2D Runout Modelling of Hillslope Debris Flows, Based on Well-Documented Events in Switzerland
Abstract
:1. Introduction
2. Methods
2.1. Hillslope Debris-Flow Events
2.2. Evaluation Concept
2.3. Parameter Settings
- A
- Back-calculation of best-fit friction parameters and without applying a yield stress of the flow .
- B
- Back-calculation of a best-fit yield stress of the flow by using mean friction parameters and from simulations based on setting A for each study area (Appenzell, Entlebuch and Eriz).
- C
- Back-calculation of a best-fit yield stress of the flow by using default values of and as proposed by the user manual for RAMMS DF [46].
3. Results
3.1. Back-Calculation of Friction Parameters and (Setting A)
3.2. Back-Calculation of Cohesion Parameters and (Settings B and C)
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hürlimann, M.; McArdell, B.W.; Rickli, C. Field and laboratory analysis of the runout characteristics of hillslope debris flows in Switzerland. Geomorphology 2015, 232, 20–32. [Google Scholar] [CrossRef] [Green Version]
- Carrara, A.; Cardinali, M.; Detti, R.; Guzzetti, F.; Pasqui, V.; Reichenbach, P. GIS techniques and statistical models in evaluating landslide hazard. Earth Surf. Process. Landforms 1991, 16, 427–445. [Google Scholar] [CrossRef]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Boll-Bilgot, S.; Gruner, U.; Liniger, M.; Parriaux, A.; Wyss, R. Verbesserung der Hangmurenbeurteilung; Technical Report; Arbeitsgruppe Geologie und Naturgefahren AGN and Abteilung Gefahrenprävention, Bundesamt für Umwelt BAFU: Ittigen, Switzerland, 2016; 149p. [Google Scholar]
- Cislaghi, A.; Bischetti, G.B. Source areas, connectivity, and delivery rate of sediments in mountainous-forested hillslopes: A probabilistic approach. Sci. Total Environ. 2019, 652, 1168–1186. [Google Scholar] [CrossRef] [PubMed]
- Rickenmann, D.; Laigle, D.M.B.W.; McArdell, B.W.; Hübl, J. Comparison of 2D debris-flow simulation models with field events. Comput. Geosci. 2006, 10, 241–264. [Google Scholar] [CrossRef] [Green Version]
- Pastor, M.; Haddad, B.; Sorbino, G.; Cuomo, S.; Drempetic, V. A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int. J. Numer. Anal. Methods Geomech. 2009, 33, 143–172. [Google Scholar] [CrossRef]
- Cascini, L.; Cuomo, S.; Pastor, M.; Sorbino, G. Modeling of rainfall-induced shallow landslides of the flow-type. J. Geotech. Geoenviron. Eng. 2010, 136, 85–98. [Google Scholar] [CrossRef]
- Hussin, H.Y.; Quan Luna, B.; Van Westen, C.J.; Christen, M.; Malet, J.P.; van Asch, T.W.J. Parameterization of a numerical 2-D debris flow model with entrainment: A case study of the Faucon catchment, Southern French Alps. Nat. Hazards Earth Syst. Sci. 2012, 12, 3075–3090. [Google Scholar] [CrossRef]
- Scheidl, C.; Rickenmann, D.; McArdell, B. Runout Prediction of Debris Flows and Similar Mass Movements. In Landslide Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 221–229. [Google Scholar]
- Koo, R.C.H.; Kwan, J.S.H.; Lam, C.; Goodwin, G.R.; Choi, C.E.; Ng, C.W.W.; Yiu, J.; Ho, K.K.S.; Pun, W.K. Back-analysis of geophysical flows using three-dimensional runout model. Can. Geotech. J. 2018, 55, 1081–1094. [Google Scholar] [CrossRef]
- Lateltin, O. Berücksichtigung der Massenbewegungsgefahren bei raumwirksamen Tätigkeiten; Technical Report; Bundesamt für Raumplanung BRP Bundesamt für Wasserwirtschaft BWW Bundesamt für Umwelt, Wald und Landschaft BUWAL: Bern, Switzerland, 1997; 42p. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- BAFU. Schutz vor Massenbewegungsgefahren. Vollzugshilfe für das Gefahrenmanagement von Rutschungen, Steinschlag und Hangmuren; Technical Report 1608; Bundesamt für Umwelt (BAFU): Ittigen, Switzerland, 2016; 98p. [Google Scholar]
- Hürlimann, M.; Rickenmann, D.; Graph, C. Field and monitoring data of debris-flow events in the Swiss Alps. Can. Geotech. J. 2003, 40, 161–175. [Google Scholar] [CrossRef]
- Iverson, R. The physics of debris flows. Rev. Geophys. 1997, 35, 245–296. [Google Scholar] [CrossRef] [Green Version]
- Iverson, R.M.; Reid, M.E.; LaHusen, R.G. Debris-flow mobilization from landslides. Annu. Rev. Earth Planet. Sci. 1997, 25, 85–138. [Google Scholar] [CrossRef]
- Bollinger, D.; Keusen, H.R.; Rovina, H.; Wildberger, A.; Wyss, R. Gefahreneinstufung Rutschungen i.w.S. Permanente Rutschungen, spontane Rutschungen und Hangmuren; Technical Report; Arbeitsgruppe Geologie und Naturgefahren (AGN) und Bundesamt für Wasser und Geologie: Bern, Switzerland, 2004; 44p. [Google Scholar]
- Christen, M.; Bühler, Y.; Bartelt, P.; Leine, R.I.; Glover, J.; Schweizer, A.; McArdell, B.W.; Gerber, W.; Deubelbeiss, Y.; Feistl, T.; et al. Integral Hazard Management Using a Unified Software Environment Numerical Simulation Tool “RAMMS” for Gravitational Natural Hazards. In Proceedings of the 12th Congress INTERPRAEVENT, Grenoble, France, 23–26 April 2012. [Google Scholar]
- Scheidl, C.; McArdell, B.; Nagl, G.; Rickenmann, D. Debris flow behavior in super- and subcritical conditions. In Proceedings of the Debris-Flow Hazards Mitigation: Mechanics, Monitoring, Modeling, and Assessment, Golden, CO, USA, 10–13 June 2019; Kean, J.W., Coe, J.A., Santi, P.M., Guillen, B.K., Eds.; Association of Environmental and Engineering Geologists: Lexington, KY, USA, 2019. [Google Scholar]
- Cui, P.; Chen, X.; Waqng, Y.; Hu, K.; Li, Y. Jiangia Ravine debris flows in southwestern China. In Debris-flow Hazards and Related Phenomena; Jakob, M., Hungr, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 565–594. [Google Scholar]
- Tecca, P.R.; Galgaro, A.; Genevois, R.; Deganutti, A. Development of a remotely controlled debris flow monitoring system in the Dolomites (Acquabona, Italy). Hydrol. Process. 2003, 17, 1771–1784. [Google Scholar] [CrossRef]
- O’Brien, J.S.; Julien, P.Y.; Fullerton, W.T. Two-dimensional water flood and mudflood simulation. J. Hydraul. Eng. 1993, 119, 244–260. [Google Scholar] [CrossRef]
- Iverson, R.M. Elements of an Improved Model of Debris-flow Motion. AIP Conf. Proc. 2009, 1145, 9–16. [Google Scholar] [CrossRef]
- Mergili, M.; Fischer, J.T.; Krenn, J.; Pudasaini, S.P. r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows. Geosci. Model Dev. 2017, 10, 553–569. [Google Scholar] [CrossRef] [Green Version]
- Salm, B.; Burkard, A.; Gubler, H. Berechnung von Fliesslawinen, eine Anleitung für Praktiker mit Beispielen; Mitteilungen des Eidgenössischen Institutes für Schnee und Lawinenforschung, SLF: Davos, Switzerland, 1990; Volume 47. [Google Scholar]
- Salm, B. Flow, flow transition and runout distances of flowing avalanches. Ann. Glaciol. 1993, 18, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Christen, M.; Kowalski, J.; Bartelt, P. RAMMS—Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 2010, 63, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Christen, M.; Bartelt, P.; Gruber, U. Numerical calculation of snow avalanche runout distances. In Proceedings of the International Conference on Computing in Civil Engineering, Cancun, Mexico, 12–15 July 2005; American Society of Civil Engineers: Reston, VA, USA, 2005; pp. 1–12. [Google Scholar] [CrossRef]
- Voellmy, A. Über die Zerstörungskraft von Lawinen. Schweiz. Bauztg. 1955, 73, 159–162. [Google Scholar]
- Platzer, K.; Bartelt, P.; Kern, M. Measurements of dense snow avalanche basal shear to normal stress ratios (S/N). Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Platzer, K.; Bartelt, P.; Jaedicke, C. Basal shear and normal stresses of dry and wet snow avalanches after a slope deviation. Cold Reg. Sci. Technol. 2007, 49, 11–25. [Google Scholar] [CrossRef]
- Carson, M.A.; Kirkby, M.J. Hillslope Form and Process; Cambridge University Press: Cambridge, UK, 1972; Volume 475. [Google Scholar]
- Secondi, M.M.; Crosta, G.; Di Prisco, C.; Frigerio, G.; Frattini, P.; Agliardi, F. Landslide motion forecasting by a dynamic viscoplastic model. In Landslide Science and Practice Spatial Analysis and Modelling; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Heidelberg, Germany, 2013; pp. 151–159. [Google Scholar]
- Bartelt, P.; Valero, C.V.; Feistl, T.; Christen, M.; Bühler, Y.; Buser, O. Modelling cohesion in snow avalanche flow. J. Glaciol. 2015, 61, 837–850. [Google Scholar] [CrossRef] [Green Version]
- Bartelt, P.; Buehler, Y.; Christen, M.; Deubelbeiss, Y.; Salz, M.; Schneider, M.; Schumacher, L. User Manual v1.7.0—Avalanche. A Numerical Model for Snow Avalanches in Research and Practice; Technical Report; WSL Institute for Snow and Avalanche Research SLF: Birmensdorf, Switzerland, 2017; 126p. [Google Scholar]
- Berger, C.; Christen, M.; Speerli, J.; Lauber, G.; Ulrich, M.; McArdell, B.W. A comparison of physcial and computer-based debris flow modelling of deflection structure at Illgraben, Switzerland. In Proceedings of the 13th Congress INTERPRAEVENT 2016, Lucerne, Switzerland, 30 May–2 June 2016; Koboltschnig, G., Ed.; pp. 212–220. [Google Scholar]
- Steinemann, S. Hillslope Debris-Flow Processes and the Inuence of Geology and its Soil Products. A case study from the Eriz Valley, Switzerland. Ph.D. Thesis, Department of Earth Sciences, ETH Zurich, Zürich, Switzerland, 2013. [Google Scholar]
- Künzi, R.; Hunziker, G.; Krähenbühl, S. Hochwasser vom 4. Juli 2012 in der Zulg; Technical Report; Wald des Kantons Bern, Abteilung Naturgefahren, Interlaken: Bern, Switzerland, 2012; 38p. [Google Scholar]
- Rickli, C.; Bucher, H. Oberflächennahe Rutschungen, ausgelöst durch die Unwetter vom 5.-.16.7. 2002 im Napfgebiet und vom 31.8.-1.9. 2002 im Gebiet Appenzell; Projektbericht, Bundesamtes für Wasser und Geologie BWG: Bern, Switzerland, 2003; 98p. [Google Scholar]
- Rickli, C.; Kamm, S.; Bucher, H. Projektbericht Ereignisanalyse 2005—Teilprojekt Flachgründige Rutschungen; Technical Report; WSL: Birmensdorf, Switzerland, 2008; 114p. [Google Scholar]
- Rickenmann, D. Runout prediction methods. In Debris-Flow Hazards and Related Phenomena; Jakob, M., Hungr, O., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 305–324. [Google Scholar]
- Heiser, M.; Scheidl, C.; Kaitna, R. Evaluation concepts to compare observed and simulated deposition areas of mass movements. Comput. Geosci. 2017, 21, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Frattini, P.; Crosta, G.; Carrara, A. Techniques for evaluating the performance of landslide susceptibility models. Eng. Geol. 2010, 111, 62–72. [Google Scholar] [CrossRef]
- Stancanelli, L.M.; Peres, D.J.; Cancelliere, A.; Foti, E. A combined triggering-propagation modeling approach for the assessment of rainfall induced debris flow susceptibility. J. Hydrol. 2017, 550, 130–143. [Google Scholar] [CrossRef] [Green Version]
- Bartelt, P.; Buehler, Y.; Christen, M.; Deubelbeiss, Y.; Graf, C.; McArdell, B.W.; Salz, M.; Schneider, M. User Manual v1.5—Debris Flow. A Numerical Model for Debris Flows in Research and Practice; Technical Report; WSL Institute for Snow and Avalanche Research SLF: Birmensdorf, Switzerland, 2013; 126p. [Google Scholar]
- Barbolini, M.; Gruber, U.; Keylock, C.J.; Naaim, M.; Savi, F. Application of statistical and hydraulic-continuum dense-snow avalanche models to five real European sites. Cold Reg. Sci. Technol. 2000, 31, 133–149. [Google Scholar] [CrossRef]
- Allen, S.K.; Schneider, D.; Owens, I.F. First approaches towards modelling glacial hazards in the Mount Cook region of New Zealand’s Southern Alps. Nat. Hazards Earth Syst. Sci. 2009, 9, 481–499. [Google Scholar] [CrossRef] [Green Version]
- Lipovsky, P.S.; Evans, S.G.; Clague, J.J.; Hopkinson, C.; Couture, R.; Bobrowsky, P.; Ekström, G.; Demuth, M.N.; Delaney, K.B.; Roberts, N.J.; et al. The July 2007 rock and ice avalanches at Mount Steele, St. Elias Mountains, Yukon, Canada. Landslides 2008, 5, 445–455. [Google Scholar] [CrossRef]
- Schneider, D.; Bartelt, P.; Caplan-Auerbach, J.; Christen, M.; Huggel, C.; McArdell, B.W. Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- McKinnon, M.; Hungr, O.; McDougall, S. Dynamic analyses of Canadian landslides. In Proceedings of the Fourth Canadian Conference on GeoHazards: From Causes to Management, Québec, QC, Canada, 20–24 May 2008; Locat, J., Perret, D., Turmel, D., Leroueil, S., Demers, D., Eds.; Presse de l’Université Laval: Québec, QC, Canada, 2008; pp. 20–24. [Google Scholar]
- Hungr, O.; Evans, S.G. Rock avalanche runout prediction using a dynamic model. In Proceedings of the 7th International Symposium on Landslides, Trondheim, Norway, 17–21 June 1996; Senneset, K., Ed.; Balkema: Rotterdam, The Netherlands, 1996; Volume 1, pp. 233–238. [Google Scholar]
- Hungr, O.; McDougall, S. Two numerical models for landslide dynamic analysis. Comput. Geosci. 2009, 35, 978–992. [Google Scholar] [CrossRef]
- Sosio, R.; Crosta, G.B.; Hungr, O. Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng. Geol. 2008, 100, 11–26. [Google Scholar] [CrossRef]
- Stricker, T. Murgänge im Torrente Riascio (TI): Ereignisanalyse, Auslösefaktoren und Simulation von Ereignissen mit RAMMS. Master’s Thesis, University of Zürich, Zürich, Switzerland, 2010. [Google Scholar]
- Evans, S.G.; Guthrie, R.H.; Roberts, N.J.; Bishop, N.F. The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines: A catastrophic landslide in tropical mountain terrain. Nat. Hazards Earth Syst. Sci. 2007, 7, 89–101. [Google Scholar] [CrossRef] [Green Version]
- McDougall, S. A New Continuum Dynamic Model for the Analysis of Extremely Rapid Landslide Motion across Complex 3d Terrain. Ph.D. Thesis, The University of British Columbia, Vancouver, BC, USA, 2006. [Google Scholar]
- Naef, D.; Rickenmann, D.; Rutschmann, P.; McArdell, B.W. Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat. Hazards Earth Syst. Sci. 2006, 6, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Bodenkennziffern. Schweizerischer Verband der Strassen-und Verkehrsfachleute (VSS); SN 670 010b; Swiss Association for Standardization (SNV): Zürich, Switzerland, 1998. [Google Scholar]
- Bühler, Y. RAMMS—RApid Mass MovementS. Background Information. 2011. Available online: https://ramms.slf.ch/ramms/index.php?option=com_content&view=article&id=57&Itemid=74 (accessed on 7 November 2011).
Event ID | Volume | Total Travel Distance | Equivalent Friction Angle | USCS Soil Class | Clay Content |
---|---|---|---|---|---|
[m] | [m] | [] | [%] | ||
Appenzell, saturated soil conditions assumed | |||||
1003 | 60 | 43 | 23 | CL | 16.0 |
1005 | 130 | 84 | 22 | CL | 16.0 |
1007 | 800 | 105 | 22 | CL | 16.0 |
Entlebuch, saturated soil conditions assumed | |||||
3001 | 378 | 147 | 19 | SC | 12.0 |
3004 | 280 | 109 | 22 | SC - SM | 8.9 |
3005 | 918 | 208 | 19 | SC | 8.1 |
3007 | 960 | 130 | 22 | CL | 14.8 |
3011 | 392 | 114 | 24 | SC | 14.8 |
3015 | 175 | 53 | 29 | CM | 24.0 |
3017 | 1050 | 114 | 18 | SC | 12.3 |
3021 | 153 | 53 | 18 | GM | 12.0 |
3028 | 2800 | 170 | 16 | - | - |
3029 | 380 | 121 | 21 | ML | 15.1 |
Eriz, unsaturated soil conditions assumed | |||||
HM1 | 100 | 119 | 18 | - | - |
HM4 | 112 | 72 | 23 | CM | 15.5 |
HM5 | 91 | 124 | 21 | SM | 8.0 |
HM6 | 42 | 175 | 26 | GC - GM | 0.8 |
HM7 | 108 | 136 | 26 | - | - |
HM24 | 655 | 152 | 25 | GC | 9.0 |
Event ID | Setting A | Setting B | Setting C † | |||
---|---|---|---|---|---|---|
[ ] | [m/s] | * [kPa] | [ ] | [m/s] | [kPa] | |
Appenzell | ||||||
1003 | 0.23 | 200 | 0.00 | 0.31 | 200 | 0.10 |
1005 | 0.40 | 200 | 0.20 | 0.31 | 200 | 0.70 |
1007 | 0.30 | 200 | 0.05 | 0.31 | 200 | 0.25 |
Entlebuch | ||||||
3001 | 0.21 | 300 | 0.05 | 0.30 | 507 | 0.05 |
3004 | 0.13 | 240 | 0.00 | 0.30 | 507 | 0.00 |
3005 | 0.11 | 190 | 0.00 | 0.30 | 507 | 0.00 |
3007 | 0.46 | 150 | 1.70 | 0.30 | 507 | 1.60 |
3011 | 0.40 | 285 | 1.10 | 0.30 | 507 | 1.55 |
3015 | 0.49 | 300 | 2.75 | 0.30 | 507 | 2.95 |
3017 | 0.33 | 550 | 0.10 | 0.30 | 507 | 0.60 |
3021 | 0.35 | 1250 | 1.35 | 0.30 | 507 | 1.50 |
3028 | 0.24 | 700 | 1.10 | 0.30 | 507 | 0.78 |
3029 | 0.33 | 1100 | 0.65 | 0.30 | 507 | 0.95 |
Eriz | ||||||
HM1 | 0.20 | 400 | 0.00 | 0.23 | 446 | 0.05 |
HM4 | 0.37 | 175 | 0.30 | 0.23 | 446 | 0.30 |
HM5 | 0.05 | 300 | 0.00 | 0.23 | 446 | 0.00 |
HM6 | 0.05 | 200 | 0.00 | 0.23 | 446 | 0.00 |
HM7 | 0.40 | 900 | 0.19 | 0.23 | 446 | 0.17 |
HM24 | 0.29 | 700 | 0.65 | 0.23 | 446 | 1.20 |
5cSetting A | ||||
---|---|---|---|---|
Appenzell | ||||
mean value | 0.49 | 0.03 | 0.48 | -0.02 |
standard deviation | 0.06 | 0.02 | 0.04 | 0.12 |
Entlebuch | ||||
mean value | 0.48 | 0.07 | 0.45 | -0.04 |
standard deviation | 0.10 | 0.08 | 0.09 | 0.20 |
Eriz | ||||
mean value | 0.45 | 0.03 | 0.52 | -0.10 |
standard deviation | 0.09 | 0.04 | 0.10 | 0.17 |
Overall | ||||
mean value | 0.47 | 0.05 | 0.48 | -0.05 |
standard deviation | 0.09 | 0.07 | 0.09 | 0.18 |
sample count | 19 | 19 | 19 | 19 |
Setting B | Setting C | ||||||||
---|---|---|---|---|---|---|---|---|---|
Appenzell | |||||||||
mean value | 0.48 | 0.09 | 0.43 | −0.04 | 0.51 | 0.03 | 0.46 | 0.02 | |
standard deviation | 0.03 | 0.07 | 0.09 | 0.07 | 0.06 | 0.02 | 0.04 | 0.12 | |
Entlebuch | |||||||||
mean value | 0.46 | 0.16 | 0.38 | −0.08 | 0.50 | 0.10 | 0.40 | 0.01 | |
standard deviation | 0.14 | 0.15 | 0.11 | 0.29 | 0.11 | 0.09 | 0.10 | 0.22 | |
Eriz | |||||||||
mean value | 0.51 | 0.12 | 0.36 | 0.03 | 0.52 | 0.11 | 0.37 | 0.04 | |
standard deviation | 0.10 | 0.11 | 0.15 | 0.21 | 0.11 | 0.11 | 0.14 | 0.22 | |
Overall | |||||||||
mean value | 0.48 | 0.14 | 0.38 | −0.04 | 0.51 | 0.09 | 0.40 | 0.02 | |
standard deviation | 0.12 | 0.13 | 0.12 | 0.24 | 0.10 | 0.10 | 0.11 | 0.21 | |
sample count | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimmermann, F.; McArdell, B.W.; Rickli, C.; Scheidl, C. 2D Runout Modelling of Hillslope Debris Flows, Based on Well-Documented Events in Switzerland. Geosciences 2020, 10, 70. https://doi.org/10.3390/geosciences10020070
Zimmermann F, McArdell BW, Rickli C, Scheidl C. 2D Runout Modelling of Hillslope Debris Flows, Based on Well-Documented Events in Switzerland. Geosciences. 2020; 10(2):70. https://doi.org/10.3390/geosciences10020070
Chicago/Turabian StyleZimmermann, Florian, Brian W. McArdell, Christian Rickli, and Christian Scheidl. 2020. "2D Runout Modelling of Hillslope Debris Flows, Based on Well-Documented Events in Switzerland" Geosciences 10, no. 2: 70. https://doi.org/10.3390/geosciences10020070
APA StyleZimmermann, F., McArdell, B. W., Rickli, C., & Scheidl, C. (2020). 2D Runout Modelling of Hillslope Debris Flows, Based on Well-Documented Events in Switzerland. Geosciences, 10(2), 70. https://doi.org/10.3390/geosciences10020070