ENSO and Light-Absorbing Impurities and Their Impact on Snow Albedo in the Sierra Nevada de Santa Marta, Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analyzed Area
2.2. Data Analysis
3. Results
3.1. Daily Variation of Snow Albedo, NDSI, Snow Precipitation, and Temperature
3.2. Impact of ENSO and LAI on SA
4. Discussion
4.1. Influence of NDSI and Snow Precipitation on Snow Albedo
4.2. Impact of Temperature and ENSO on Snow Albedo
4.3. LAI Effect on Decreasing of Snow Albedo
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
The following abbreviations are used in this manuscript. | |
LAI | Light-absorbing impurities |
SDE | snow darkening effect |
ENSO | Niño–Southern Oscillation |
HYSPLIT | Hybrid Single Particle Lagrangian Integrated Trajectory Model |
SNSM | Sierra Nevada de Santa Marta |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NDSI | Normalized Difference Snow Index |
MEI | bi-monthly multivariate ENSO index |
LST | Land Surface Temperature |
SP | Snow Precipitation |
GPM | Global Precipitation Measurement |
MERRA-2 | Modern-Era Retrospective analysis for Research and Applications, Version 2 |
BC | Black Carbon |
OC | Organic Carbon |
VIS | Spectral bands covering the visible |
SWIR | Spectral bands in short-wave infrared |
GDAS | Global Data Assimilation System |
References
- Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ. 1989, 28. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Sam, L.; Bhardwaj, A.; Martín-Torres, F.J. LiDAR remote sensing of the cryosphere: Present applications and future prospects. Remote Sens. Environ. 2016, 177, 125–143. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Joshi, P.K.; Snehmani; Singh, M.K.; Sam, L.; Gupta, R.D. Mapping debris-covered glaciers and identifying factors affecting the accuracy. Cold Reg. Sci. Technol. 2014, 106–107. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Joshi, P.K.; Snehmani; Sam, L.; Singh, M.K.; Singh, S.; Kumar, R. Applicability of Landsat 8 data for characterizing glacier facies and supraglacial debris. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 51–64. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel; Parry, M., Canziani, O., Palutikof, J., Van der Linden, P., Hanson, C., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- IPCC. Fifth Assessment Report—Climate Change 2013; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Myhre, G.D.; Shindell, F.-M.; Bréon, W.; Collins, J.; Fuglestvedt, J.; Huang, D.; Koch, J.-F.; Lamarque, D.; Lee, B.; Mendoza, T.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, Y., Midgley, P.M., Eds.; Cambridge Universuty Press: Cambridge, UK, 2013; pp. 659–740. [Google Scholar]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and Aerosols. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, Y., Midgley, P.M., Eds.; Cambridge Universuty Press: Cambridge, UK, 2013; pp. 571–658. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, Y., Midgley, P.M., Eds.; IPCC: Geneva, Switzerland; Cambridge Universuty Press: Cambridge, UK, 2013. [Google Scholar]
- Wu, L.; Gu, Y.; Jiang, J.H.; Su, H.; Yu, N.; Zhao, C.; Qian, Y.; Zhao, B.; Liou, K.-N.; Choi, Y.-S. Impacts of aerosols on seasonal precipitation and snowpack in California based on convection-permitting WRF-Chem simulations. Atmos. Chem. Phys. 2018, 18, 5529–5547. [Google Scholar] [CrossRef] [Green Version]
- Koren, V.; Schaake, J.; Mitchell, K.; Duan, Q.Y.; Chen, F.; Baker, J.M. A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophys. Res. Atmos. 1999, 104. [Google Scholar] [CrossRef]
- Huybrechts, P.; Oerlemans, J. Evolution of the East Antarctic Ice Sheet: A Numerical Study of Thermo-Mechanical Response Patterns with Changing Climate. Ann. Glaciol. 1988, 11. [Google Scholar] [CrossRef] [Green Version]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Qian, Y.; Yasunari, T.J.; Doherty, S.J.; Flanner, M.G.; Lau, W.K.M.; Ming, J.; Wang, H.; Wang, M.; Warren, S.G.; Zhang, R. Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact. Adv. Atmos. Sci. 2015, 32, 64–91. [Google Scholar] [CrossRef]
- Qian, Y.; Wang, H.; Zhang, R.; Flanner, M.G.; Rasch, P.J. A sensitivity study on modeling black carbon in snow and its radiative forcing over the Arctic and Northern China. Environ. Res. Lett. 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Flanner, M.G.; Zender, C.S.; Hess, P.G.; Mahowald, N.M.; Painter, T.H.; Ramanathan, V.; Rasch, P.J. Springtime warming and reduced snow cover from carbonaceous particles. Atmos. Chem. Phys. 2009, 9, 2481–2497. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.-L.; Liou, K.N. Effect of absorbing aerosols on snow albedo reduction in the Sierra Nevada. Atmos. Environ. 2012, 55, 425–430. [Google Scholar] [CrossRef]
- Warren, S.G.; Wiscombe, W.J. A Model for the Spectral Albedo of Snow. II: Snow Containing Atmospheric Aerosols. J. Atmos. Sci. 1980, 37, 2734–2745. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.E.; Sato, M. Trends of measured climate forcing agents. Proc. Natl. Acad. Sci. USA 2001, 98, 14778–14783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, A.D.; Noone, K.J. Soot in the Arctic snowpack: A cause for perturbations in radiative transfer. Atmos. Environ. 1985, 19, 2045–2053. [Google Scholar] [CrossRef]
- Warren, S.G.; Wiscombe, W.J. Dirty snow after nuclear war. Nature 1985, 313, 467–470. [Google Scholar] [CrossRef]
- Qian, Y.; Flanner, M.G.; Leung, L.R.; Wang, W. Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate. Atmos. Chem. Phys. 2011. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Cvetinović, D.; Stefanović, P.; Marković, Z.; Bakić, V.; Turanjanin, V.; Jovanović, M.; Vučićević, B. GHG (Greenhouse Gases) emission inventory and mitigation measures for public district heating plants in the Republic of Serbia. Energy 2013, 57, 788–795. [Google Scholar] [CrossRef]
- Warren, S.G. Light-Absorbing Impurities in Snow: A Personal and Historical Account. Front. Earth Sci. 2019, 6. [Google Scholar] [CrossRef]
- Seidel, F.C.; Rittger, K.; McKenzie Skiles, S.; Molotch, N.P.; Painter, T.H. Case study of spatial and temporal variability of snow cover, grain size, albedo and radiative forcing in the Sierra Nevada and Rocky Mountain snowpack derived from imaging spectroscopy. Cryosphere 2016. [Google Scholar] [CrossRef] [Green Version]
- Ji, Z.M. Modeling black carbon and its potential radiative effects over the Tibetan Plateau. Adv. Clim. Chang. Res. 2016. [Google Scholar] [CrossRef]
- Oaida, C.M.; Xue, Y.; Flanner, M.G.; Skiles, S.M.K.; De Sales, F.; Painter, T.H. Improving snow albedo processes in WRF/SSiB regional climate model to assess impact of dust and black carbon in snow on surface energy balance and hydrology over western U.S. J. Geophys. Res. 2015. [Google Scholar] [CrossRef] [Green Version]
- Skiles, S.M.K.; Painter, T. Daily evolution in dust and black carbon content, snow grain size, and snow albedo during snowmelt, Rocky Mountains, Colorado. J. Glaciol. 2017, 63. [Google Scholar] [CrossRef] [Green Version]
- Painter, T.H.; Bryant, A.; Skiles, S.M. Radiative forcing by light absorbing impurities in snow from MODIS surface reflectance data. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Rowe, P.M.; Cordero, R.R.; Warren, S.G.; Stewart, E.; Doherty, S.J.; Pankow, A.; Schrempf, M.; Casassa, G.; Carrasco, J.; Pizarro, J.; et al. Black carbon and other light-absorbing impurities in snow in the Chilean Andes. Sci. Rep. 2019, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Tuzet, F.; Dumont, M.; Lafaysse, M.; Picard, G.; Arnaud, L.; Voisin, D.; Lejeune, Y.; Charrois, L.; Nabat, P.; Morin, S. A multilayer physically based snowpack model simulating direct and indirect radiative impacts of light-absorbing impurities in snow. Cryosphere 2017, 11. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Kang, S.; Cong, Z.; Schmale, J.; Sprenger, M.; Li, C.; Yang, W.; Gao, T.; Sillanpää, M.; Li, X.; et al. Light-absorbing impurities enhance glacier albedo reduction in the southeastern Tibetan plateau. J. Geophys. Res. 2017. [Google Scholar] [CrossRef]
- Li, X.; Kang, S.; Zhang, G.; Qu, B.; Tripathee, L.; Paudyal, R.; Jing, Z.; Zhang, Y.; Yan, F.; Li, G.; et al. Light-absorbing impurities in a southern Tibetan Plateau glacier: Variations and potential impact on snow albedo and radiative forcing. Atmos. Res. 2018, 200, 77–87. [Google Scholar] [CrossRef]
- Gelman Constantin, J.; Ruiz, L.; Villarosa, G.; Outes, V.; Bajano, F.N.; He, C.; Bajano, H.; Dawidowski, L. Measurements and modeling of snow albedo at Alerce Glacier, Argentina: Effects of volcanic ash, snow grain size and cloudiness. Cryosphere Discuss. 2020, 2020, 1–32. [Google Scholar] [CrossRef]
- Li, X.; Kang, S.; He, X.; Qu, B.; Tripathee, L.; Jing, Z.; Paudyal, R.; Li, Y.; Zhang, Y.; Yan, F.; et al. Light-absorbing impurities accelerate glacier melt in the Central Tibetan Plateau. Sci. Total Environ. 2017. [Google Scholar] [CrossRef]
- Sarangi, C.; Qian, Y.; Rittger, K.; Bormann, K.J.; Liu, Y.; Wang, H.; Wan, H.; Lin, G.; Painter, T.H. Impact of light-absorbing particles on snow albedo darkening and associated radiative forcing over high-mountain Asia: High-resolution WRF-Chem modeling and new satellite observations. Atmos. Chem. Phys. 2019, 19, 7105–7128. [Google Scholar] [CrossRef] [Green Version]
- Malmros, J.K.; Mernild, S.H.; Wilson, R.; Tagesson, T.; Fensholt, R. Snow cover and snow albedo changes in the central Andes of Chile and Argentina from daily MODIS observations (2000–2016). Remote Sens. Environ. 2018, 209, 240–252. [Google Scholar] [CrossRef] [Green Version]
- Puliafito, S.E.; Bolaño-Ortiz, T.R.; Pascual, R.; Lopez-Noreña, A.; Berná, L. Snow Albedo Reduction in Central Andes by Atmospheric Aerosols: Case Study on the Tunuyán Basin (Argentina). In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 548–553. [Google Scholar] [CrossRef]
- Bolaño-Ortiz, T.R.; Allende, D.G.; Puliafito, S.E.; Pascual-Flores, R.M.; Ruggeri, M.F. Potential deposition of atmospheric aerosols on the snow and albedo reduction in the Mendoza river basin, Argentina. In Proceedings of the 5th iLEAPS Science Conference, Oxford, UK, 11–14 September 2017. [Google Scholar]
- Cereceda-Balic, F.; Vidal, V.; Moosmüller, H.; Lapuerta, M. Reduction of snow albedo from vehicle emissions at Portillo, Chile. Cold Reg. Sci. Technol. 2018, 146, 43–52. [Google Scholar] [CrossRef]
- Klein, A.G.; Stroeve, J. Development and validation of a snow albedo algorithm for the MODIS instrument. Ann. Glaciol. 2002. [Google Scholar] [CrossRef] [Green Version]
- Ruggeri, M.F.; Castesana, P.S.; Bolaño-Ortiz, T.R.; Puliafito, S.E.; Pascual Flores, R.M.; Altamirano, J.C.; Allende, D.G. Identifying Patterns and Sources of Anthropogenic Trace Metals in the Argentine Central Andes by using snow samples and an Atmospheric Dispersion Model. Environ. Sci. Process. Impacts 2020, 1491–1501. [Google Scholar] [CrossRef]
- Koch, D.; Menon, S.; Del Genio, A.; Ruedy, R.; Alienov, I.; Schmidt, G.A. Distinguishing aerosol impacts on climate over the past century. J. Clim. 2009. [Google Scholar] [CrossRef] [Green Version]
- Keegan, K.M.; Albert, M.R.; McConnell, J.R.; Baker, I. Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet. Proc. Natl. Acad. Sci. USA 2014, 111. [Google Scholar] [CrossRef] [Green Version]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar]
- Gertler, C.G.; Puppala, S.P.; Panday, A.; Stumm, D.; Shea, J. Black carbon and the Himalayan cryosphere: A review. Atmos. Environ. 2016, 125. [Google Scholar] [CrossRef]
- Di Mauro, B.; Garzonio, R.; Rossini, M.; Filippa, G.; Pogliotti, P.; Galvagno, M.; Morra Di Cella, U.; Migliavacca, M.; Baccolo, G.; Clemenza, M.; et al. Saharan dust events in the European Alps: Role in snowmelt and geochemical characterization. Cryosphere 2019, 13. [Google Scholar] [CrossRef] [Green Version]
- Schoolmeester, T.; Johansen, K.S.; Alfthan, B.; Baker, E.; Hesping, M.; Verbist, K. The Andean Glacier and Water Atlas—The Impact of Glacier Retreat on Water Resources; UNESCO and GRID-Arenda: Paris, France, 2018; ISBN 978-92-3-100286-1. [Google Scholar]
- Molina, L.T.; Andrade, M.; Baumgardner, D.; Casassa, G.; Dawidowski, L.; Garreaud, R.; Huneeus, N.; Lambert, F. Pollution and its Impacts on the South American Cryosphere. Earth’s Future 2015, 3, 345–369. [Google Scholar] [CrossRef]
- Kaser, G. A review of the modern fluctuations of tropical glaciers. Glob. Planet. Chang. 1999, 22. [Google Scholar] [CrossRef]
- Morris, J.N.; Poole, A.J.; Klein, A.G. Retreat of Tropical Glaciers in Colombia and Venezuela from 1984 to 2004 as Measured from ASTER and Landsat Images. In Proceedings of the 63rd Eastern Snow Conference, Newark, DE, USA, 7–9 June 2006. [Google Scholar]
- Rekowsky, I.C.; Bremer, U.F.; Veettil, B.K. Variações de área das geleiras da colômbia e da venezuela entre 1985 e 2015, com dados de sensoriamento remoto. Geosci. Geociênc. 2018, 37. [Google Scholar] [CrossRef]
- Ceballos, J.L.; Euscátegui, C.; Ramírez, J.; Cañon, M.; Huggel, C.; Haeberli, W.; Machguth, H. Fast shrinkage of tropical glaciers in Colombia. Ann. Glaciol. 2006, 43, 194–201. [Google Scholar] [CrossRef] [Green Version]
- Rabatel, A.; Ceballos, J.L.; Micheletti, N.; Jordan, E.; Braitmeier, M.; González, J.; Mölg, N.; Ménégoz, M.; Huggel, C.; Zemp, M. Toward an imminent extinction of Colombian glaciers? Geogr. Ann. Ser. A Phys. Geogr. 2018, 100, 75–95. [Google Scholar] [CrossRef]
- Rabatel, A.; Francou, B.; Soruco, A.; Gomez, J.; Cáceres, B.; Ceballos, J.L.; Basantes, R.; Vuille, M.; Sicart, J.-E.; Huggel, C.; et al. Current state of glaciers in the tropical Andes: A multi-century perspective on glacier evolution and climate change. Cryosphere 2013, 7, 81–102. [Google Scholar] [CrossRef] [Green Version]
- Poveda, G.; Pineda, K. Reassessment of Colombia’s tropical glaciers retreat rates: Are they bound to disappear during the 2010–2020 decade? Adv. Geosci. 2009, 22. [Google Scholar] [CrossRef] [Green Version]
- IDEAM—Instituto de Hidrología Meteorología y Estudios Ambientales Glaciares en Colombia. Available online: http://www.ideam.gov.co/web/ecosistemas/glaciares-colombia (accessed on 28 July 2020).
- IDEAM—Instituto de Hidrología Meteorología y Estudios Ambientales Sierra Nevada de Santa Marta. Available online: http://www.ideam.gov.co/web/ecosistemas/sierra-nevada-santa-marta (accessed on 28 July 2020).
- Dussaillant, I.; Berthier, E.; Brun, F.; Masiokas, M.; Hugonnet, R.; Favier, V.; Rabatel, A.; Pitte, P.; Ruiz, L. Two decades of glacier mass loss along the Andes. Nat. Geosci. 2019, 12, 802–808. [Google Scholar] [CrossRef]
- Granados, H.D.; Miranda, P.J.; Núñez, G.C.; Alzate, B.P.; Mothes, P.; Roa, H.M.; Cáceres Correa, B.E.; Ramos, J.C. Chapter 17—Hazards at Ice-Clad Volcanoes: Phenomena, Processes, and Examples From Mexico, Colombia, Ecuador, and Chile. In Snow and Ice-Related Hazards, Risks and Disasters; Whiteman, C.A., Shroder, J.F., Haeberli, W., Eds.; Academic Press: Boston, MA, USA, 2015; pp. 607–646. ISBN 978-0-12-394849-6. [Google Scholar]
- Vuille, M.; Francou, B.; Wagnon, P.; Juen, I.; Kaser, G.; Mark, B.G.; Bradley, R.S. Climate change and tropical Andean glaciers: Past, present and future. Earth Sci. Rev. 2008, 89, 79–96. [Google Scholar] [CrossRef] [Green Version]
- López-Moreno, J.I.; Ceballos, J.L.; Rojas-Heredia, F.; Zabalza-Martinez, J.; Vidaller, I.; Revuelto, J.; Alonso-González, E.; Morán-Tejeda, E.; García-Ruiz, J.M. Topographic control of glacier changes since the end of the Little Ice Age in the Sierra Nevada de Santa Marta mountains, Colombia. J. S. Am. Earth Sci. 2020, 104, 102803. [Google Scholar] [CrossRef]
- Cardona, A.; Valencia, V.; Bustamante, C.; García-Casco, A.; Ojeda, G.; Ruiz, J.; Saldarriaga, M.; Weber, M. Tectonomagmatic setting and provenance of the Santa Marta Schists, northern Colombia: Insights on the growth and approach of Cretaceous Caribbean oceanic terranes to the South American continent. J. S. Am. Earth Sci. 2010, 29, 784–804. [Google Scholar] [CrossRef]
- Margin, C.; Recent, F.; Data, G. Basement configuration of the northwestern South America—Caribbean margin from recent geophysical data. CT&F Cienc. Tecnol. Futuro 2007, 3, 25–49. [Google Scholar]
- IDEAM. Glaciares de Colombia más que Montañas con Hielo; LibroEditor: Bogotá, Colombia, 2012; ISBN 978-958-8067-57-5.
- PNNC Parques Nacionales Naturales de Colombia. Available online: http://www.parquesnacionales.gov.co/portal/es/ecoturismo/region-caribe/parque-nacional-natural-sierra-nevada-de-santa-marta-2/ (accessed on 29 July 2020).
- DANE Statistics by Demography and Population in Colombia. Available online: https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion (accessed on 29 July 2020).
- Lyapustin, A.; Wang, Y.; Xiong, X.; Meister, G.; Platnick, S.; Levy, R.; Franz, B.; Korkin, S.; Hilker, T.; Tucker, J.; et al. Scientific impact of MODIS C5 calibration degradation and C6+ improvements. Atmos. Meas. Tech. 2014, 7. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; Di Girolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Cara, L.; Masiokas, M.; Viale, M.; Villalba, R. Análisis de la Cobertura Nival de la Cuenca Superior del Río Mendoza a Partir de Imágenes Modis. Meteorológica 2016, 41, 21–36. [Google Scholar] [CrossRef]
- Rittger, K.; Painter, T.H.; Dozier, J. Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour. 2013, 51. [Google Scholar] [CrossRef]
- Mernild, S.H.; Malmros, J.K.; Yde, J.C.; Wilson, R.; Knudsen, N.T.; Hanna, E.; Fausto, R.S.; van As, D. Albedo decline on Greenland’s Mittivakkat Gletscher in a warming climate. Int. J. Climatol. 2015, 35. [Google Scholar] [CrossRef]
- Liang, S.; Stroeve, J.; Box, J.E. Mapping daily snow/ice shortwave broadband albedo from Moderate Resolution Imaging Spectroradiometer (MODIS): The improved direct retrieval algorithm and validation with Greenland in situ measurement. J. Geophys. Res. D Atmos. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Dozier, J.; Painter, T.H.; Rittger, K.; Frew, J.E. Time-space continuity of daily maps of fractional snow cover and albedo from MODIS. Adv. Water Resour. 2008, 31. [Google Scholar] [CrossRef]
- Klein, A.G.; Barnett, A.C. Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 2000–2001 snow year. Remote Sens. Environ. 2003, 86, 162–176. [Google Scholar] [CrossRef]
- Williamson, S.N.; Hik, D.S.; Gamon, J.A.; Kavanaugh, J.L.; Koh, S. Evaluating cloud contamination in clear-sky MODIS Terra daytime land surface temperatures using ground-based meteorology station observations. J. Clim. 2013, 26. [Google Scholar] [CrossRef]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140. [Google Scholar] [CrossRef]
- Nwaerema, P.; Vincent, O.N.; Amadou, C.; Morrison, A.I. Spatial Assessment of Land Surface Temperature and Emissivity in the Tropical Littoral City of Port Harcourt, Nigeria. Int. J. Environ. Clim. Chang. 2019. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007. [Google Scholar] [CrossRef]
- Huffman, G.; Bolvin, D. TRMM and Other Data Precipitation Data Set Documentation; NASA: Greenbelt, MD, USA, 2007. [Google Scholar] [CrossRef]
- Joyce, R.J.; Xie, P. Kalman Filter–Based CMORPH. J. Hydrometeorol. 2011, 12, 1547–1563. [Google Scholar] [CrossRef]
- Navinya, C.D.; Vinoj, V.; Pandey, S.K. Evaluation of PM2.5 Surface Concentrations Simulated by NASA’s MERRA Version 2 Aerosol Reanalysis over India and its Relation to the Air Quality Index. Aerosol Air Qual. Res. 2020, 20, 1329–1339. [Google Scholar] [CrossRef] [Green Version]
- Randles, C.A.; da Silva, A.M.; Buchard, V.; Colarco, P.R.; Darmenov, A.; Govindaraju, R.; Smirnov, A.; Holben, B.; Ferrare, R.; Hair, J.; et al. The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I: System Description and Data Assimilation Evaluation. J. Clim. 2017, 30, 6823–6850. [Google Scholar] [CrossRef]
- Global Modeling and Assimilation Office (GMAO). Goddard Earth Sciences Data and Information Services Center (GES DISC). Available online: https://doi.org/10.5067/FH9A0MLJPC7N (accessed on 30 September 2020).
- NOAA. NOAA—Physical Sciences Laboratory. Available online: https://psl.noaa.gov/enso/mei/ (accessed on 28 July 2020).
- Prieto, M.D.R. ENSO signals in South America: Rains and floods in the Paraná River region during colonial times. Clim. Chang. 2007, 83. [Google Scholar] [CrossRef]
- Quinn, W.H.; Neal, V.T. The historical record of El Niño events. In Climate Since A.D. 1500: Revised Edition; Routledge: London, UK, 2003. [Google Scholar]
- Wolter, K.; Timlin, M.S. El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol. 2011, 31. [Google Scholar] [CrossRef]
- Riggs, G.; Hall, D. MODIS Snow Products Collection 6 User Guide; National Snow and Ice Data Center: Boulder, CO, USA, 2015; p. 66. [Google Scholar]
- GMAO—Global Modeling and Assimilation Office. Goddard Earth Sciences Data and Information Services Center (GES DISC). Available online: http://doi.org/10.5067/KLICLTZ8EM9D (accessed on 14 August 2020).
- IDEAM. Erosion de los Suelos en Colombia Linea Base Periodo 2010–2011. Available online: http://www.ideam.gov.co/galeria-de-mapas/-/document_library_display/4VnjNLZDi78B/view/512114 (accessed on 28 July 2020).
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- IDEAM; U.D.C.A. Protocolo para la Identificación y Evaluación de la Degradación de Suelos por Erosión; IDEAM: Bogotá, Colombia, 2015; ISBN 978-958-8067-80-3.
- Flanner, M.G.; Zender, C.S. Linking snowpack microphysics and albedo evolution. J. Geophys. Res. 2006, 111, D12208. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Li, W.; Li, W.; Liu, X. An observational study of snow aging and the seasonal variation of snow albedo by using data from Col de Porte, France. Chin. Sci. Bull. 2014, 59, 4881–4889. [Google Scholar] [CrossRef]
- Brown, R.D.; Robinson, D.A. Snow and Snow Cover BT—Encyclopedia of World Climatology; Oliver, J.E., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 658–663. ISBN 978-1-4020-3266-0. [Google Scholar]
- Tooming, H.; Kadaja, J. Snow cover and surface albedo in Estonia. Meteorol. Z. 2000, 9. [Google Scholar] [CrossRef]
- Bolaño-Ortiz, T.R.; Pascual-Flores, R.M.; López-Noreña, A.I.; Ruggeri, M.F.; Lakkis, S.G.; Fernández, R.P.; Puliafito, S.E. Assessment of absorbing aerosols on austral spring snow albedo reduction by several basins in the Central Andes of Chile from daily satellite observations (2000–2016) and a case study with the WRF-Chem model. SN Appl. Sci. 2019, 1, 1352. [Google Scholar] [CrossRef] [Green Version]
- Bolaño-Ortiz, T.R.; Ruggeri, M.F.; Pascual-Flores, R.M.; Allende, D.G.; Lakkis, S.G.; Puliafito, S.E. Relationship between anthropic pollution in the Santiago Metropolitan Region and the decrease of snow albedo on the Maipo river basin, Chile. In Proceedings of the 2018 Joint 14th iCACGP Quadrennial Symposium/15th IGAC Science Conference, Takamatsu, Japan, 25–29 September 2018. [Google Scholar]
- Poveda, G.; Waylen, P.R.; Pulwarty, R.S. Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 234. [Google Scholar] [CrossRef]
- Haylock, M.R.; Peterson, T.C.; Alves, L.M.; Ambrizzi, T.; Anunciação, Y.M.T.; Baez, J.; Barros, V.R.; Berlato, M.A.; Bidegain, M.; Coronel, G.; et al. Trends in total and extreme South American rainfall in 1960-2000 and links with sea surface temperature. J. Clim. 2006, 19. [Google Scholar] [CrossRef]
- Vuille, M.; Bradley, R.S.; Werner, M.; Keimig, F. 20th century climate change in the tropical Andes: Observations and model results. Clim. Chang. 2003, 59, 75–99. [Google Scholar] [CrossRef]
- Morán-Tejeda, E.; Ceballos, J.L.; Peña, K.; Lorenzo-Lacruz, J.; López-Moreno, J.I. Recent evolution and associated hydrological dynamics of a vanishing tropical Andean glacier: Glaciar de Conejeras, Colombia. Hydrol. Earth Syst. Sci. 2018, 22, 5445–5461. [Google Scholar] [CrossRef] [Green Version]
- Vuille, M.; Bradley, R.S.; Keimig, F. Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. J. Geophys. Res. Atmos. 2000, 105. [Google Scholar] [CrossRef] [Green Version]
- Painter, T.H.; Barrett, A.P.; Landry, C.C.; Neff, J.C.; Cassidy, M.P.; Lawrence, C.R.; McBride, K.E.; Farmer, G.L. Impact of disturbed desert soils on duration of mountain snow cover. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Bergstrom, A.; Gooseff, M.N.; Myers, M.; Doran, P.T.; Cross, J.M. The seasonal evolution of albedo across glaciers and the surrounding landscape of Taylor Valley, Antarctica. Cryosphere 2020, 14, 769–788. [Google Scholar] [CrossRef] [Green Version]
- Kutuzov, S.; Shahgedanova, M.; Mikhalenko, V.; Ginot, P.; Lavrentiev, I.; Kemp, S. High-resolution provenance of desert dust deposited on Mt. Elbrus, Caucasus in 2009–2012 using snow pit and firn core records. Cryosphere 2013, 7. [Google Scholar] [CrossRef] [Green Version]
- Meinander, O.; Dagsson-Waldhauserova, P.; Arnalds, O. Icelandic volcanic dust can have a significant influence on the cryosphere in Greenland and elsewhere. Polar Res. 2016, 35. [Google Scholar] [CrossRef] [Green Version]
- Skiles, S.M.K.; Painter, T.H. Toward Understanding Direct Absorption and Grain Size Feedbacks by Dust Radiative Forcing in Snow With Coupled Snow Physical and Radiative Transfer Modeling. Water Resour. Res. 2019, 55. [Google Scholar] [CrossRef]
- Thompson, L.G. A high-resolution millennial record of the south Asian monsoon from Himalayan ice cores. Science 2000, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conway, H.; Gades, A.; Raymond, C.F. Albedo of dirty snow during conditions of melt. Water Resour. Res. 1996, 32, 1713–1718. [Google Scholar] [CrossRef]
- IDEAM Sistema de Información Ambiental para Colombia—SIAC. Available online: http://www.siac.gov.co/incendios (accessed on 7 October 2020).
Parameters | Product | Version | Resolution | Source | Reference | ||
---|---|---|---|---|---|---|---|
Spatial | Temporal | Satellite | Reanalysis | ||||
Snow albedo (SA) | MOD10A1, MYD10A1 | V6 | 0.5 km | Daily | Terra and Aqua | [71,73,74,75,76,77] | |
Normalized difference snow index (NDSI) | MOD10A1, MYD10A1 | V6 | 0.5 km | Daily | Terra and Aqua | [71,73,74,75,76,77] | |
Land Surface Temperature (LST) | MOD11A1, MYD11A1 | V6 | 1 km | Daily | Terra and Aqua | [78,79,80] | |
Precipitation | 3IMERGDF | V6 | 0.1 deg | Daily | GPM | [81,82,83] | |
Black carbon column mass density | M2T1NXAER | V5.12.4 | 0.5 × 0.625 deg | Monthly | GPM | MERRA-2 | [84,85,86] |
Organic carbon column mass density | M2T1NXAER | V5.12.4 | 0.5 × 0.625 deg | Monthly | GPM | MERRA-2 | [84,85,86] |
Dust column mass density | M2TMNXAER | V5.12.4 | 0.5 × 0.625 deg | Monthly | GPM | MERRA-2 | [84,85,86] |
ENSO index | MEI | V2 | - | Bi-monthly | JRA-55 global | [87,88,89,90] |
Area | Period | NDSI | LST | SP | ENSO (+) | ENSO (−) | BC | OC | Dust | Bc + Oc + Dust |
---|---|---|---|---|---|---|---|---|---|---|
Whole area | JF | 0.069 | −0.008 | 0.419 *** | 0.005 | 0.102 | 0.195 | 0.154 | 0.067 | 0.112 |
MA | 0.009 | −0.392 ** | 0.760 *** | 0.048 | 0.009 | 0.059 | 0.024 | 0.019 | 0.027 | |
MJ | 0.132 | 0.165 | 0.536 *** | 0.105 | 0.099 | 0.393 ** | 0.330 ** | −0.309 * | −0.284 * | |
JA | 0.254 | 0.042 | 0.382 ** | −0.238 | 0.103 | 0.294 * | 0.234 | 0.002 | 0.019 | |
SO | 0.508 *** | −0.099 | 0.519 *** | −0.300 * | −0.049 | 0.038 | −0.03 | −0.363 ** | −0.348 ** | |
ND | 0.472 *** | −0.293 * | 0.701 *** | −0.377 ** | 0.003 | 0.259 | 0.17 | −0.367 ** | −0.233 | |
Northern area | JF | 0.242 | −0.146 | 0.360 ** | −0.132 | −0.003 | 0.16 | 0.118 | −0.017 | 0.039 |
MA | 0.176 | −0.550 *** | 0.734 *** | 0.045 | −0.091 | −0.083 | −0.126 | −0.019 | −0.063 | |
MJ | 0.204 | 0.203 | 0.564 *** | 0.087 | 0.017 | 0.360 ** | 0.290 * | −0.276 | −0.254 | |
JA | 0.062 | −0.046 | 0.396 ** | −0.279 * | 0.091 | 0.269 * | 0.204 | 0.023 | 0.038 | |
SO | 0.407 *** | 0.000 | 0.482 *** | −0.368 ** | −0.08 | 0.166 | 0.087 | −0.272 * | −0.244 | |
ND | 0.576 *** | −0.398 ** | 0.754 *** | −0.408 *** | −0.03 | 0.169 | 0.093 | −0.407 *** | −0.292 * | |
Southwestern area | JF | 0.288 * | −0.222 | 0.430 *** | −0.189 | −0.026 | 0.124 | 0.076 | 0.025 | 0.05 |
MA | 0.143 | −0.468 *** | 0.762 *** | −0.065 | −0.086 | −0.047 | −0.089 | −0.009 | −0.04 | |
MJ | 0.016 | 0.153 | 0.641 *** | 0.06 | 0.025 | 0.462 *** | 0.384 ** | −0.374 ** | −0.345 ** | |
JA | 0.145 | −0.05 | 0.369 ** | −0.239 | 0.091 | 0.270 * | 0.214 | −0.046 | −0.032 | |
SO | 0.529 *** | −0.051 | 0.435 *** | −0.359 ** | 0.016 | 0.074 | 0.008 | −0.249 | −0.235 | |
ND | 0.492 *** | −0.362 ** | 0.763 *** | −0.424 *** | −0.02 | 0.225 | 0.153 | −0.412 *** | −0.275 * | |
Southeast area | JF | 0.243 | −0.09 | 0.343 ** | −0.092 | 0.066 | 0.300 * | 0.259 | 0.147 | 0.21 |
MA | −0.021 | −0.334 ** | 0.630 *** | −0.059 | −0.026 | 0.072 | 0.028 | −0.081 | −0.065 | |
MJ | 0.199 | 0.151 | 0.601 *** | 0.101 | −0.01 | 0.318 ** | 0.259 | −0.487 *** | −0.467 *** | |
JA | 0.125 | −0.008 | 0.416 *** | −0.265 * | 0.002 | 0.246 | 0.187 | −0.004 | 0.009 | |
SO | 0.334 ** | −0.037 | 0.397 ** | −0.195 | −0.086 | 0.131 | 0.041 | −0.343 ** | −0.318 ** | |
ND | 0.449 *** | −0.353 ** | 0.768 *** | −0.280 * | −0.071 | 0.197 | 0.13 | −0.432 *** | −0.300 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolaño-Ortiz, T.R.; Diaz-Gutiérrez, V.L.; Camargo-Caicedo, Y. ENSO and Light-Absorbing Impurities and Their Impact on Snow Albedo in the Sierra Nevada de Santa Marta, Colombia. Geosciences 2020, 10, 437. https://doi.org/10.3390/geosciences10110437
Bolaño-Ortiz TR, Diaz-Gutiérrez VL, Camargo-Caicedo Y. ENSO and Light-Absorbing Impurities and Their Impact on Snow Albedo in the Sierra Nevada de Santa Marta, Colombia. Geosciences. 2020; 10(11):437. https://doi.org/10.3390/geosciences10110437
Chicago/Turabian StyleBolaño-Ortiz, Tomás R., Viverlys L. Diaz-Gutiérrez, and Yiniva Camargo-Caicedo. 2020. "ENSO and Light-Absorbing Impurities and Their Impact on Snow Albedo in the Sierra Nevada de Santa Marta, Colombia" Geosciences 10, no. 11: 437. https://doi.org/10.3390/geosciences10110437
APA StyleBolaño-Ortiz, T. R., Diaz-Gutiérrez, V. L., & Camargo-Caicedo, Y. (2020). ENSO and Light-Absorbing Impurities and Their Impact on Snow Albedo in the Sierra Nevada de Santa Marta, Colombia. Geosciences, 10(11), 437. https://doi.org/10.3390/geosciences10110437