 | −0.237 | 0.890 |
500–1000 | 443 | 37,506 | 20.519 | 17.842 | 0.062 | 1.150 | 0.547 | 0.140 | −0.033 | 0.173 | |
1000–1500 | 160 | 26,458 | 7.411 | 12.586 | −0.228 | 0.589 | 0.217 | −0.530 | 0.058 | −0.587 | |
1500–2000 | 289 | 20,786 | 13.386 | 9.888 | 0.133 | 1.354 | 0.667 | 0.303 | −0.040 | 0.342 | |
2000–2500 | 257 | 18,081 | 11.904 | 8.601 | 0.143 | 1.384 | 0.684 | 0.325 | −0.037 | 0.362 | |
2500–3000 | 103 | 12,317 | 4.771 | 5.859 | −0.088 | 0.814 | 0.350 | −0.206 | 0.011 | −0.217 | |
>3000 | 126 | 55,885 | 5.836 | 26.585 | −0.657 | 0.220 | 0.000 | −1.516 | 0.249 | −1.765 | |
Lithology | GHIo | 43 | 16,863 | 1.996 | 8.012 | −0.604 | 0.249 | 0.000 | −1.390 | 0.063 | −1.453 |
GHImu | 231 | 13,688 | 10.724 | 6.503 | 0.217 | 1.649 | 0.462 | 0.500 | −0.046 | 0.546 | |
Pzpm | 172 | 12,505 | 7.985 | 5.941 | 0.128 | 1.344 | 0.362 | 0.296 | −0.022 | 0.318 | |
Pzpm2 | 46 | 4079 | 2.136 | 1.938 | 0.042 | 1.102 | 0.282 | 0.097 | −0.002 | 0.099 | |
GHIml | 429 | 93,368 | 19.916 | 44.360 | −0.348 | 0.449 | 0.066 | −0.801 | 0.364 | −1.165 | |
Pzph | 471 | 14,049 | 21.866 | 6.675 | 0.515 | 3.276 | 1.000 | 1.187 | −0.178 | 1.364 | |
pCp | 277 | 13,127 | 12.860 | 6.237 | 0.314 | 2.062 | 0.599 | 0.724 | −0.073 | 0.797 | |
pCo | 36 | 3247 | 1.671 | 1.543 | 0.035 | 1.083 | 0.276 | 0.080 | −0.001 | 0.081 | |
pCs | 215 | 8727 | 9.981 | 4.146 | 0.382 | 2.407 | 0.713 | 0.879 | −0.063 | 0.941 | |
pCd | 150 | 22,637 | 6.964 | 10.755 | −0.189 | 0.647 | 0.132 | −0.435 | 0.042 | −0.476 | |
pZj | 84 | 8189 | 3.900 | 3.891 | 0.001 | 1.002 | 0.249 | 0.002 | 0.000 | 0.002 | |
Land cover | Forests | 895 | 172,299 | 41.454 | 81.781 | −0.295 | 0.507 | 0.000 | −0.679 | 1.167 | −1.847 |
Meadows | 33 | 4416 | 1.528 | 2.096 | −0.137 | 0.729 | 0.006 | −0.316 | 0.006 | −0.322 | |
Cultivated agricultural land | 68 | 10,104 | 3.150 | 4.796 | −0.183 | 0.657 | 0.004 | −0.420 | 0.017 | −0.438 | |
Bare areas | 711 | 1900 | 32.932 | 0.902 | 1.562 | 36.517 | 1.000 | 3.598 | −0.390 | 3.988 | |
Shrubs | 365 | 14,685 | 16.906 | 6.970 | 0.385 | 2.425 | 0.053 | 0.886 | −0.113 | 0.999 | |
Water bodies | 57 | 2366 | 2.640 | 1.123 | 0.371 | 2.351 | 0.051 | 0.855 | −0.015 | 0.870 | |
Built-up areas | 30 | 4913 | 1.390 | 2.332 | −0.225 | 0.596 | 0.002 | −0.518 | 0.010 | −0.527 |
References
- Varnes, D.J. Slope Movement Types and Processes. Transp. Res. Board Spec. Rep. 1978, 176, 11–33. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Guzzetti, F. Landslide Hazard Assessment and Risk Evaluation: Limits and Prospectives. In Proceedings of the 4th Plinius Conference on Mediterranean Storms, Mallorca, Spain, 2–4 October 2002. [Google Scholar]
- Petley, D. Global Deaths from Landslides in 2010 (Updated to Include a Comparison with Previous Years)—The Landslide Blog—AGU Blogosphere. 2011. Available online: https://blogs.agu.org/landslideblog/2011/02/05/global-deaths-from-landslides-in-2010/ (accessed on 14 September 2020).
- Rimal, B.; Baral, H.; Stork, N.E.; Paudyal, K.; Rijal, S. Growing City and rapid land use transition: Assessing multiple hazards and risks in the Pokhara Valley, Nepal. Land 2015, 4, 957–978. [Google Scholar] [CrossRef] [Green Version]
- Pawluszek, K. Landslide features identification and morphology investigation using high-resolution DEM derivatives. Nat. Hazards 2019, 96, 311–330. [Google Scholar] [CrossRef] [Green Version]
- Prakash, N.; Manconi, A.; Loew, S. Mapping landslides on EO data: Performance of deep learning models vs. Traditional machine learning models. Remote Sens. 2020, 12, 346. [Google Scholar] [CrossRef] [Green Version]
- Dai, F.C.; Lee, C.F.; Ngai, Y.Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Hearn, G.J. Slope Engineering for Mountain Roads; The Geological Society of London: London, UK, 2011. [Google Scholar]
- Pardeshi, S.S.D.; Autade, S.E.; Pardeshi, S.S.D. Landslide hazard assessment: Recent trends and techniques. Springerplus 2013, 2, 523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C.; Pourghasemi, H.R.; Gokceoglu, C. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat. Hazards 2012, 63, 965–996. [Google Scholar] [CrossRef]
- Rasyid, A.R.; Bhandary, N.P.; Yatabe, R. Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenviron. Disasters 2016, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Carabella, C.; Miccadei, E.; Paglia, G.; Sciarra, N. Post-wildfire landslide hazard assessment: The case of the 2017 montagna del morrone fire (central apennines, Italy). Geosciences 2019, 9, 175. [Google Scholar] [CrossRef] [Green Version]
- Melchiorre, C.; Matteucci, M.; Azzoni, A.; Zanchi, A. Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology 2008, 94, 379–400. [Google Scholar] [CrossRef]
- Psomiadis, E.; Papazachariou, A.; Soulis, K.X.; Alexiou, D.S.; Charalampopoulos, I. Landslide mapping and susceptibility assessment using geospatial analysis and earth observation data. Land 2020, 9, 133. [Google Scholar] [CrossRef]
- Ali, S.; Biermanns, P.; Haider, R.; Reicherter, K. Landslide Susceptibility Mapping By Using Gis Along the China Pakistan Economic Corridor (Karakoram Highway), Pakistan. Nat. Hazards Earth Syst. Sci. 2018. [Google Scholar] [CrossRef]
- Das, I.; Stein, A.; Kerle, N.; Dadhwal, V.K. Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models. Geomorphology 2012, 179, 116–125. [Google Scholar] [CrossRef]
- Pasang, S.; Kubicek, P. Road corridor landslide susceptibility mapping in Bhutan using GIS. In Proceedings of the Sixth International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE 2017) and SECOTOX Conference, Thessaloniki, Greece, 25–30 June 2017; pp. 925–934. [Google Scholar]
- Pasang, S.; Kubíček, P. Information Value Model based Landslide Susceptibility Mapping at Phuentsholing, Bhutan. In Proceedings of the 21st AGILE Conference, Lund, Sweden, 12–15 June 2018; pp. 1–7. [Google Scholar]
- Bathrellos, G.D.; Kalivas, D.P.; Skilodimou, H.D. GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece. Estud. Geológicos 2009, 65, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Shenavr, B.; Hosseini, S.M. Comparison of Multi-criteria evaluation (AHP and WLC approaches) for land capability assessment of urban development in GIS. Int. J. Geomat. Geosci. 2014, 4, 435–446. [Google Scholar]
- Ilanloo, M. A comparative study of fuzzy logic approach for landslide susceptibility mapping using GIS: An experience of Karaj dam basin in Iran. Procedia Soc. Behav. Sci. 2011, 19, 668–676. [Google Scholar] [CrossRef] [Green Version]
- Feizizadeh, B.; Shadman Roodposhti, M.; Jankowski, P.; Blaschke, T. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping. Comput. Geosci. 2014, 73, 208–221. [Google Scholar] [CrossRef] [Green Version]
- Basharat, M.; Shah, H.R.; Hameed, N. Landslide susceptibility mapping using GIS and weighted overlay method: A case study from NW Himalayas, Pakistan. Arab. J. Geosci. 2016, 9. [Google Scholar] [CrossRef]
- Yalcin, A. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. CATENA 2008, 72, 1–12. [Google Scholar] [CrossRef]
- Althuwaynee, O.F.; Pradhan, B.; Park, H.; Hyun, J. A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena 2014, 114, 21–36. [Google Scholar] [CrossRef]
- Ahmed, B. Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh. Landslides 2015, 12, 1077–1095. [Google Scholar] [CrossRef] [Green Version]
- Chalkias, C.; Ferentinou, M.; Polykretis, C. GIS-Based Landslide Susceptibility Mapping on the Peloponnese Peninsula, Greece. Geosciences 2014, 4, 176–190. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, S.; Kanungo, D.; Patra, A.K.; Kumar, P. GIS Based landslide susceptibility mapping—A case study in Indian Himalaya. In Proceedings of the Interpraevent International Symposium on Disaster Mitigation of Debris Flows, Slope Failures and landslides, Niigata, Japan, 25–29 September 2006; pp. 617–624. [Google Scholar]
- Pradhan, B.; Saro Lee, D.; Daejon, K.; Buchroithner, M.F. Remote Sensing and GIS-based Landslide Susceptibility Analysis and its Cross-validation in Three Test Areas Using a Frequency Ratio Model. PFG Photogramm. Fernerkund. Geoinf. 2010, 2010, 17–32. [Google Scholar] [CrossRef]
- Quinn, P.E.; Hutchinson, D.J.; Diederichs, M.S.; Rowe, R.K. Regional-scale landslide susceptibility mapping using the weights of evidence method: An example applied to linear infrastructure. Can. Geotech. J. 2010, 47, 905–927. [Google Scholar] [CrossRef]
- Devkota, K.C.; Regmi, A.D.; Pourghasemi, H.R.; Yoshida, K.; Pradhan, B.; Ryu, I.C.; Dhital, M.R.; Althuwaynee, O.F. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat. Hazards 2013, 65, 135–165. [Google Scholar] [CrossRef]
- Sangchini, E.K.; Nowjavan, M.R.; Arami, A. Landslide susceptibility mapping using logistic statistical regression in Babaheydar Watershed, Chaharmahal Va Bakhtiari Province, Iran. J. Fac. For. Istanb. Univ. 2015, 65, 30–40. [Google Scholar] [CrossRef]
- Kawabata, D.; Bandibas, J. Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN). Geomorphology 2009, 113, 97–109. [Google Scholar] [CrossRef]
- Zeng-Wang, X.U. GIS and ANN model for landslide susceptibility mapping. J. Geogr. Sci. 2001, 11, 374–381. [Google Scholar] [CrossRef]
- Tien Bui, D.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378. [Google Scholar] [CrossRef]
- Kanungo, D.P.; Arora, M.K.; Sarkar, S.; Gupta, R.P. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng. Geol. 2006, 85, 347–366. [Google Scholar] [CrossRef]
- Yilmaz, I. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey). Comput. Geosci. 2009, 35, 1125–1138. [Google Scholar] [CrossRef]
- Juliev, M.; Mergili, M.; Mondal, I.; Nurtaev, B.; Pulatov, A.; Hübl, J. Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan. Sci. Total Environ. 2019, 653, 801–814. [Google Scholar] [CrossRef] [PubMed]
- Ozdemir, A.; Altural, T. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan mountains, SW Turkey. J. Asian Earth Sci. 2013, 64, 180–197. [Google Scholar] [CrossRef]
- Vakhshoori, V.; Zare, M. Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods. Geomat. Nat. Hazards Risk 2016, 7, 1731–1752. [Google Scholar] [CrossRef]
- Ba, Q.; Chen, Y.; Deng, S.; Wu, Q.; Yang, J.; Zhang, J. An Improved Information Value Model Based on Gray Clustering for Landslide Susceptibility Mapping. ISPRS Int. J. Geo-Inf. 2017, 6, 18. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Feizizadeh, B.; Blaschke, T. An interval matrix method used to optimize the decision matrix in AHP technique for land subsidence susceptibility mapping. Environ. Earth Sci. 2018, 77, 584. [Google Scholar] [CrossRef]
- Dorji, C.; Tomoya, S. Method for Landslide Risk Evaluation and Road Operation Management: A Case Study of Bhutan. J. Constr. Manag. JSCE 2008, 15, 23–31. [Google Scholar]
- Long, S.; McQuarrie, N.; Tobgay, T.; Grujic, D.; Hollister, L. Geologic map of Bhutan. J. Maps 2011, 7, 184–192. [Google Scholar] [CrossRef]
- Sarkar, R.; Dorji, K. Determination of the probabilities of landslide events-A case study of Bhutan. Hydrology 2019, 6, 52. [Google Scholar] [CrossRef] [Green Version]
- Dikshit, A.; Sarkar, R.; Pradhan, B.; Acharya, S.; Dorji, K. Estimating rainfall thresholds for landslide occurrence in the Bhutan Himalayas. Water 2019, 11, 1616. [Google Scholar] [CrossRef] [Green Version]
- Cruden, D.M. A simple definition of a landslide. Bull. Int. Assoc. Eng. Geol. 1991, 43, 27–29. [Google Scholar] [CrossRef]
- Kuenza, K.; Dorji, Y.; Wangda, D. Landslides in Bhutan. Available online: https://www.preventionweb.net/files/14793_SAARClandslide.pdf (accessed on 29 October 2020).
- National Center for Hydrology and Meteorology, R. Bhutan State of the Climate 2017. 2017. Available online: https://www.nchm.gov.bt/home/pageMenu/32 (accessed on 22 September 2018).
- Skidmore, A. Environmental Modelling with GIS and Remote Sensing; CRC Press: Boca Raton, FL, USA, 2002; Volume 30. [Google Scholar]
- MoAF/RGoB Bhutan Land Cover Assessment 2010: Technical Report; National Soil Services Centre & PPD, MoAF: Semtokha, Bhutan, 2011; Volume 2010. Available online: http://www.nssc.gov.bt/wp-content/uploads/2013/08/land-cover.pdf (accessed on 29 October 2020).
- Pawluszek-Filipiak, K.; Oreńczak, N.; Pasternak, M. Investigating the Effect of Cross-Modeling in Landslide Susceptibility Mapping. Appl. Sci. 2020, 10, 6335. [Google Scholar] [CrossRef]
- Greenwood, L.V.; Argles, T.W.; Parrish, R.R.; Harris, N.B.W.; Warren, C. The geology and tectonics of central Bhutan. J. Geol. Soc. Lond. 2016, 173, 352–369. [Google Scholar] [CrossRef] [Green Version]
- Alcántara-Ayala, I.; Esteban-Chávez, O.; Parrot, J.F. Landsliding related to land-cover change: A diachronic analysis of hillslope instability distribution in the Sierra Norte, Puebla, Mexico. Catena 2006, 65, 152–165. [Google Scholar] [CrossRef]
- Beguería, S. Changes in land cover and shallow landslide activity: A case study in the Spanish Pyrenees. Geomorphology 2006, 74, 196–206. [Google Scholar] [CrossRef] [Green Version]
- Promper, C.; Puissant, A.; Malet, J.P.; Glade, T. Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios. Appl. Geogr. 2014, 53, 11–19. [Google Scholar] [CrossRef]
- Marsala, V.; Galli, A.; Paglia, G.; Miccadei, E. Landslide susceptibility assessment of Mauritius Island (Indian ocean). Geosciences 2019, 9, 493. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Yin, G.; Wang, J.G.; Wan, L.; Jin, L. Stability analysis and supporting system design of a high-steep cut soil slope on an ancient landslide during highway construction of Tehran-Chalus. Environ. Earth Sci. 2012, 67, 1651–1662. [Google Scholar] [CrossRef]
- Haigh, M.J.; Rawat, J.S.; Rawat, M.S.; Bartarya, S.K.; Rai, S.P. Interactions between forest and landslide activity along new highways in the Kumaun Himalaya. For. Ecol. Manag. 1995, 78, 173–189. [Google Scholar] [CrossRef]
- Choi, K.Y.; Cheung, R.W.M. Landslide disaster prevention and mitigation through works in Hong Kong. J. Rock Mech. Geotech. Eng. 2013, 5, 354–365. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, B.; Oh, H.J.; Buchroithner, M. Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomat. Nat. Hazards Risk 2010, 1, 199–223. [Google Scholar] [CrossRef]
- Royal Government of Bhutan—National Land Commission, Centre for GIS Coordination. Available online: http://www.geo.gov.bt/ (accessed on 14 September 2018).
- Chung, C.J.F.; Fabbri, A.G. Systematic Procedures of Landslide Hazard Mapping for Risk Assessment Using Spatial Prediction Models. In Landslide Hazard and Risk; John Wiley and Sons: Chichester, UK, 2005; pp. 139–174. [Google Scholar]
- Van Den Eeckhaut, M.; Reichenbach, P.; Guzzetti, F.; Rossi, M.; Poesen, J. Combined landslide inventory and susceptibility assessment based on different mapping units: An example from the Flemish Ardennes, Belgium. Nat. Hazards Earth Syst. Sci. 2009, 9, 507–521. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.B.; Wang, J.; Lü, G.N.; Zhou, P.G.; Hou, S.S.; Xu, S.N. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 2010, 115, 23–31. [Google Scholar] [CrossRef]
- Sema, H.V.; Guru, B.; Veerappan, R. Fuzzy gamma operator model for preparing landslide susceptibility zonation mapping in parts of Kohima Town, Nagaland, India. Model. Earth Syst. Environ. 2017, 3, 499–514. [Google Scholar] [CrossRef]
- Shrestha, S.; Kang, T.-S.; Suwal, M.; Shrestha, S.; Kang, T.-S.; Suwal, M.K. An Ensemble Model for Co-Seismic Landslide Susceptibility Using GIS and Random Forest Method. ISPRS Int. J. Geo-Inf. 2017, 6, 365. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, P.; Ghose, M.K.; Pradhan, R. Analytic hierarchy process and information value method-based landslide susceptibility mapping and vehicle vulnerability assessment along a highway in Sikkim Himalaya. Arab. J. Geosci. 2018, 11, 139. [Google Scholar] [CrossRef]
- Bonham-Carter, F.G. Geographic Information Systems for Geoscientists: Modelling with GIS. 1994. Available online: https://www.sciencedirect.com/book/9780080418674/geographic-information-systems-for-geoscientists (accessed on 29 October 2020).
- Lee, S.; Choi, J. Landslide susceptibility mapping using GIS and the weight-of-evidence model. Int. J. Geogr. Inf. Sci. 2004, 18, 789–814. [Google Scholar] [CrossRef]
- Asadi, H.H.; Hale, M. A predictive GIS model for mapping potential gold and base metal mineralization in Takab area, Iran. Comput. Geosci. 2001, 27, 901–912. [Google Scholar] [CrossRef]
- Romero-Calcerrada, R.; Luque, S. Habitat quality assessment using Weights-of-Evidence based GIS modelling: The case of Picoides tridactylus as species indicator of the biodiversity value of the Finnish forest. Ecol. Modell. 2006, 196, 62–76. [Google Scholar] [CrossRef]
- Armas, I. Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania. Nat. Hazards 2012, 60, 937–950. [Google Scholar] [CrossRef]
- Lee, S. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int. J. Remote Sens. 2005, 26, 1477–1491. [Google Scholar] [CrossRef]
- Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Menard, S.W. Applied Logistic Regression Analysis; Sage Publications: New York, NY, USA, 2002. [Google Scholar]
- Akgun, A. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides 2012, 9, 93–106. [Google Scholar] [CrossRef]
- Gorsevski, P.V.; Gessler, P.E.; Foltz, R.B.; Elliot, W.J. Spatial Prediction of Landslide Hazard Using Logistic Regression and ROC Analysis. Trans. GIS 2006, 10, 395–415. [Google Scholar] [CrossRef]
- Mohammady, M.; Pourghasemi, H.R.; Pradhan, B. Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models. J. Asian Earth Sci. 2012, 61, 221–236. [Google Scholar] [CrossRef]
- Shahabi, H.; Hashim, M. Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Sci. Rep. 2015, 5, 9899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, D.W.; Nikhil, N.V.; Lee, S.R. Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event. Nat. Hazards Earth Syst. Sci. 2013, 13, 2833–2849. [Google Scholar] [CrossRef] [Green Version]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Wang, L.-J.; Guo, M.; Sawada, K.; Lin, J.; Zhang, J. A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network. Geosci. J. 2016, 20, 117–136. [Google Scholar] [CrossRef]
- Pawłuszek, K.; Marczak, S.; Borkowski, A.; Tarolli, P. Multi-aspect analysis of object-oriented landslide detection based on an extended set of LiDAR-derived terrain features. ISPRS Int. J. Geo-Inf. 2019, 8, 321. [Google Scholar] [CrossRef] [Green Version]
- Tien Bui, D.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Comput. Geosci. 2012, 45, 199–211. [Google Scholar] [CrossRef]
- Althuwaynee, O.F.; Pradhan, B.; Lee, S. Application of an evidential belief function model in landslide susceptibility mapping. Comput. Geosci. 2012, 44, 120–135. [Google Scholar] [CrossRef]
- Mathew, J.; Jha, V.K.; Rawat, G.S. Application of binary logistic regression analysis and its validation for landslide susceptibility mapping in part of Garhwal Himalaya, India. Int. J. Remote Sens. 2007, 28, 2257–2275. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B.; Li, Y.; Catani, F.; Pourghasemi, H.R. Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the Three Gorges Reservoir area, China. Comput. Geosci. 2018, 112, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Regmi, N.R.; Giardino, J.R.; Vitek, J.D. Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology 2010, 115, 172–187. [Google Scholar] [CrossRef]
- Chen, T.; Niu, R.; Jia, X. A comparison of information value and logistic regression models in landslide susceptibility mapping by using GIS. Environ. Earth Sci. 2016, 75, 867. [Google Scholar] [CrossRef]
Formation and Unit | Age | Lithology | |
---|---|---|---|
GHIo | Greater Himalayan Zone: Orthogenesis unit | Cambrian– Ordovician | Granite, Paragneiss, Schist, quartzite |
GHImu | Greater Himalayan Zone: Upper metasedimentary unit | Neoproterozoic–Ordovician | Amphibolite, Paragneiss, Quartzite, Schist |
Pzpm | Paro Formation: Middle unit | Cambrian–Ordovician | Quartzite, Marble 10 m thick |
Pzpm2 | Paro Formation: Middle unit (100–200 m thick) | Cambrian–Ordovician | Quartzite, Marble 100–200 m thick |
GHIml | Greater Himalayan Zone: Lower metasedimentary unit | Neoproterozoi–Cambrian | Amphibolite, Quartzite, Schist, Paragneiss |
Pzph | Lesser Himalayan Zone: Phuentsholing Formation (Baxa Group) | Age range uncertain: Neoproterozoic or younger | Slate, Phyllite, Limestone |
pCp | Lesser Himalayan Zone: Pangsari Formation (Baxa Group) | Age range uncertain: Mesoproterozoic–Cambrian | Phyllite, Dolostone, Marble |
pCo | Lesser Himalayan Zone: Orthogneiss (Daling-Shumar Group) | Paleoproterozoic | Granite |
pCs | Lesser Himalayan Zone: Shumar Formation (Daling- Shumar Group) | Paleoproterozoic | Quartzite, Schist, Phyllite |
pCd | Lesser Himalayan Zone: Daling Formation (Daling-Shumar Group) | Paleoproterozoic | Schist, Phyllite |
pZj | Lesser Himalayan Zone: Jaishidanda Formation | Neoproterozoic–Ordovician | Schist, Quartzite |
Training Sample (80%) | Validation Sample (20%) | Total | |
---|---|---|---|
Pixels with Landslide | 2159 | 522 | 2681 |
Pixels without Landslide | 208,524 | 52,360 | 260,884 |
Total | 210,683 | 52,882 | 263,565 |
Collinearity Statistics | ||
---|---|---|
Tolerance | VIF | |
Slope angle | 0.953 | 1.050 |
Aspect | 0.980 | 1.021 |
Elevation | 0.414 | 2.413 |
Distance to road | 0.966 | 1.035 |
Distance to drainage | 0.990 | 1.010 |
Distance to fault lines | 0.856 | 1.168 |
Lithology | 0.396 | 2.527 |
Land cover | 0.982 | 1.018 |
B | S.E. | Wald | df | Sig. | Exp (B) | 95% C.I. for EXP(B) | ||
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Slope angle | 1.419 | 0.092 | 239.425 | 1 | 0.000 | 4.131 | 3.452 | 4.944 |
Aspect | 1.518 | 0.083 | 337.914 | 1 | 0.000 | 4.564 | 3.882 | 5.366 |
Elevation | 0.487 | 0.115 | 18.005 | 1 | 0.000 | 1.628 | 1.300 | 2.039 |
Distance to road | 0.483 | 0.066 | 54.081 | 1 | 0.000 | 1.622 | 1.426 | 1.845 |
Distance to drainage | 0.467 | 0.056 | 69.624 | 1 | 0.000 | 1.596 | 1.430 | 1.781 |
Distance to fault lines | 1.137 | 0.074 | 237.883 | 1 | 0.000 | 3.118 | 2.698 | 3.602 |
Lithology | 1.435 | 0.112 | 163.460 | 1 | 0.000 | 4.200 | 3.371 | 5.234 |
Land cover | 3.882 | 0.059 | 4268.221 | 1 | 0.000 | 48.522 | 43.188 | 54.515 |
Constant | −7.896 | 0.097 | 6693.400 | 1 | 0.000 | 0.000 |
Methods | Information Value | Weight of Evidence | Logistic Regression |
---|---|---|---|
Information Value | 1 | 0.755 ** | 0.699 ** |
Weight of Evidence | 0.755 ** | 1 | 0.845 ** |
Logistic Regression | 0.699 ** | 0.845 ** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasang, S.; Kubíček, P. Landslide Susceptibility Mapping Using Statistical Methods along the Asian Highway, Bhutan. Geosciences 2020, 10, 430. https://doi.org/10.3390/geosciences10110430
Pasang S, Kubíček P. Landslide Susceptibility Mapping Using Statistical Methods along the Asian Highway, Bhutan. Geosciences. 2020; 10(11):430. https://doi.org/10.3390/geosciences10110430
Chicago/Turabian StylePasang, Sangey, and Petr Kubíček. 2020. "Landslide Susceptibility Mapping Using Statistical Methods along the Asian Highway, Bhutan" Geosciences 10, no. 11: 430. https://doi.org/10.3390/geosciences10110430
APA StylePasang, S., & Kubíček, P. (2020). Landslide Susceptibility Mapping Using Statistical Methods along the Asian Highway, Bhutan. Geosciences, 10(11), 430. https://doi.org/10.3390/geosciences10110430