Evaluation of Flow Resistance Models Based on Field Experiments in a Partly Vegetated Reclamation Channel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area
- -
- Cross sections 1–2: 39 m;
- -
- Cross sections 2–3: 28 m;
- -
- Cross sections 3–4: 27 m;
- -
- Cross sections 4–5: 70 m;
- -
- Cross sections 5–6: 35 m.
2.2. Field Hydrodynamic Experiments
2.3. Measurements of the Morphometrical Vegetation Properties
2.4. Measurements of the Hydrodynamic Characteristics
2.5. Partial Riparian Vegetation Coverage
2.6. Measured Vegetative Chézy’s Flow Resistance Coefficients: Cr, meas
2.7. Modeled Vegetative Chézy’s Flow Resistance Coefficients: Cr,mod
2.7.1. Bp and S&S Resistance Predictor Models
2.7.2. DCM and Composite Cross Section Methods
2.8. Comparative Analysis between Cr,mod and Cr,meas
3. Results
3.1. Measured Vegetative Chézy’s Flow Resistance Coefficients: Cr,meas
3.1.1. Field Morphometrical Vegetation Properties
3.1.2. Cross Sectional Velocity Distributions
3.1.3. Bp and S&S Combined with Composite Cross Section Methods
3.1.4. Comparative Analysis between Cr,mod and Cr,meas
4. Discussion
5. Conclusions
Notation
a | projected riparian plant area per volume |
ADV | acoustic Doppler velocimeter |
B | width of the ADV cross section |
Bp | Baptist et al. (2007) resistance predictor model |
Baptist et al. (2007) resistance predictor model results for flow rate Q2 | |
Baptist et al. (2007) resistance predictor model results for flow rate Q3 | |
Cb | Chézy’s coefficient flow resistance due to the bed roughness |
CD | stem’s drag coefficient |
CFD | computational fluid dynamics |
Cr | vegetative Chézy’s flow resistance coefficient |
Cr, meas | measured vegetative Chézy’s flow resistance coefficient |
Cr, meod | modeled vegetative Chézy’s flow resistance coefficient |
d | average stems’ diameter |
DCM | divided channel method |
f” | vegetative Darcy-Weisbach’s friction factor |
g | gravity acceleration |
h | water level at bankfull of the entire ADV cross section |
hi | water level at bankfull of each DCM sub-section |
hv | plants’ height from the bottom of the vegetated reclamation channel |
ks | characteristic bed roughness coefficient, equal to 50 m1/2 s−1 for sand |
m | vegetation density of the entire ADV cross section |
mi | vegetation density of each DCM sub-section |
N | number of the DCM sub-sections |
n | Manning’s hydraulic roughness coefficient |
num. | number of stems recorded in each measuring cross section |
Q2 | first examined flow rate, equal to 0.16 m3 s−1 |
Q3 | second examined flow rate, equal to 0.33 m3 s−1 |
R | hydraulic radius of the entire ADV cross section |
Ri | hydraulic radius of each DCM sub-section |
Re | Reynolds number |
S&S | Stone and Shen (2002) resistance predictor model |
Stone and Shen (2002) resistance predictor model results for flow rate Q2 | |
Stone and Shen (2002) resistance predictor model results for flow rate Q3 | |
U | average flow velocity |
u | instantaneous flow velocity |
relative prediction error | |
λ | riparian vegetation surface density |
ν | kinematic viscosity of water, equal to approximately 10−6 m2 s−1 |
π | pi, equal to approximately 3.14 |
σ | flow cross sectional area of the entire ADV cross section |
σi | flow cross sectional area of each DCM sub-section |
χ | wetted perimeter of the entire ADV cross section |
χi | wetted perimeter of each DCM sub-section |
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Errico, A.; Lama, G.F.C.; Francalanci, S.; Chirico, G.B.; Solari, L.; Preti, F. Flow dynamics and turbulence patterns in a reclamation channel colonized by Phragmites australis (common reed) under different scenarios of vegetation management. Ecol. Eng. 2019, 133, 39–52. [Google Scholar] [CrossRef]
- Rowinski, P.M.; Västilä, K.; Aberle, J.; Järvelä, J.; Kalinovska, M.B. How vegetation can aid in coping with river management challenges: A brief review. Ecohydrol. Hydrobiol. 2018, 8, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Lama, G.F.C.; Errico, A.; Francalanci, S.; Chirico, G.B.; Solari, L.; Preti, F. Comparative analysis of modeled and measured vegetative Chézy’s flow resistance coefficients in a reclamation channel vegetated by dormant riparian reed. In Proceedings of the International IEEE Workshop on Metrology for Agriculture and Forestry, Portici, Italy, 24–26 October 2019. [Google Scholar]
- Vargas-Luna, A.; Crosato, A.; Uijttewaal, W.S.J. Effects of vegetation on flow and sediment transport: Comparative analyses and validation of predicting model. Earth Surf. Proc. Land. 2015, 40, 157–176. [Google Scholar] [CrossRef]
- Errico, A.; Pasquino, V.; Maxwald, M.; Chirico, G.B.; Solari, L.; Preti, F. The effect of flexible vegetation on flow in reclamation channels. Estimation of roughness coefficients at real scale. Ecol. Eng. 2018, 120, 411–421. [Google Scholar] [CrossRef]
- Västilä, K.; Järvelä, J. Modeling the flow resistance of woody vegetation using physically based properties of the foliage and stem. Water Resour. Res. 2014, 50, 229–245. [Google Scholar] [CrossRef]
- Caroppi, G.; Västilä, K.; Järvelä, J.; Rowinski, P.M.; Giugni, M. Turbulence at water-vegetation interface in open channel flow: Experiments with natural-like plants. Adv. Water Resour. 2019, 127, 180–191. [Google Scholar] [CrossRef]
- Baptist, M.J.; Babovic, V.; Rodríguez, J.; Keijzer, M.; Uittenbogaard, R.; Mynett, A.; Verwey, A. On inducing equations for vegetation resistance. J. Hydraul. Res. 2007, 45, 435–450. [Google Scholar] [CrossRef]
- Stone, B.M.; Shen, H.T. Hydraulic resistance of flow in channels with cylindrical roughness. J. Hydraul. Eng. 2002, 128, 500–506. [Google Scholar] [CrossRef]
- Errico, A.; Lama, G.F.C.; Francalanci, S.; Chirico, G.B.; Solari, L.; Preti, F. Validation of global flow resistance models in two experimental reclamation channels covered by Phragmites australis (common reed). In Proceedings of the 38th IAHR World Congress, Panama City, Panama, 1–6 September 2019. [Google Scholar]
- Chow, V.T. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Colebatch, G.T. Model tests on the Lawrence Canal roughness coefficients. J. Inst. Civil Eng. (Australia) 1941, 13, 27–32. [Google Scholar]
- Horton, R.E. Separate roughness coefficients for channel bottoms and sides. Eng. News-Rec. 1933, 111, 652–653. [Google Scholar]
- Pavlovskii, N.N. On a design formula for uniform flow in channels with nonhomogeneous walls. Trans. All-Union Sci. Res. Inst. Hydraulic Eng. 1931, 3, 157–164. (In German) [Google Scholar]
- Yen, B.C. Open channel flow resistance. J. Hydraul. Eng. 2002, 128, 20–39. [Google Scholar] [CrossRef]
- Scotto di Perta, E.; Agizza, M.A.; Sorrentino, G.; Boccia, L.; Pindozzi, S. Study of aerodynamic performance of different wind tunnel configurations and air inlet velocities, using computational fluid dynamics (CFD). Comput. Electron. Agr. 2016, 125, 137–148. [Google Scholar] [CrossRef]
- Caroppi, G.; Gualtieri, P.; Fontana, N.; Giugni, M. Vegetated channel flows: Turbulence anisotropy at flow–rigid canopy interface. Geosciences 2018, 8, 259. [Google Scholar] [CrossRef] [Green Version]
- Ozan, A.Y.; Yilmazer, D. Near-Wake Flow Structure of a Suspended Cylindrical Canopy Patch. Water 2019, 12, 84. [Google Scholar] [CrossRef] [Green Version]
- Goring, D.G.; Nikora, V.I. Despiking Acoustic Doppler Velocimeter Data. J. Hydraul. Eng. 2002, 128, 117–126. [Google Scholar] [CrossRef] [Green Version]
- King, A.T.; Tinoco, R.O.; Cowen, E.A. A k–ε turbulence model based on the scales of vertical shear and stem wakes valid for emergent and submerged vegetated. J. Fluid Mech. 2012, 701, 1–39. [Google Scholar] [CrossRef]
- Lama, G.F.C.; Errico, A.; Francalanci, S.; Chirico, G.B.; Solari, L.; Preti, F. Hydraulic modeling of field experiments in a reclamation channel under different riparian vegetation scenarios. In Proceedings of the AIIA Mid-Term Conference, Matera, Italy, 12–13 September 2019. [Google Scholar]
- Rhee, D.S.; Woo, H.; Kwon, B.; Ahn, H.K. Hydraulic resistance of some selected vegetation in open channel flows. River Res. Appl. 2008, 24, 673–687. [Google Scholar] [CrossRef]
- Faugno, S.; Quaquarelli, I.; Civitarese, V.; Crimaldi, M.; Sannino, M.; Ricciaridello, G.; Caracciolo, G.; Asirelli, A. Two-steps Arundo Donax L. harvesting in South Italy. Chem. Eng. Trans. 2017, 58, 265–270. [Google Scholar]
- Soana, E.; Bartoli, M.; Milardi, M.; Fano, E.A.; Castaldelli, G. An ounce of prevention is worth a pound of cure: Managing macrophytes for nitrate mitigation in irrigated agricultural watersheds. Sci. Total Environ. 2019, 647, 301–312. [Google Scholar] [CrossRef]
- Pasquino, V.; Saulino, L.; Pelosi, A.; Allevato, E.; Rita, A.; Todaro, L.; Saracino, A.; Chirico, G.B. Hydrodynamic behaviour of European black poplar (Populus nigra L.) under coppice management along Mediterranean river ecosystem. River Res. Appl. 2018, 34, 1–9. [Google Scholar] [CrossRef]
- van Velzen, E.; Jesse, P.; Cornelissen, P.; Coops, H. Stroming-Sweerstand Vegetatie in Uiterwaarden; Handboek. Part 1 and 2; Technical Report, RIZA Reports: Arnhem, The Netherland, 2003. [Google Scholar]
- Baptist, M.J. Modelling floodplain biogeomorphology. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2005. [Google Scholar]
- Yang, S.; Wang, P.; Lou, H.; Wang, J.; Zhao, C.; Gong, T. Estimating River Discharges in Ungauged Catchments Using the Slope–Area Method and Unmanned Aerial Vehicle. Water 2019, 11, 2361. [Google Scholar] [CrossRef] [Green Version]
- Errico, A. The effect of flexible vegetation on flow in drainage channels. Field surveys and modelling for roughness coefficients estimation. Ph.D. Thesis, University of Florence, Florence, Italy, 2017. [Google Scholar]
- Nepf, H.M.; Vivoni, E.R. Flow structure in depth-limited, vegetated flow. J. Geophys. Res. 2000, 105, 28457–28557. [Google Scholar] [CrossRef]
- James, C.S.; Birkhead, A.L.; Jordanova, A.A.; O’Sullivan, J.J. Flow resistance of emergent vegetation. J. Hydraul. Res. 2004, 42, 390–398. [Google Scholar] [CrossRef]
- Yang, W.; Choi, S.-U. A two-layer approach for depth-limited open-channel flows with submerged vegetation. J. Hydraul. Res. 2010, 48, 466–475. [Google Scholar] [CrossRef]
- Sarghini, F.; De Vivo, A. Analysis of Preliminary Design Requirements of a Heavy Lift Multirotor Drone for Agricultural Use. Chem. Eng. Trans. 2017, 58, 635c620. [Google Scholar]
- Giannetti, F.; Chirici, G.; Gobakken, T.; Næsset, E.; Travaglini, D.; Puliti, S. A new approach with DTM-independent metrics for forest growing stock prediction using UAV photogrammetric data. Remote Sens. Environ. 2018, 213, 195–205. [Google Scholar] [CrossRef]
- Kouwen, N.; Unny, T.E.; Hill, H.M. Flow retardance in vegetated channels. J. Irrig. Drain. Div. 1969, 95, 329–342. [Google Scholar]
Cross Section | num. | d (m) | m (m−2) | λ | hv (m) |
---|---|---|---|---|---|
1 | 270 | 0.0054 | 64 | 0.00146 | 2.50 |
2 | 165 | 0.0065 | 39 | 0.00130 | 2.30 |
3 | 159 | 0.0065 | 38 | 0.00126 | 2.23 |
4 | 198 | 0.0062 | 47 | 0.00142 | 2.10 |
5 | 182 | 0.0069 | 43 | 0.00161 | 2.35 |
6 | 245 | 0.0055 | 58 | 0.00138 | 2.50 |
DCM Sub-Section | χi (m) | σi (m−2) | hi (m) | mi (m−2) |
---|---|---|---|---|
1 | 1.71 | 0.97 | 0.68 | 49 |
2 | 2.77 | 1.46 | 0.71 | - |
3 | 1.52 | 0.80 | 0.65 | 78 |
DCM Sub-Section | χi (m) | σi (m−2) | hi (m) | mi (m−2) |
---|---|---|---|---|
1 | 1.88 | 1.04 | 0.72 | 49 |
2 | 2.82 | 1.21 | 0.77 | - |
3 | 1.82 | 0.96 | 0.68 | 78 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lama, G.F.C.; Errico, A.; Francalanci, S.; Solari, L.; Preti, F.; Chirico, G.B. Evaluation of Flow Resistance Models Based on Field Experiments in a Partly Vegetated Reclamation Channel. Geosciences 2020, 10, 47. https://doi.org/10.3390/geosciences10020047
Lama GFC, Errico A, Francalanci S, Solari L, Preti F, Chirico GB. Evaluation of Flow Resistance Models Based on Field Experiments in a Partly Vegetated Reclamation Channel. Geosciences. 2020; 10(2):47. https://doi.org/10.3390/geosciences10020047
Chicago/Turabian StyleLama, Giuseppe Francesco Cesare, Alessandro Errico, Simona Francalanci, Luca Solari, Federico Preti, and Giovanni Battista Chirico. 2020. "Evaluation of Flow Resistance Models Based on Field Experiments in a Partly Vegetated Reclamation Channel" Geosciences 10, no. 2: 47. https://doi.org/10.3390/geosciences10020047
APA StyleLama, G. F. C., Errico, A., Francalanci, S., Solari, L., Preti, F., & Chirico, G. B. (2020). Evaluation of Flow Resistance Models Based on Field Experiments in a Partly Vegetated Reclamation Channel. Geosciences, 10(2), 47. https://doi.org/10.3390/geosciences10020047