Numerical Modeling of the Hydro-Morphodynamics of a Distributary Channel of the Po River Delta (Italy) during the Spring 2009 Flood Event
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. The Spring 2009 Flood
2.3. Numerical Model Setup
2.3.1. Input Data: Channel Geometry, Flow Parameters, and Grainsize Composition
2.3.2. Model Calibration and Validation
3. Results
3.1. Longitudinal Profile
3.2. Cross-Section Profiles
3.2.1. Gauging Station at Pila
3.2.2. Location of the Core Sample, Cross-Section E16
3.3. Variation of the Plume Dimensions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vousdoukas, M.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Sandy coastlines under threat of erosion. Nat. Clim. Chang. 2020, 10, 260–263. [Google Scholar] [CrossRef]
- Syvitski, J.P.; Kettner, A.J.; Overeem, I.; Hutton, E.W.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef]
- Maselli, V.; Trincardi, F. Man made deltas. Sci. Rep. 2013, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nienhuis, J.H.; Ashton, A.D.; Edmonds, D.A.; Hoitink, A.J.F.; Kettner, A.J.; Rowland, J.C.; Törnqvist, T.E. Global-Scale human impact on delta morphology has led to net land area gain. Nature 2020, 577, 514–518. [Google Scholar] [CrossRef]
- Geleynse, N.; Storms, J.E.; Walstra, D.-J.R.; Jagers, H.A.; Wang, Z.-B.; Stive, M. Controls on river delta formation; insights from numerical modelling. Earth Planet. Sci. Lett. 2011, 302, 217–226. [Google Scholar] [CrossRef]
- Baar, A.; Boechat-Albernaz, M.; Van Dijk, W.M.; Kleinhans, M.G. Critical dependence of morphodynamic models of fluvial and tidal systems on empirical downslope sediment transport. Nat. Commun. 2019, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Luan, H.L.; Ding, P.; Wang, Z.-B.; Yang, S.L.; Lu, J.Y. Morphodynamic impacts of Large-Scale engineering projects in the Yangtze River delta. Coast. Eng. 2018, 141, 1–11. [Google Scholar] [CrossRef]
- Nones, M.; Guerrero, M.; Ronco, P. Opportunities from low-resolution modelling of river morphology in remote parts of the world. Earth Surf. Dyn. 2014, 2, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Walton, R.; Jonas, M.; Stroppini, A.; Martin, B. Hydraulic model study of Delta-Mendota canal. Impacts Glob. Clim. Chang. 2005, 1–10. [Google Scholar] [CrossRef]
- Beltaos, S. The 2014 Ice–Jam flood of the Peace-Athabasca delta: Insights from numerical modelling. Cold Reg. Sci. Technol. 2018, 155, 367–380. [Google Scholar] [CrossRef]
- Rehman, M.A.; Naeem, U.A.; Hashmi, H.N.; Shakir, A.S. Possible options to slow down the advancement rate of Tarbela delta. Environ. Monit. Assess. 2017, 190, 39. [Google Scholar] [CrossRef] [PubMed]
- Hanegan, K.; Georgiou, I. Tidal Modulated Flow and Sediment Flux through Wax Lake Delta Distributary Channels: Implications for Delta Development. In Proceedings of the International Association of Hydrological Sciences, New Orleans, LA, USA, 11–14 December 2014; pp. 391–398. [Google Scholar]
- Maicu, F.; De Pascalis, F.; Ferrarin, C.; Umgiesser, G. Hydrodynamics of the Po River-Delta-Sea System. J. Geophys. Res. Oceans 2018, 123, 6349–6372. [Google Scholar] [CrossRef]
- Wester, S.J.; Grimson, R.; Minotti, P.; Booij, M.J.; Brugnach, M. Hydrodynamic modelling of a tidal delta wetland using an enhanced quasi-2D model. J. Hydrol. 2018, 559, 315–326. [Google Scholar] [CrossRef]
- Gugliotta, M.; Saito, Y. Matching trends in channel width, sinuosity, and depth along the fluvial to marine transition zone of Tide-Dominated river deltas: The need for a revision of depositional and hydraulic models. Earth-Sci. Rev. 2019, 191, 93–113. [Google Scholar] [CrossRef]
- Bever, A.; Harris, C.; Sherwood, C.R.; Signell, R. Deposition and flux of sediment from the Po River, Italy: An idealized and wintertime numerical modeling study. Mar. Geol. 2009, 260, 69–80. [Google Scholar] [CrossRef]
- Ambrosi, D.; Corti, S.; Pennati, V.; Saleri, F. Numerical simulation of unsteady flow at Po River delta. J. Hydraul. Eng. 1996, 122, 735–743. [Google Scholar] [CrossRef]
- Traykovski, P.; Wiberg, P.; Geyer, W. Observations and modeling of wave-supported sediment gravity flows on the Po prodelta and comparison to prior observations from the Eel shelf. Cont. Shelf Res. 2007, 27, 375–399. [Google Scholar] [CrossRef] [Green Version]
- Amorosi, A.; Maselli, V.; Trincardi, F. Onshore to offshore anatomy of a late quaternary Source-To-Sink system (Po Plain–Adriatic Sea, Italy). Earth-Sci. Rev. 2016, 153, 212–237. [Google Scholar] [CrossRef]
- Maselli, V.; Pellegrini, C.; Del Bianco, F.; Mercorella, A.; Nones, M.; Crose, L.; Guerrero, M.; Nittrouer, J.A. River morphodynamic evolution under Dam-Induced backwater: An example from the Po River (Italy). J. Sediment. Res. 2018, 88, 1190–1204. [Google Scholar] [CrossRef] [Green Version]
- Domeneghetti, A.; Carisi, F.; Castellarin, A.; Brath, A. Evolution of flood risk over large areas: Quantitative assessment for the Po River. J. Hydrol. 2015, 527, 809–823. [Google Scholar] [CrossRef]
- Nones, M. Numerical modelling as a support tool for river habitat studies: An Italian case study. Water 2019, 11, 482. [Google Scholar] [CrossRef] [Green Version]
- Syvitski, J.; Kettner, A.J. On the flux of water and sediment into the Northern Adriatic Sea. Cont. Shelf Res. 2007, 27, 296–308. [Google Scholar] [CrossRef]
- Cozzi, S.; Giani, M. River water and nutrient discharge in the Northern Adriatic Sea: Cur-Rent importance and long term changes. Cont. Shelf Res. 2011, 31, 1881–1893. [Google Scholar] [CrossRef]
- Montanari, A. Hydrology of the Po River: Looking for changing patterns in river discharge. Hydrol. Earth Syst. Sci. 2012, 16, 3739–3747. [Google Scholar] [CrossRef] [Green Version]
- Syvitski, J.; Kettner, A.J.; Correggiari, A.; Nelson, B.W.; Correggiari, A. Distributary channels and their impact on sediment dispersal. Mar. Geol. 2005, 222, 75–94. [Google Scholar] [CrossRef]
- Wheatcroft, R.A.; Stevens, A.W.; Hunt, L.M.; Milligan, T.G. The Large-Scale distribution and internal geometry of the fall 2000 Po River flood deposit: Evidence from digital X-radiography. Cont. Shelf Res. 2006, 26, 499–516. [Google Scholar] [CrossRef]
- Brunner, G.W. HEC-RAS, River Analysis System: Hydraulic Reference Manual, Version 5.0. 2016. Available online: hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS%205.0%20Reference%20Manual.pdf (accessed on 10 January 2020).
- Tesi, T.; Miserocchi, S.; Goni, M.; Turchetto, M.; Langone, L.; De Lazzari, A.; Albertazzi, S.; Correggiari, A. Influence of distributary channels on sediment and organic matter supply in event-dominated coastal margins: The Po prodelta as a study case. Biogeosciences 2011, 8, 365–385. [Google Scholar] [CrossRef] [Green Version]
- Trincardi, F.; Campiani, E.; Correggiari, A.; Foglini, F.; Maselli, V.; Remia, A. Bathymetry of the Adriatic Sea: The legacy of the last eustatic cycle and the impact of modern sediment dispersal. J. Maps 2013, 10, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Maselli, V.; Normandeau, A.; Nones, M.; Tesi, T.; Langone, L.; Trincardi, F.; Bohacs, K.M. Tidal modulation of River-Flood deposits: How low can you go? Geology 2020. [Google Scholar] [CrossRef]
- Nones, M.; Archetti, R.; Guerrero, M. Time-Lapse Photography of the Edge-of-Water Line Displacements of a Sandbar as a Proxy of Riverine Morphodynamics. Water 2018, 10, 617. [Google Scholar] [CrossRef] [Green Version]
- Nones, M.; Pugliese, A.; Domeneghetti, A.; Guerrero, M. Po River Morphodynamics Modelled with the Open-source Code iRIC. In Recent Trends in Environmental Hydraulics; Kalinowska, M.B., Mrokowska, M.M., Rowiński, P.M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 335–346. [Google Scholar]
- SIMPO. Study and Preliminary Design of the Hydraulic Regulation of the River Po Main Channel for Civil and Environmental Purposes; Magistrato per il Po—SIMPO Spa; Technical Report; SIMPO: Paulo, Brazil, 1980. (In Italian) [Google Scholar]
- Zanichelli, G.; Caroni, E.; Fiorotto, V. River bifurcation analysis by physical and numerical modeling. J. Hydraul. Eng. 2004, 130, 237–242. [Google Scholar] [CrossRef]
- Friedrichs, C.T.; Scully, M.E. Modeling deposition by Wave-Supported gravity flows on the Po River prodelta: From seasonal floods to prograding clinoforms. Cont. Shelf Res. 2007, 27, 322–337. [Google Scholar] [CrossRef]
- Falcieri, F.M.; Benetazzo, A.; Sclavo, M.; Russo, A.; Carniel, S. Po River plume pattern variability investigated from model data. Cont. Shelf Res. 2014, 87, 84–95. [Google Scholar] [CrossRef]
- Lamb, M.P.; Nittrouer, J.A.; Mohrig, D.; Shaw, J. Backwater and river plume controls on scour upstream of river mouths: Implications for Fluvio-Deltaic morphodynamics. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef]
- Leonardi, N.; Kolker, A.S.; Fagherazzi, S. Interplay between river discharge and tides in a delta distributary. Adv. Water Resour. 2015, 80, 69–78. [Google Scholar] [CrossRef]
- Dalrymple, R.W.; Baker, E.K.; Harris, P.T.; Hughes, M.G.; Sidi, F.H.; Nummedal, D.; Posamentier, H.W. Sedimentology and stratigraphy of a tide-dominated, foreland-basin delta (Fly River, Papua New Guinea). In Tropical Deltas of Southeast Asia–Sedimentology, Stratigraphy, and Petroleum Geology; Sidi, F.H., Nummedal, D., Imbert, P., Darman, H., Posamentier, H.W., Eds.; SEPM Special Publication: Tulsa, OK, USA, 2003; Volume 76, pp. 147–173. [Google Scholar]
- Canestrelli, A.; Defina, A.; Lanzoni, S.; Fagherazzi, S. Erosional power and morphodynamic tendencies in the Fly River Delta, Papua New Guinea. In Proceedings of the River, Coastal and Estuarine Morphodynamics RCEM Conference 2009, Santa Fe, Argentina, 21–25 September 2009; Volume 2, p. 355. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nones, M.; Maselli, V.; Varrani, A. Numerical Modeling of the Hydro-Morphodynamics of a Distributary Channel of the Po River Delta (Italy) during the Spring 2009 Flood Event. Geosciences 2020, 10, 209. https://doi.org/10.3390/geosciences10060209
Nones M, Maselli V, Varrani A. Numerical Modeling of the Hydro-Morphodynamics of a Distributary Channel of the Po River Delta (Italy) during the Spring 2009 Flood Event. Geosciences. 2020; 10(6):209. https://doi.org/10.3390/geosciences10060209
Chicago/Turabian StyleNones, Michael, Vittorio Maselli, and Arianna Varrani. 2020. "Numerical Modeling of the Hydro-Morphodynamics of a Distributary Channel of the Po River Delta (Italy) during the Spring 2009 Flood Event" Geosciences 10, no. 6: 209. https://doi.org/10.3390/geosciences10060209
APA StyleNones, M., Maselli, V., & Varrani, A. (2020). Numerical Modeling of the Hydro-Morphodynamics of a Distributary Channel of the Po River Delta (Italy) during the Spring 2009 Flood Event. Geosciences, 10(6), 209. https://doi.org/10.3390/geosciences10060209