Advancement of the Acetylene Inhibition Technique Using Time Series Analysis on Air-Dried Floodplain Soils to Quantify Denitrification Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Sampling
2.2. Measurements of Soil Physical and Chemical Parameters
2.3. Measurements of Potential Denitrification Rates and Net N2O Emission Rates
2.3.1. Preincubation
2.3.2. Experiment
2.3.3. Gas Chromatography
3. Results
3.1. Selection of Soil Samples for the Time Series Analysis
3.2. Time Series Analysis—The Effects of Rewetting on DEA (N2O Emissions in Treatments with Acetylene)
3.3. Time Series Analysis—The Effects of Rewetting on N2O Emissions in Comparison Between Treatments with and without Acetylene—Denitrification Product Ratio N2O/(N2 + N2O)
3.4. Influence of the Soil Parameters pH, Nmin and FC
4. Discussion
4.1. Denitrification Product Ratio: N2O/(N2O + N2)
4.2. The Influence of Rewetting
4.3. Influence of the Soil Parameters pH, Nmin, and FC
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tockner, K.; Stanford, J.A. Riverine Flood Plains: Present State and Future Trends. Environ. Conserv. 2002, 29, 308–330. [Google Scholar] [CrossRef] [Green Version]
- Hansson, L.A.; Brönmark, C.; Nilsson, P.A.; Åbjörnsson, K. Conflicting Demands on Wetland Ecosystem Services: Nutrient Retention, Biodiversity or Both? Freshw. Biol. 2005, 50, 705–714. [Google Scholar] [CrossRef]
- Jordan, S.J.; Stoffer, J.; Nestlerode, J.A. Wetlands as Sinks for Reactive Nitrogen at Continental and Global Scales: A Meta-Analysis. Ecosystems 2011, 14, 144–155. [Google Scholar] [CrossRef]
- Zedler, J.B. Wetlands at Your Service: Reducing Impacts of Agriculture at the Watershed Scale. Front. Ecol. Environ. 2003, 1, 65–72. [Google Scholar] [CrossRef]
- Wang, S.; Pi, Y.; Song, Y.; Jiang, Y.; Zhou, L.; Liu, W.; Zhu, G. Hotspot of Dissimilatory Nitrate Reduction to Ammonium (DNRA) Process in Freshwater Sediments of Riparian Zones. Water Res. 2020, 173, 115539. [Google Scholar] [CrossRef] [PubMed]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The Microbial Nitrogen-Cycling Network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef]
- Decleyre, H.; Heylen, K.; Van Colen, C.; Willems, A. Dissimilatory Nitrogen Reduction in Intertidal Sediments of a Temperate Estuary: Small Scale Heterogeneity and Novel Nitrate-to-Ammonium Reducers. Front. Microbiol. 2015, 6, 1124. [Google Scholar] [CrossRef]
- Burgin, A.J.; Hamilton, S.K. Have We Overemphasized the Role of Denitrification in Aquatic Ecosystems? A Review of Nitrate Removal Pathways. Front. Ecol. Environ. 2007, 5, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Hefting, M.; Clément, J.C.; Dowrick, D.; Cosandey, A.C.; Bernal, S.; Cimpian, C.; Tatur, A.; Burt, T.P.; Pinay, G. Water Table Elevation Controls on Soil Nitrogen Cycling in Riparian Wetlands along a European Climatic Gradient. Biogeochemistry 2004, 67, 113–134. [Google Scholar] [CrossRef]
- Guo, X.; Drury, C.F.; Yang, X.; Reynolds, W.D.; Fan, R. The Extent of Soil Drying and Rewetting Affects Nitrous Oxide Emissions, Denitrification, and Nitrogen Mineralization. Soil Sci. Soc. Am. J. 2014, 78, 194–204. [Google Scholar] [CrossRef]
- Pinay, G.; Gumiero, B.; Tabacchi, E.; Gimenez, O.; Tabacchi-Planty, A.M.; Hefting, M.M.; Burt, T.P.; Black, V.A.; Nilsson, C.; Iordache, V.; et al. Patterns of Denitrification Rates in European Alluvial Soils under Various Hydrological Regimes. Freshw. Biol. 2007, 52, 252–266. [Google Scholar] [CrossRef]
- Groffman, P.M.; Holland, E.A.; Myrold, D.D.; Robertson, G.P.; Zou, X. Denitrification. In Standard Soil methods for Long-Term Ecological Research; Robertson, G.P., Coleman, D.C., Bledsoe, C.S., Sollins, P., Eds.; Oxford University Press: New York, NY, USA, 1999; pp. 272–288. [Google Scholar]
- Stevens, R.J.; Laughlin, R.J.; Atkins, G.J.; Prosser, S.J. Automated Determination of Nitrogen-15-Labeled Dinitrogen and Nitrous Oxide by Mass Spectrometry. Soil Sci. Soc. Am. J. 1993, 57, 981–988. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Willibald, G.; Papen, H. Soil Core Method for Direct Simultaneous Determination of N2 and N2O Emissions from Forest Soils. Plant Soil 2002, 240, 105–116. [Google Scholar] [CrossRef]
- Groffman, P.M.; Altabet, M.A.; Böhlke, J.K.; Butterbach-Bahl, K.; David, M.B.; Firestone, M.K.; Giblin, A.E.; Kana, T.M.; Nielsen, L.P.; Voytek, M.A. Methods for Measuring Denitrification: Diverse Approaches to a Difficult Problem. Ecol. Appl. 2006, 16, 2091–2122. [Google Scholar] [CrossRef]
- Saggar, S.; Jha, N.; Deslippe, J.; Bolan, N.S.; Luo, J.; Giltrap, D.L.; Kim, D.; Zaman, M.; Tillman, R.W. Denitrification and N2O:N2 Production in Temperate Grasslands: Processes, Measurements, Modelling and Mitigating Negative Impacts. Sci. Total Environ. 2013, 465, 173–195. [Google Scholar] [CrossRef] [PubMed]
- Felber, R.; Conen, F.; Flechard, C.R.; Neftel, A. Theoretical and Practical Limitations of the Acetylene Inhibition Technique to Determine Total Denitrification Losses. Biogeosciences 2012, 9, 4125–4138. [Google Scholar] [CrossRef] [Green Version]
- Qin, S.; Hu, C.; Oenema, O. Quantifying the Underestimation of Soil Denitrification Potential as Determined by the Acetylene Inhibition Method. Soil Biol. Biochem. 2012, 47, 14–17. [Google Scholar] [CrossRef]
- Qin, S.; Yuan, H.; Dong, W.; Hu, C.; Oenema, O.; Zhang, Y. Relationship between Soil Properties and the Bias of N2O Reduction by Acetylene Inhibition Technique for Analyzing Soil Denitrification Potential. Soil Biol. Biochem. 2013, 66, 182–187. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, Z.; Qin, S.; Zhou, S.; Hu, C.; Clough, T.; Wrage-Mönnig, N.; Luo, J.; Conrad, R. Effects of Nitrate and Water Content on Acetylene Inhibition Technique Bias When Analysing Soil Denitrification Rates under an Aerobic Atmosphere. Geoderma 2019, 334, 33–36. [Google Scholar] [CrossRef]
- Dalsgaard, T.; Bak, F. Effect of Acetylene on Nitrous Oxide Reduction and Sulfide Oxidation in Batch and Gradient Cultures of Thiobacillus Denitrificans. Appl. Environ. Microbiol. 1992, 58, 1601–1608. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Seo, D.C.; Delaune, R.D. Incomplete Acetylene Inhibition of Nitrous Oxide Reduction in Potential Denitrification Assay as Revealed by Using 15N-Nitrate Tracer. Commun. Soil Sci. Plant Anal. 2010, 41, 2201–2210. [Google Scholar] [CrossRef]
- Seitzinger, S.P.; Nielsen, L.P.; Caffrey, J.; Christensen, P.B. Denitrification Measurements in Aquatic Sediments: A Comparison of Three Methods. Biogeochemistry 1993, 23, 147–167. [Google Scholar] [CrossRef]
- Wrage, N.; Velthof, G.L.; Oenema, O.; Laanbroek, H.J. Acetylene and Oxygen as Inhibitors of Nitrous Oxide Production in Nitrosomonas Europaea and Nitrosospira Briensis: A Cautionary Tale. FEMS Microbiol. Ecol. 2004, 47, 13–18. [Google Scholar] [CrossRef]
- Watts, S.H.; Seitzinger, S.P. Denitrification Rates in Organic and Mineral Soils from Riparian Sites: A Comparison of N2 Flux and Acetylene Inhibition Methods. Soil Biol. Biochem. 2000, 32, 1383–1392. [Google Scholar] [CrossRef]
- She, D.; Sun, X.; Xia, Y. Combining N2:Ar and Bayesian Methods to Quantify Underestimation and Uncertainty of Sediment Denitrification Determined by the Acetylene Inhibition Method. Water Air Soil Pollut. 2019, 230, 52. [Google Scholar] [CrossRef]
- Liu, R.; Hayden, H.L.; Hu, H.; He, J.; Suter, H.; Chen, D. Effects of the Nitrification Inhibitor Acetylene on Nitrous Oxide Emissions and Ammonia-Oxidizing Microorganisms of Different Agricultural Soils under Laboratory Incubation Conditions. Appl. Soil Ecol. 2017, 119, 80–90. [Google Scholar] [CrossRef]
- Jin, Y.; Jury, W.A. Characterizing the Dependence of Gas Diffusion Coefficient on Soil Properties. Soil Sci. Soc. Am. J. 1996, 60, 66–71. [Google Scholar] [CrossRef]
- Culbertson, C.W.; Zehnder, A.J.B.; Oremland, R.S. Anaerobic Oxidation of Acetylene by Estuarine Sediments and Enrichment Cultures. Appl. Environ. Microbiol. 1981, 41, 396–403. [Google Scholar] [CrossRef] [Green Version]
- Topp, E.; Germon, J.C. Acetylene Metabolism and Stimulation of Denitrification in an Agricultural Soil. Appl. Environ. Microbiol. 1986, 52, 802–806. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Ding, W.; Cai, Z. Long-Term Application of Organic Manure and Nitrogen Fertilizer on N2O Emissions, Soil Quality and Crop Production in a Sandy Loam Soil. Soil Biol. Biochem. 2005, 37, 2037–2045. [Google Scholar] [CrossRef]
- Russell, M.; Fulford, R.; Murphy, K.; Lane, C.; Harvey, J.; Dantin, D.; Alvarez, F.; Nestlerode, J.; Teague, A.; Harwell, M.; et al. Relative Importance of Landscape Versus Local Wetland Characteristics for Estimating Wetland Denitrification Potential. Wetlands 2019, 39, 127–137. [Google Scholar] [CrossRef]
- Smith, M.S.; Tiedje, J.M. Phases of Denitrification Following Oxygen Depletion in Soil. Soil Biol. Biochem. 1979, 11, 261–267. [Google Scholar] [CrossRef]
- Genthner, F.J.; Marcovich, D.T.; Lehrter, J.C. Estimating Rates of Denitrification Enzyme Activity in Wetland Soils with Direct Simultaneous Quantification of Nitrogen and Nitrous Oxide by Membrane Inlet Mass Spectrometry. J. Microb. Biochem. Technol. 2013, 5, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.S.; Parsons, L.L. Persistence of Denitrifying Enzyme Activity in Dried Soils. Appl. Environ. Microbiol. 1985, 49, 316–320. [Google Scholar] [CrossRef] [Green Version]
- Pinay, G.; Black, V.J.; Planty-Tabacchi, A.M.; Gumiero, B.; Décamps, H. Geomorphic Control of Denitrification in Large River Floodplain Soils. Biogeochemistry 2000, 50, 163–182. [Google Scholar] [CrossRef]
- Waters, E.R.; Morse, J.L.; Bettez, N.D.; Groffman, P.M. Differential Carbon and Nitrogen Controls of Denitrification in Riparian Zones and Streams along an Urban to Exurban Gradient. J. Environ. Qual. 2014, 43, 955–963. [Google Scholar] [CrossRef]
- Xiong, Z.; Li, S.; Yao, L.; Liu, G.; Zhang, Q.; Liu, W. Topography and Land Use Effects on Spatial Variability of Soil Denitrification and Related Soil Properties in Riparian Wetlands. Ecol. Eng. 2015, 83, 437–443. [Google Scholar] [CrossRef]
- D’Haene, K.; Moreels, E.; De Neve, S.; Daguilar, B.C.; Boeckx, P.; Hofman, G.; Van Cleemput, O. Soil Properties Influencing the Denitrification Potential of Flemish Agricultural Soils. Biol. Fertil. Soils 2003, 38, 358–366. [Google Scholar] [CrossRef]
- Mukumbuta, I.; Uchida, Y.; Hatano, R. Evaluating the Effect of Liming on N2O Fluxes from Denitrification in an Andosol Using the Acetylene Inhibition and 15N Isotope Tracer Methods. Biol. Fertil. Soils 2018, 54, 71–81. [Google Scholar] [CrossRef]
- Fierer, N.; Schimel, J.P.; Holden, P.A. Influence of Drying-Rewetting Frequency on Soil Bacterial Community Structure. Microb. Ecol. 2003, 45, 63–71. [Google Scholar] [CrossRef]
- Leitner, S.; Homyak, P.M.; Blankinship, J.C.; Eberwein, J.; Jenerette, G.D.; Zechmeister-Boltenstern, S.; Schimel, J.P. Linking NO and N2O Emission Pulses with the Mobilization of Mineral and Organic N upon Rewetting Dry Soils. Soil Biol. Biochem. 2017, 115, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Alldred, M.; Baines, S.B. Effects of Wetland Plants on Denitrification Rates: A Meta-Analysis. Ecol. Appl. 2016, 26, 676–685. [Google Scholar] [CrossRef] [PubMed]
- DIN ISO 10390:2005-12. Bodenbeschaffenheit—Bestimmung des pH-Wertes; Beuth: Berlin, Germany, 2005. [Google Scholar]
- VDLUFA. A 6.1.4.1 Bestimmung von Mineralischem Stickstoff (Nitrat und Ammonium) in Bodenprofilen (Nmin-Labormethode). In Das VDLUFA Methodenbuch—Band I Die Untersuchung von Böden; LUFA: Speyer, Germany, 1991; p. 1655. [Google Scholar]
- DIN ISO 11277:2002-08. Bodenbeschaffenheit—Bestimmung der Partikelgrößenverteilung in Mineralböden—Verfahren Mittels Siebung und Sedimentation. 2002. Available online: https://www.beuth.de/en/standard/din-iso-11277/53934894 (accessed on 15 July 2020). [CrossRef]
- Ad-hoc-AG Boden. Bodenkundliche Kartieranleitung. KA5. 2005. Available online: https://www.schweizerbart.de/publications/detail/isbn/9783510959204 (accessed on 15 July 2020).
- DIN 18126:1996-11. Baugrund, Untersuchung von Bodenproben—Bestimmung der Dichte nichtbindiger Böden bei Lockerster und Dichtester Lagerung. 1996. Available online: https://www.beuth.de/en/standard/din-18126/2863234 (accessed on 15 July 2020). [CrossRef]
- DIN EN 15936:2012-11. Schlamm, Behandelter Bioabfall, Boden und Abfall—Bestimmung des Gesamten Organischen Kohlenstoffs (TOC) Mittels Trockener Verbrennung. 2012. Available online: https://www.beuth.de/en/standard/din-en-15936/149052152 (accessed on 15 July 2020). [CrossRef]
- Luo, J.; Tillman, R.W.; White, R.E.; Ball, P.R. Variation in Denitrification Activity with Soil Depth under Pasture. Soil Biol. Biochem. 1998, 30, 897–903. [Google Scholar] [CrossRef]
- Yoshinari, T.; Hynes, R.; Knowles, R. Acetylene Inhibition of Nitrous Oxide Reduction and Measurement of Denitrification and Nitrogen Fixation in Soil. Soil Biol. Biochem. 1977, 9, 177–183. [Google Scholar] [CrossRef]
- Senbayram, M.; Chen, R.; Budai, A.; Bakken, L.; Dittert, K. N2O Emission and the N2O/(N2O + N2) Product Ratio of Denitrification as Controlled by Available Carbon Substrates and Nitrate Concentrations. Agric. Ecosyst. Environ. 2012, 147, 4–12. [Google Scholar] [CrossRef]
- Welti, N.; Bondar-Kunze, E.; Singer, G.; Tritthart, M.; Zechmeister-Boltenstern, S.; Hein, T.; Pinay, G. Large-scale Controls on Potential Respiration and Denitrification in Riverine Floodplains. Ecol. Eng. 2012, 42, 73–84. [Google Scholar] [CrossRef]
- Menéndez, S.; López-Bellido, R.J.; Benítez-Vega, J.; González-Murua, C.; López-Bellido, L.; Estavillo, J.M. Long-term Effect of Tillage, Crop Rotation and N Fertilization to Wheat on Gaseous Emissions under Rainfed Mediterranean Conditions. Eur. J. Agronomy 2008, 28, 559–569. [Google Scholar] [CrossRef]
- Estavillo, J.M.; Merino, P.; Pinto, M.; Yamulki, S.; Gebauer, G.; Sapek, A.; Corré, W. Short Term Effect of Ploughing a Permanent Pasture on N2O Production from Nitrification and Denitrification. Plant Soil 2002, 239, 253–265. [Google Scholar] [CrossRef]
- Firestone, M.K.; Davidson, E.A. Microbiological Basis of NO and N2O Production and Consumption in Soil. In Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere; Schimel, D.S., Andreae, M.O., Eds.; John Wiley & Sons: Berlin, Germany, 1989; pp. 7–21. [Google Scholar]
- Bremner, J.M.; Blackmer, A.M. Effects of Acetylene and Soil Water Content on Emission of Nitrous Oxide from Soils. Nature 1979, 280, 380–381. [Google Scholar] [CrossRef]
- Drury, C.F.; Findlay, W.I.; McKenney, D.J. Nitric Oxide and Nitrous Oxide Production from Soil: Water and Oxygen Effects. Soil Sci. Soc. Am. J. 1992, 56, 766–770. [Google Scholar] [CrossRef]
- Bollmann, A.; Conrad, R. Influence of O2 Availability on NO and N2O Release by Nitrification and Denitrification in Soils. Glob. Chang. Biol. 1998, 4, 387–396. [Google Scholar] [CrossRef]
- Kool, D.M.; Wrage, N.; Zechmeister-Boltenstern, S.; Pfeffer, M.; Brus, D.; Oenema, O.; Van Groenigen, J.W. Nitrifier Denitrification Can Be a Source of N2O from Soil: A Revised Approach to the Dual-Isotope Labelling Method. Eur. J. Soil Sci. 2010, 61, 759–772. [Google Scholar] [CrossRef]
- Fierer, N.; Schimel, J.P. Effects of Drying-Rewetting Frequency on Soil Carbon and Nitrogen Transformations. Soil Biol. Biochem. 2002, 34, 777–787. [Google Scholar] [CrossRef]
- Muhr, J.; Goldberg, S.D.; Borken, W.; Gebauer, G. Repeated Drying-Rewetting Cycles and Their Effects on the Emission of CO2, N2O, NO, and CH4 in a Forest Soil. J. Plant Nutr. Soil Sci. 2008, 171, 719–728. [Google Scholar] [CrossRef]
- Yanai, Y.; Toyota, K.; Okazaki, M. Effects of Charcoal Addition on N2O Emissions from Soil Resulting from Rewetting Air-Dried Soil in Short-Term Laboratory Experiments. Soil Sci. Plant Nutr. 2007, 53, 181–188. [Google Scholar] [CrossRef]
- Ruser, R.; Flessa, H.; Russow, R.; Schmidt, G.; Buegger, F.; Munch, J.C. Emission of N2O, N2 and CO2 from Soil Fertilized with Nitrate: Effect of Compaction, Soil Moisture and Rewetting. Soil Biol. Biochem. 2006, 38, 263–274. [Google Scholar] [CrossRef]
- Šimek, M.; Jíšová, L.; Hopkins, D.W. What Is the So-Called Optimum pH for Denitrification in Soil? Soil Biol. Biochem. 2002, 34, 1227–1234. [Google Scholar] [CrossRef]
- Šimek, M.; Cooper, J.E. The Influence of Soil pH on Denitrification: Progress towards the Understanding of This Interaction over the Last 50 Years. Eur. J. Soil Sci. 2002, 53, 345–354. [Google Scholar] [CrossRef]
- Liu, B.; Mørkved, P.T.; Frostegård, Å.; Bakken, L.R. Denitrification Gene Pools, Transcription and Kinetics of NO, N2O and N2 Production as Affected by Soil pH Article. FEMS Microbiol. Ecol. 2010, 72, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Zaman, M.; Nguyen, M.L.; Saggar, S. N2O and N2 Emissions from Pasture and Wetland Soils with and without Amendments of Nitrate, Lime and Zeolite under Laboratory Condition. Aust. J. Soil Res. 2008, 46, 526–534. [Google Scholar] [CrossRef]
- Čuhel, J.; Šimek, M.; Laughlin, R.J.; Bru, D.; Chèneby, D.; Watson, C.J.; Philippot, L. Insights into the Effect of Soil pH on N2O and N2 Emissions and Denitrifier Community Size and Activity. Appl. Environ. Microbiol. 2010, 76, 1870–1878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rochester, I.J. Estimating Nitrous Oxide Emissions from Flood-Irrigated Alkaline Grey Clays. Aust. J. Soil Res. 2003, 41, 197–206. [Google Scholar] [CrossRef]
- Zhong, J.; Fan, C.; Zhang, L.; Hall, E.; Ding, S.; Li, B.; Liu, G. Significance of Dredging on Sediment Denitrification in Meiliang Bay, China: A Year Long Simulation Study. J. Environ. Sci. 2010, 22, 68–75. [Google Scholar] [CrossRef]
- Luo, J.; White, R.E.; Ball, P.R.; Tillmann, R.W. Measuring Denitrification Activity in Soils under Pasture: Optimizing Conditions for the Short-Term Denitrification Enzyme Assay and Effects of Soil Storage on Denitrification Activity. So Biol. Biochem. 1996, 28, 409–417. [Google Scholar] [CrossRef]
- Zaman, M.; Nguyen, M.L.; Matheson, F.; Blennerhassett, J.D.; Quin, B.F. Can Soil Amendments (Zeolite or Lime) Shift the Balance between Nitrous Oxide and Dinitrogen Emissions from Pasture and Wetland Soils Receiving Urine or Urea-N? Aust. J. Soil Res. 2007, 45, 543–553. [Google Scholar] [CrossRef]
- Castellano, M.J.; Lewis, D.B.; Kaye, J.P. Response of Soil Nitrogen Retention to the Interactive Effects of Soil Texture, Hydrology, and Organic Matter. J. Geophys. Res. Biogeosci. 2013, 118, 280–290. [Google Scholar] [CrossRef] [Green Version]
- Morley, N.; Baggs, E.M.; Dörsch, P.; Bakken, L. Production of NO, N2O and N2 by Extracted Soil Bacteria, Regulation by NO2− and O2 Concentrations. FEMS Microbiol. Ecol. 2008, 65, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, M.K.; Adams, W.A. Gaseous N Emission during Simultaneous Nitrification–Denitrification Associated with Mineral N Fertilization to a Grassland Soil under Field Conditions. Soil Biol. Biochem. 2000, 32, 1251–1259. [Google Scholar] [CrossRef]
- Hénault, C.; Germon, J.C. NEMIS, a Predictive Model of Denitrification on the Field Scale. Eur. J. Soil Sci. 2000, 51, 257–270. [Google Scholar] [CrossRef]
Combination # | Group | Symbol (Figure 1) | pH Value | Mineral Nitrogen Content mg/100 g DM | Field Capacity vol% | River | |||
---|---|---|---|---|---|---|---|---|---|
Class | Value | Class | Value | Class | Value | ||||
1 | I | ■ | low (pH < 7) | 6.53 | low (Nmin < 1) | 0.206 | I | 34 | Elbe |
2 | ● | 5.93 | 0.451 | II | 43 | Elbe | |||
3 | ▲ | 5.50 | 0.342 | III | 57 | Elbe | |||
4 | II | ■ | Low (pH < 7) | 5.15 | high (Nmin > 1) | 1.974 | I | 34 | Elbe |
5 | ● | 5.90 | 3.024 | II | 43 | Elbe | |||
6 | ▲ | 5.86 | 1.870 | III | 57 | Elbe | |||
7 | III | ■ | high (pH > 7) | 8.66 | low (Nmin < 1) | 0.693 | I | 20 | Rhein |
8 | ● | 8.25 | 0.556 | II | 43 | Rhein | |||
9 | ▲ | 8.30 | 0.648 | III | 51 | Rhein | |||
10 | IV | na | high (pH > 7) | na | high (Nmin > 1) | na | I | na | na |
11 | ● | 7.92 | 2.129 | II | 46 | Main | |||
12.1 12.2 | ▲ △ | 7.80 7.95 | 2.323 2.636 | III | 49 57 | Weser Rhein |
Class | N2O/(N2O + N2) Ratio | |
---|---|---|
pH | pH low/pH high | U = 4123, p < 2.2 × 10−16 (***) |
mineral nitrogen content | Nmin high/Nmin low | U = 2042, p < 0.5374 (-) |
field capacity | FC I/FC II FC I/FC III FC II/FC III | U = 798, p < 0.4648 (-) U = 1208, p < 0.009702 (**) U = 1583, p < 0.008785 (**) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaden, U.S.; Fuchs, E.; Hecht, C.; Hein, T.; Rupp, H.; Scholz, M.; Schulz-Zunkel, C. Advancement of the Acetylene Inhibition Technique Using Time Series Analysis on Air-Dried Floodplain Soils to Quantify Denitrification Potential. Geosciences 2020, 10, 431. https://doi.org/10.3390/geosciences10110431
Kaden US, Fuchs E, Hecht C, Hein T, Rupp H, Scholz M, Schulz-Zunkel C. Advancement of the Acetylene Inhibition Technique Using Time Series Analysis on Air-Dried Floodplain Soils to Quantify Denitrification Potential. Geosciences. 2020; 10(11):431. https://doi.org/10.3390/geosciences10110431
Chicago/Turabian StyleKaden, Ute Susanne, Elmar Fuchs, Christian Hecht, Thomas Hein, Holger Rupp, Mathias Scholz, and Christiane Schulz-Zunkel. 2020. "Advancement of the Acetylene Inhibition Technique Using Time Series Analysis on Air-Dried Floodplain Soils to Quantify Denitrification Potential" Geosciences 10, no. 11: 431. https://doi.org/10.3390/geosciences10110431
APA StyleKaden, U. S., Fuchs, E., Hecht, C., Hein, T., Rupp, H., Scholz, M., & Schulz-Zunkel, C. (2020). Advancement of the Acetylene Inhibition Technique Using Time Series Analysis on Air-Dried Floodplain Soils to Quantify Denitrification Potential. Geosciences, 10(11), 431. https://doi.org/10.3390/geosciences10110431