The Effects of Slope Initialization on the Numerical Model Predictions of the Slope-Vegetation-Atmosphere Interaction
Abstract
:1. Introduction
2. The Prototype Slope
3. Fully Coupled Hydromechanical Modelling
3.1. Governing Equations
3.2. Geometry, Discretisation and Hydromechanical Parameters of the Slope Model
4. Initialization of the FE Slope Model
Discussion of the Initialization Stage Results
5. The Predicted SLVA Interaction
6. Conclusions and Future Research Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alonso, E.E.; Gens, A.; Delahaye, C.H. Influence of rainfall on the deformation and stability of a slope in overconsolidated clays: A case study. Hydr. J. 2003, 11, 174–192. [Google Scholar] [CrossRef] [Green Version]
- Cascini, L.; Calvello, M.; Grimaldi, G.M. Groundwater modeling for the analysis of active slow-moving landslides. J. Geotech. Geoenviron. Eng. 2010, 136, 1220–1230. [Google Scholar] [CrossRef]
- Cotecchia, F.; Pedone, G.; Bottiglieri, O.; Santaloia, F.; Vitone, C. Slope–atmosphere interaction in a tectonized clayey slope: A case study. Ital. Geotech. J. 2014, 1, 34–61. [Google Scholar]
- Damiano, E.; Mercogliano, P.; Netti, N.; Olivares, L. A ‘simulation chain’ to define a multidisciplinary decision support system for landslide risk management in pyroclastic soils. Nat. Hazards Earth Syst. Sci. 2012, 12, 989–1008. [Google Scholar] [CrossRef]
- Davies, O.; Rouainia, M.; Glendinning, S.; Cash, M.; Trento, V. Investigation of a pore pressure driven slope failure using a coupled hydro-mechanical model. Eng. Geol. 2014, 178, 70–81. [Google Scholar] [CrossRef]
- Kovacevic, N.; Potts, D.M.; Vaughan, P.R. Progressive failure in clay embankments due to seasonal climate changes. In Proceedings of the International Conference on Soil Mechanics and Geotechnical Engineering, Balkema, Lisse, The Netherlands, 27–31 August 2001; Volume 3, pp. 2127–2130. [Google Scholar]
- Picarelli, L.; Urciuoli, G.; Russo, C. Effect of groundwater regime on the behaviour of clayey slopes. Can. Geotech. J. 2004, 41, 467–484. [Google Scholar] [CrossRef]
- Pirone, M.; Damiano, E.; Picarelli, L.; Olivares, L.; Urciuoli, G. Groundwater-atmosphere interaction in unsaturated pyroclastic slopes at two sites in Italy. Ital. Geotech. J. 2012, 3, 29–49. [Google Scholar]
- Rianna, G.; Pagano, L.; Urciuoli, G. Rainfall patterns triggering shallow flowslides in pyroclastic soils. Eng. Geol. 2014, 174, 22–35. [Google Scholar] [CrossRef]
- Rouainia, M.; Davies, O.; O’Brien, T.; Glendinning, S. Numerical modelling of climate effects on slope stability. Proc. Inst. Civil Eng. Eng. Sustain. 2009, 162, 81–89. [Google Scholar] [CrossRef]
- Smethurst, J.A.; Clarke, D.; Powrie, W. Factors controlling the seasonal variation in soil water content and pore water pressures within a lightly vegetated clay slope. Géotechnique 2012, 62, 429–446. [Google Scholar] [CrossRef]
- Sorbino, G.; Nicotera, M.V. Unsaturated soil mechanics in rainfall-induced flow landslides. Eng. Geol. 2013, 165, 105–132. [Google Scholar] [CrossRef]
- Tommasi, P.; Boldini, D.; Caldarini, G.; Coli, N. Influence of infiltration on the periodic re-activation of slow movements in an overconsolidated clay slope. Can. Geotech. J. 2013, 50, 54–67. [Google Scholar] [CrossRef]
- Tsiampousi, A.; Smith, P.C.G.; Potts, D.M. Coupled consolidation in unsaturated soils: From a conceptual model to applications in boundary value problems. Comput. Geotech. 2017, 84, 256–277. [Google Scholar] [CrossRef] [Green Version]
- Vassallo, R.; Grimaldi, G.M.; Di Maio, C. Pore water pressures induced by historical rain series in a clayey landslide: 3D modelling. Landslides 2015, 12, 731–744. [Google Scholar] [CrossRef]
- Pedone, G.; Ruggieri, G.; Trizzino, R. Characterisation of climatic variables used to identify instability thresholds in clay slopes. Géotechnique Lett. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Tagarelli, V.; Cotecchia, F. Deep Movements in Clayey Slopes Relating to Climate: Modeling for Early Warning System Design. In National Conference of the Researchers of Geotechnical Engineering; Geotechnical Research for Land Protection and Development. CNRIG 2019. Lecture Notes in Civil Engineering; Calvetti, F., Cotecchia, F., Galli, A., Jommi, C., Eds.; Springer: Cham, Switzerland, 2020; Volume 40. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapo-transpiration (Guidelines for Computing Crop Water Requirements); FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Blight, G.E. Interactions between the atmosphere and the Earth. Géotechnique 1997, 47, 715–767. [Google Scholar]
- Bogaard, T.A.; Greco, R. Landslide hydrology: From hydrology to pore pressure. Wiley Interdiscip. Rev. Water 2015, 3, 439–459. [Google Scholar] [CrossRef]
- Elia, G.; Cotecchia, F.; Pedone, G.; Vaunat, J.; Vardon, P.J.; Pereira, C.; Springman, S.M.; Rouainia, M.; van Esch, J.; Koda, E.; et al. Numerical modelling of slope–vegetation–atmosphere interaction: An overview. Q. J. Eng. Geol. Hydrogeol. 2017, 50, 249–270. [Google Scholar] [CrossRef] [Green Version]
- Gens, A. Soil–environment interactions in geotechnical engineering. Géotechnique 2010, 60, 3–74. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and the environment. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar]
- Olivella, S.; Carrera, J.; Gens, A.; Alonso, E.E. Non-isothermal multiphase flow of brine and gas through saline media. Transp. Porous Media 1994, 15, 271–293. [Google Scholar] [CrossRef]
- Olivella, S.; Gens, A.; Carrera, J.; Alonso, E.E. Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media. Eng. Comput. 1996, 13, 87–112. [Google Scholar] [CrossRef] [Green Version]
- Penman, H.L. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1948, 193, 120–145. [Google Scholar]
- Cotecchia, F.; Tagarelli, V.; Pedone, G.; Ruggieri, G.; Guglielmi, S.; Santaloia, F. Analysis of climate-driven processes in clayey slopes for early warning system design. Geotech. Eng. 2019. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes; Special Report; Transportation Research Board, U.S. National Academy of Sciences: Washington, DC, USA, 1996; Volume 247, pp. 36–57. [Google Scholar]
- Askarinejad, A. Failure Mechanisms in Unsaturated Silty Sand Slopes Triggered by Rainfall. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2013. [Google Scholar]
- Cascini, L.; Cuomo, S.; Pastor, M.; Sorbino, G. Modeling of rainfall-Induced shallow landslides of the flow-type. J. Geotech. Geoenviron. Eng. 2010, 136, 85–98. [Google Scholar] [CrossRef]
- Comegna, L.; Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L. Field hydrological monitoring of a sloping shallow pyroclastic deposit. Can. Geotech. J. 2016, 53, 1125–1137. [Google Scholar] [CrossRef] [Green Version]
- Netti, N.; Damiano, E.; Greco, R.; Olivares, L.; Savastano, V.; Mercogliano, P. Natural hazard risk management: A multidisciplinary approach to define a decision support system for shallow rainfall-induced landslides. Open Hydrol. J. 2012, 6, 97–112. [Google Scholar] [CrossRef] [Green Version]
- Papa, R.; Pirone, M.; Nicotera, M.; Urciuoli, G. Seasonal groundwater regime in an unsaturated pyroclastic slope. Géotechnique 2013, 63, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Pirone, M.; Papa, R.; Nicotera, M.; Urciuoli, G. In situ monitoring of the groundwater field in an unsaturated pyroclastic slope for slope stability evaluation. Landslides 2014, 12, 259–276. [Google Scholar] [CrossRef]
- Ridley, A.M. Relationships between climate, vegetation, pore water pressures and serviceability of clay slopes. Ital. Geotech. J. 2012, 46, 15–28. [Google Scholar]
- Ridley, A.M.; Dineen, K.; Burland, J.B.; Vaughan, P.R. Soil matrix suction: Some examples of its measurement and application in geotechnical engineering. Géotechnique 2003, 53, 241–253. [Google Scholar] [CrossRef]
- Springman, S.M.; Thielen, A.; Kienzler, P.; Friedel, S. A long-term field study for the investigation of rainfall-induced landslides. Géotechnique 2013, 63, 1177–1193. [Google Scholar] [CrossRef]
- Urciuoli, G.; Pirone, M.; Comegna, L.; Picarelli, L. Long-term investigations on the pore pressure regime in saturated and unsaturated sloping soils. Eng. Geol. 2016, 212, 98–119. [Google Scholar] [CrossRef]
- Vaughan, P. Assumption, prediction and reality in geotechnical engineering. Géotechnique 1994, 44, 573–609. [Google Scholar] [CrossRef]
- Take, W.A.; Bolton, M.D. The use of centrifuge modelling to investigate progressive failure of overconsolidated clay embankments. In Constitutive and Centrifuge Modelling: Two Extremes; Springman, S.M., Ed.; Balkema: Rotterdam, The Netherlands, 2001; pp. 191–198. [Google Scholar]
- Pedone, G.; Tsiampousi, A.; Cotecchia, F.; Zdravkovic, L. Numerical modelling of the hydro-mechanical processes active in clay slopes due to soil-vegetation-atmosphere interaction. in preparation.
- Petley, D.J. Shear strength of over-consolidated fissured clay. In Proceedings of the 4th International Symposium on Landslides, University of Toronto Press, Toronto, ON, Canada, 16–21 September 1984; Volume 2, pp. 167–172. [Google Scholar]
- Picarelli, L.; Di Maio, C.; Olivares, L.; Urciuoli, G. Properties and behaviour of tectonized clay shales in Italy. In 2nd International Symposium on the Geotechnics of Hard Soils–Soft Rocks; Evangelista, A., Picarelli, L., Eds.; CRC Press: Boca Raton, FL, USA, 1998; pp. 1211–1242. [Google Scholar]
- AGI. Some Italian experiences on the mechanical characterisation of structurally complex clay soils. In Proceedings of the 4th ISRM Congress, Montreux, Switzerland, 2–8 September 1979; Volume 1, pp. 827–846. [Google Scholar]
- AGI. Geotechnical properties and slope stability in structurally complex clay soils. Geotech. Eng. Italy 1985, 2, 189–225. [Google Scholar]
- Vitone, C.; Cotecchia, F. The influence of intense fissuring on the mechanical behaviour of clays. Géotechnique 2011, 61, 1003–1018. [Google Scholar] [CrossRef]
- Cotecchia, F.; Vitone, C.; Cafaro, F.; Santaloia, F. The mechanical behaviour of intensely fissured high plasticity clays from Daunia–panel lecture. In Proceedings of the 2nd International Workshop on Characterisation and Engineering Properties of Natural Soils; Tan, T.S., Phoon, K.K., Hight, D.W., Leroueil, M., Eds.; Taylor & Francis: Boca Raton, FL, USA, 2007; Volume 3, pp. 1975–2001. [Google Scholar]
- Cotecchia, F.; Vitone, C.; Santaloia, F.; Pedone, G.; Bottiglieri, O. Slope instability processes in intensely fissured clays: Case histories in the Southern Apennines. Landslides 2015, 12, 877–893. [Google Scholar] [CrossRef]
- Lollino, P.; Cotecchia, F.; Elia, G.; Mitaritonna, G.; Santaloia, F. Interpretation of landslide mechanisms based on numerical modelling: Two case histories. Eur. J. Civ. Environ. Eng. 2016, 20, 1032–1053. [Google Scholar] [CrossRef]
- Lollino, P.; Elia, G.; Cotecchia, F.; Mitaritonna, G. Analysis of landslide reactivation mechanisms in Daunia clay slope by means of limit equilibrium and FEM methods. In GeoFlorida 2010: Advances in Analysis, Modeling & Design; American Society of Civil Engineers: Preston, VJ, USA, 2010; Volume 199, pp. 3155–3164. [Google Scholar]
- Cotecchia, F.; Lollino, P.; Palmisano, F.; Santaloia, F.; Vitone, C. Valutazione del danno da frana per l’analisi di vulnerabilità in un’area urbana del subappennino dauno. In Proceedings of the Convegno Nazionale di Geotecnica, Roma, Italy, 20–22 June 2017. (In Italian). [Google Scholar]
- Cotecchia, F.; Vitone, C.; Petti, R.; Soriano, I.; Santaloia, F.; Lollino, P. Slow landslides in urbanised clayey slopes: An emblematic case from the south of Italy. In Landslides and Engineered Slopes. Experience, Theory and Practice; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Pedone, G. Interpretation of Slow and Deep Landslides Triggered by Slope-Atmosphere Interaction in Slopes Formed of Fissured Clayey Turbidites. Ph.D. Thesis, Polytecnical University of Bari, Bari, Italy, 2014. [Google Scholar]
- Potts, D.M.; Zdravkovic, L. Finite Element Analysis in Geotechnical Engineering: Theory; Thomas Telford: London, UK, 1999. [Google Scholar]
- Potts, D.M.; Zdravkovic, L. Finite Element Analysis in Geotechnical Engineering: applications; Thomas Telford: London, UK, 2001. [Google Scholar]
- Zienkiewicz, O.C.; Chan, A.H.C.; Pastor, M.; Schrefler, B.A.; Shiomi, T. Computational Geomechanics (with Special Reference to Earthquake Engineering); Wiley: Chichester, UK, 1999. [Google Scholar]
- Brinkgreve, R.B.J.; Kumarswamy, S.; Swolfs, W.M. Plaxis 2D 2016 Manual. Available online: www.plaxis.nl (accessed on 25 January 2020).
- Galavi, V. Groundwater flow, fully coupled flow deformation and undrained analyses in PLAXIS 2D and 3D. Plaxis Rep. 2016. [Google Scholar] [CrossRef]
- Biot, M.A. General Theory of Three-Dimensional Consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Bishop, A.W. The principle of effective stress. Tek. Ukebl. 1959, 39, 859–863. [Google Scholar]
- Rojas, E. Equivalent Stress Equation for Unsaturated Soils. I: Equivalent Stress. Int. J. Geomech. 2008, 8, 285–290. [Google Scholar] [CrossRef]
- Vanapalli, S.K.; Fredlund, D.G.; Pufahl, D.E.; Clifton, A.W. Model for the prediction of shear strength with respect to soil suction. Can. Geotech. J. 1996, 33, 379–392. [Google Scholar] [CrossRef]
- Khalili, N.; Khabbaz, M.H. A unique relationship for χ for the determination of the shear strength of unsaturated soils. Géotechnique 1998, 48, 681–687. [Google Scholar] [CrossRef]
- Jommi, C. Remarks on the constitutive modelling of unsaturated soils. In Experimental Evidence and Theoretical Approaches in Unsaturated Soils: Proceedings of an International Workshop; Tarantino, A., Mancuso, C., Eds.; Tarantino, A., Mancuso, C., Eds.; CRC Press: Boca Raton, FL, USA, 2000; pp. 139–153. [Google Scholar]
- Alonso, E.E.; Pereira, J.M.; Vaunat, J.; Olivella, S. A microstructurally based effective stress for unsaturated soils. Géotechnique 2010, 60, 913–925. [Google Scholar] [CrossRef] [Green Version]
- Fredlund, D.G.; Rahardjo, H. Soil Mechanics for Unsaturated Soils; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Cotecchia, F.; Santaloia, F.; Lollino, P.; Vitone, C.; Pedone, G.; Bottiglieri, O. From a phenomenological to a geomechanical approach to landslide hazard analysis. Eur. J. Environ. Civ. Eng. 2016, 20, 1004–1031. [Google Scholar] [CrossRef]
- Cafaro, F.; Cotecchia, F. Influence of the mechanical properties of consolidated clays on their water retention curve. Rivista Italiana di Geotecnica 2015, 49, 11–27. [Google Scholar]
- Cafaro, F.; Cotecchia, F. A structure-based approach to the estimate of the water retention curve of soils. In Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering (Osaka), Osaka, Japan, 12–16 September 2005. [Google Scholar]
- Wood, D. Soil Behaviour and Critical State Soil Mechanics; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar] [CrossRef] [Green Version]
- Skempton, A.W. Effective Stress in Soils, Concrete and Rocks; ICE Publishing: London, UK, 1961. [Google Scholar]
- Chowdhury, R. Analysis of the vajont slide—New approach. Rock Mech. 1978, 11, 29. [Google Scholar] [CrossRef]
- Potts, D.; Kovacevic, N.; Vaughan, P. Delayed collapse of cut slopes in stiff clay. Geotechnique 1997, 47, 953–982. [Google Scholar] [CrossRef]
- Scrocca, D.; Carminati, E.; Doglioni, C. Deep structure of the southern Apennines, Italy: Thin-skinned or thick-skinned? Tectonics 2005, 24, 1–20. [Google Scholar] [CrossRef]
- Matsui, T.; San, K.-C. Finite element slope stability analysis by shear strength reduction technique. Soils Found 1992, 32, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, D.V. Slope stability analysis by finite elements. Géotechnique 1999, 49, 387–403. [Google Scholar] [CrossRef]
- Griffiths, D.; Lane, P.A. Slope stability analysis by finite elements. Géotechnique 2001, 51, 653–654. [Google Scholar] [CrossRef]
Property | Symbol | Value |
---|---|---|
Saturated unit weight | γsat | 19 [kN/m3] |
Coefficient of saturated permeability | ksat | 3 × 10−9 [m/s] |
Effective Young modulus | E’ | 20,000 [kPa] |
Effective Poisson’s ratio | ν′ | 0.3 |
Effective cohesion intercept | c’ | 20 [kPa] |
Effective friction angle | ϕ’ | 23 [°] |
Dilation angle | ψ | 0 [°] |
Unsaturated unit weight | γunsat | 17 [kN/m3] |
Saturated degree of saturation | Ssat | 1 |
Residual degree of saturation | Sres | 0.45 |
Van Genuchten parameter | gn | 1.7 |
Van Genuchten parameter | ga | 0.0095 [1/m] |
Van Genuchten parameter | gl | 0.5 |
Analysis | Initialization Procedure | Ratio of the Horizontal to the Vertical Effective Stress (k0) | Poisson’s Ratio (ν′) |
---|---|---|---|
A | Gravity loading | k0 = kela = 0.428 | ν′ = 0.3 |
B | Gravity loading | k0 = kela = 0.65 | ν′ = 0.39 |
C | k0 procedure | k0 = 0.428 | ν′ = 0.3 |
D | k0 procedure | k0 = 0.65 | ν′ = 0.39 |
E | k0 procedure | k0 = 0.65 | ν′ = 0.3 |
F | k0 procedure | k0 = 1 | ν′ = 0.3 |
G | k0 procedure | k0 = 1.5 | ν′ = 0.3 |
H | k0 procedure | k0 = 2 | ν′ = 0.3 |
Analysis | Initialization Procedure | Ratio of the Horizontal to the Vertical Effective Stress (k0) | Safety Factor |
---|---|---|---|
A | Gravity loading | k0 = kela = 0.428 | No convergence |
B | Gravity loading | k0 = kela = 0.65 | No convergence |
C | k0 procedure | k0 = 0.428 | 1.135 |
D | k0 procedure | k0 = 0.65 | 1.140 |
E | k0 procedure | k0 = 0.65 | 1.142 |
F | k0 procedure | k0 = 1 | 1.136 |
G | k0 procedure | k0 = 1.5 | 1.138 |
H | k0 procedure | k0 = 2 | 1.136 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tagarelli, V.; Cotecchia, F. The Effects of Slope Initialization on the Numerical Model Predictions of the Slope-Vegetation-Atmosphere Interaction. Geosciences 2020, 10, 85. https://doi.org/10.3390/geosciences10020085
Tagarelli V, Cotecchia F. The Effects of Slope Initialization on the Numerical Model Predictions of the Slope-Vegetation-Atmosphere Interaction. Geosciences. 2020; 10(2):85. https://doi.org/10.3390/geosciences10020085
Chicago/Turabian StyleTagarelli, Vito, and Federica Cotecchia. 2020. "The Effects of Slope Initialization on the Numerical Model Predictions of the Slope-Vegetation-Atmosphere Interaction" Geosciences 10, no. 2: 85. https://doi.org/10.3390/geosciences10020085
APA StyleTagarelli, V., & Cotecchia, F. (2020). The Effects of Slope Initialization on the Numerical Model Predictions of the Slope-Vegetation-Atmosphere Interaction. Geosciences, 10(2), 85. https://doi.org/10.3390/geosciences10020085