Modeling and Simulation of Tsunami Impact: A Short Review of Recent Advances and Future Challenges
Abstract
:1. Introduction
2. State of the Field in Tsunami Forward Modeling
3. Mathematical Representations and Assumptions
3.1. The 3D Navier–Stokes Equations
3.2. Depth-Averaged Models
3.2.1. Scaled Equations
3.2.2. Depth Integration
3.2.3. Approximations
3.2.4. Shallow Water
3.2.5. Not So Shallow Equations
3.3. Mathematical Conclusions
4. Numerical Solution and Computational Considerations
- Flow scale and régime. For example, are we modeling breaking waves in the vicinity of the shore or linear waves propagating in the ocean basin? Is turbulence an important factor?
- Complexity of the physics needed. Here the difference between using a wall boundary condition at the shore and doing true wetting and drying may be significant as does the representation of true turbulent flow.
- Performance on the computing architecture being considered.
- Overall size of the problem considered. Is one interested in a single simulation or a large ensemble in order to account for uncertainty?
5. Towards a Multi-Scale Framework from Source to Impact
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Model | Space Dim. | Equations | Turbul. | Wave Break. | FSI | MP | SD |
---|---|---|---|---|---|---|---|
GeoCLAW [56] | 1D/2D/2D | No | No | No | No | FV | |
NUMA2D [125,126] | 1D/2D | No | No | No | No | SE/DG | |
MOST [92] | 1D/2D | No | No | No | No | FD | |
Cliffs [92,127] | 1D/2D | No | No | No | No | FD | |
Tsunami-HySEA [128,129,130] | 1D/2D | No | Yes | No | No | FV | |
Multilayer-HySEA [131,132] | 1D/2D(1/2) | No | Yes | No | Yes | FV | |
TUNAMI [133,134] | 1D/2D | No | No | No | No | FD | |
NAMI-DANCE [135] | 1D/2D | No | No | No | No | FD | |
COMCOT [136] | 1D/2D | No | No | No | No | FD | |
SELFE [96] | 1D/2D | No | No | No | No | FE | |
TsunAWI [97] | 1D/2D | No | No | No | No | FE | |
TsunaFlash [137] | 1D/2D | No | No | No | No | FE/DG | |
VOLNA [94,138] | 1D/2D | No | No | No | No | FV | |
Delft3D [139] | 1D/2D | No | No | No | Yes | FD | |
Basilisk [140,141,142] | 2D/3D | No | Yes | No | Yes | FV | |
BOSZ [143] | 1D/2D | B | No | No | No | No | FV/FD |
Celeris [144] | 1D/2D | B | No | No | No | No | FV |
FUNWAVE [145,146] | 1D/2D | B | No | No | No | No | FV/FD |
pCOULWAVE [147,148] | 2D/3D | B | Yes | No | No | No | FV |
NEOWAVE [149] | 2D | B | No | No | No | No | FD |
GPUSPH [98] | 3D | No | Yes | No | No | SPH | |
SCHISM [111] | 1D/2D/3D | Yes | No | No | FE/FV | ||
COBRAS [108,109] | 2D/3D | Yes | No | No | FD | ||
TSUNAMI3D [110,150] | 2D/3D | Yes | No | No | FD | ||
waves2FOAM [17,18,112] | 2D (tsunami) | Yes | No | No | FV | ||
NHWAVE [151] | 2D/3D | LES | Yes | Yes | Yes | FV/FD | |
Alya [90,152] | 2D/3D | Yes | Yes | Yes | FE |
References
- Ishiwatari, M.; Sagara, J. Structural Measures against Tsunamis; World Bank: Washington, DC, USA, 2012; Available online: http://hdl.handle.net/10986/16160 (accessed on 21 December 2020).
- Reuters. Seven Years after Tsunami, Japanese Live Uneasily with Seawalls. 2018. Available online: https://www.reuters.com/article/us-japan-disaster-seawalls/seven-years-after-tsunami-japanese-live-uneasily-with-seawalls-idUSKCN1GL0DK (accessed on 21 December 2020).
- Guardian, T. After the Tsunami: Japan’s Sea Walls–in Pictures. 2018. Available online: https://www.theguardian.com/world/gallery/2018/mar/09/after-the-tsunami-japan-sea-walls-in-pictures (accessed on 21 December 2020).
- Economist, T. The Great Wall of Japan. 2014. Available online: https://www.economist.com/asia/2014/06/14/the-great-wall-of-japan (accessed on 21 December 2020).
- Times, N.Y. Seawalls Offered Little Protection against Tsunami’s Crushing Waves. 2011. Available online: https://www.nytimes.com/2011/03/14/world/asia/14seawalls.html (accessed on 21 December 2020).
- Wired, W. Ominous Views of Japan’s New Concrete Seawalls. 2018. Available online: https://www.wired.com/story/photo-gallery-japan-seawalls/ (accessed on 21 December 2020).
- Peterson, M.; Lowe, M. Implications of Cumulative Impacts to Estuarine and Marine Habitat Quality for Fish and Invertebrate Resources. Rev. Fish. Sci. 2009, 17, 505–523. [Google Scholar] [CrossRef]
- Dugan, J.; Hubbard, D. Ecological Effects of Coastal Armoring: A Summary of Recent Results for Exposed Sandy Beaches in Southern California. In Puget Sound Shorelines and the Impacts of Armoring; US Geological Survey Scientific Investigations Report; Shipman, H., Dethier, M., Gelfenbaum, G., Fresh, K., Dinicola, R., Eds.; USGS: Reston, VA, USA, 2010. [Google Scholar]
- Bulleri, F.; Chapman, M. The introduction of coastal infrastructure as a driver of change in marine environments. J. Appl. Ecol. 2010, 47, 26–35. [Google Scholar] [CrossRef]
- Dean, R.G.; Dalrymple, R.A. Coastal Processes with Engineering Applications; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Komar, P. Beach Processes and Sedimentation; Prantice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Lunghino, B.; Santiago Tate, A.; Mazereeuw, M.; Muhari, A.; Giraldo, F.; Marras, S.; Suckale, J. The protective benefits of tsunami mitigation parks and ramifications for their strategic design. Proc. Nat. Acad. Sci. USA 2020, 117, 10740–10745. [Google Scholar] [CrossRef] [PubMed]
- Renew Yamada. 2011. Available online: http://renewyamada.org (accessed on 10 July 2020).
- Behrens, J.; Dias, F. New computational methods in tsunami science. Philos. Trans. R. Soc. A 2015, 373, 20140382. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Motley, M.; LeVeque, R.; González, F.; Mueller, K. A comparison of a two-dimensional depth-averaged flow model and a three-dimensional RANS model for predicting tsunami inundation and fluid forces. Nat. Hazards Earth Syst. Sci. 2018, 18, 2489–2506. [Google Scholar] [CrossRef] [Green Version]
- Prasetyo, A.; Yasuda, T.; Miyashita, T.; Mori, N. Physical Modeling and Numerical Analysis of Tsunami Inundation in a Coastal City. Front. Built Environ. 2019, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Larsen, B.; Fuhrman, D. Full-scale CFD simulation of tsunamis. Part 1: Model validation and run-up. Coast. Eng. 2019, 151, 22–41. [Google Scholar] [CrossRef]
- Larsen, B.; Fuhrman, D. Full-scale CFD simulation of tsunamis. Part 2: Boundary layers and bed shear stresses. Coast. Eng. 2019, 151, 42–57. [Google Scholar] [CrossRef]
- Bernard, E.; Mofjeld, H.; Titov, V.; Synolakis, C.; González, F. Tsunami: Scientific frontiers, mitigation, forecasting and policy implications. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 2006, 364, 1989–2007. [Google Scholar] [CrossRef]
- NHERI. Natural Hazards Research Infrastructure: Five-Year Science Plan, 2nd ed.; Technical Report; NHERI: Salem, OR, USA, 2020.
- Chen, J.; Huang, Z.; Jiang, C.; Deng, B.; Long, Y. An experimental study of changes of beach profile and mean grain size caused by tsunami-like waves. J. Coast. Res. 2012, 28, 1303–1312. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, J.; Yao, Y.; Liu, J.; Deng, Y. Study on threshold motion of sediment and bedload transport by tsunami waves. Ocean Eng. 2015, 100, 97–106. [Google Scholar] [CrossRef]
- Aida, I. Numercal experiments for the tsunami propagation of the 1964 Niigata tsunami and 1968 Tokachi-Oki tsunami. Bull. Earthq. Res. Int. Univ. Tokyo 1969, 47, 673–700. [Google Scholar]
- Aida, I. Numerical computational of a tsunami based on a fault origin model of an earthquake. J. Seismol. Soc. Jpn. 1974, 27, 141–154. [Google Scholar]
- Borrero, J.C.; Legg, M.R.; Synolakis, C.E. Tsunami sources in the southern California bight. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Pelties, C.; de la Punte, P.; Ampuero, J.P.; Brietzke, G.; Käser, M. Three-dimensional dynamic rupture simulation with a high-order discontinuous Galerkin method on unstructured tetrahedral meshes. J. Geophys. Res. 2012, 117, 2156–2202. [Google Scholar] [CrossRef] [Green Version]
- López-Venegas, A.; Horrillo, J.; Pampell-Manis, A.; Huérfano, V.; Mercado, A. Advanced Tsunami Numerical Simulations and Energy Considerations by use of 3D-2D coupled Models: The October 11, 1918, Mona Passage Tsunami. Pure App. Geophys. 2014, 171, 2863–3174. [Google Scholar] [CrossRef]
- Gálvez, P.; Ampuero, J.P.; Dalguer, L.; Somala, S.N.; Nissen-Meyer, T. Dynamic earthquake rupture modelled with an unstructured 3-D spectral element method applied to the 2011 M9 Tohoku earthquake. Geophys. J. Int. 2014, 198, 1222–1240. [Google Scholar]
- Ulrich, T.; Vater, S.; Madden, E.; Behrens, J.; van Dinther, Y.; van Zelst, I.; Fielding, J.; Liang, C.; Gabriel, A.A. Coupled, Physics-Based Modeling Reveals Earthquake Displacements are Critical to the 2018 Palu, Sulawesi Tsunami. Pure Appl. Geophys. 2019, 176, 4069–4109. [Google Scholar] [CrossRef] [Green Version]
- Titov, V.; González, F.; Bernard, E.; Eble, M.C.; Mofjeld, H.; Newman, J.C.; Venturato, A. Real-Time Tsunami Forecasting: Challenges and Solutions. Nat. Hazards 2005, 35, 41–58. [Google Scholar] [CrossRef]
- LeVeque, R.; George, D.; Berger, M. Tsunami modelling with adaptively refined finite volume methods. Acta Numer. 2011, 20, 211–289. [Google Scholar] [CrossRef] [Green Version]
- Bonev, B.; Hesthaven, J.S.; Giraldo, F.X.; Kopera, M.A. Discontinuous Galerkin scheme for the spherical shallow water equations with applications to tsunami modeling and prediction. J. Comput. Phys. 2018, 362, 425–448. [Google Scholar] [CrossRef] [Green Version]
- Lynett, P.J. Effect of a shallow water obstruction on long wave runup and overland flow velocity. J. Waterw. Port Coastal Ocean Eng. 2007, 133, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Cox, D.T.; Lynett, P.J.; Wiebe, D.M.; Shin, S. Tsunami inundation modeling in constructed environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum flux. Coast. Eng. 2013, 79, 9–21. [Google Scholar] [CrossRef]
- Oishi, Y.; Imamura, F.; Sugawara, D. Near-field tsunami inundation forecast using the parallel TUNAMI-N2 model: Application to the 2011 Tohoku-Oki earthquake combined with source inversions. Geo. Res. Lett. 2015, 42, 1083–1091. [Google Scholar] [CrossRef]
- Vater, S.; Beisiegel, N.; Behrens, J. A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: One-dimensional case. Adv. Water Resour. 2015, 85, 1–13. [Google Scholar] [CrossRef]
- Vater, S.; Beisiegel, N.; Behrens, J. A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: Triangular grids. Int. J. Numer. Methods Fluids 2019, 91, 395–418. [Google Scholar] [CrossRef]
- Ayog, J.; Kesserwani, G.; Shaw, J.; Sharifian, M.; Bau, D. Second-order discontinuous Galerkin flood model: Comparison with industry-standard finite volume models. arXiv 2020, arXiv:2010.02003. [Google Scholar]
- Lin, P. A numerical study of solitary wave interaction with rectangular obstacles. Coast. Eng. 2004, 51, 35–51. [Google Scholar] [CrossRef]
- Apotsos, A.; Jaffe, B.; Gelfenbaum, G. Wave characteristic and morphologic effects on the onshore hydrodynamic response of tsunamis. Coast. Eng. 2011, 58, 1034–1048. [Google Scholar] [CrossRef]
- Okal, E.; Synolakis, C. Sequencing of tsunami waves: Why the first wave is not always the largest. Geophys. J. Int. 2015, 204, 719–735. [Google Scholar] [CrossRef] [Green Version]
- Lynett, P.; Borrero, J.; Weiss, R.; Greer, D.; Renteria, W. Observations and modeling of tsunami-induced currents in ports and harbors. Earth Planet. Sci. Lett. 2012, 327–328, 68–74. [Google Scholar] [CrossRef]
- Borrero, J.; Lynett, P.; Kalligeris, N. Tsunami currents in ports. Phil. Trans. R. Soc. A 2015, 373, 20140372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrero, J.; Synolakis, C.; Fritz, H. Northern Sumatra field survey after the December 2004 Great Sumatra Earthquake and Indian Ocean tsunami. Earthq. Spectra 2006, 22, S93–S104. [Google Scholar] [CrossRef] [Green Version]
- Paris, R.; Wassmer, P.; Sartohadi, J.; Lavigne, F.; Barthomeuf, B.; Desgages, E.; Grancher, D.; Baumert, P.; Vautier, F.; Brunstein, D.; et al. Tsunamis as geomorphic crises: Lessons from the december 26, 2004 tsunami in Lhok Nga, West Banda Aceh (Sumatra, Indonesia). Geomorphology 2009, 104, 59–72. [Google Scholar] [CrossRef]
- Kato, F.; Noguchi, K.; Suwa, Y.; Sakagami, T.; Sato, Y. Field survey on tsunami induced topographical change. J. Jpn. Soc. Civil Engrs. Ser. B3 2012, 68, 174–179. [Google Scholar]
- Kuriyama, Y.; Takahashi, K.; Yanagishima, S.; Tomita, T. Beach profile change at Hasaki, Japan caused by 5-m-high tsunami due to the 2011 off the Pacific coast of Tohoku earthquake. Mar. Geol. 2014, 355, 234–243. [Google Scholar] [CrossRef]
- Yamashita, K.; Sugawara, D.; Takahashi, T.; Imamura, F.; Saito, Y.; Imato, Y.; Kai, T.; Uehara, H.; Kato, T.; Nakata, K.; et al. Numerical simulations of large-scale sediment transport caused by the 2011 Tohoku earthquake tsunami in Hirota Bay. Southern Sanriku Coast. Coast. Eng. 2016, 58, 1640015. [Google Scholar] [CrossRef] [Green Version]
- Udo, K.; Takeda, Y.; Tanaka, H. Coastal morphology change before and after 2011 off the Pacific coast of Tohoku earthquake tsunami at Rikuzen-Takata coast. Coast. Eng. 2016, 58, 1640016. [Google Scholar] [CrossRef] [Green Version]
- Levin, B.; Nosov, M. Physics of Tsunamis; Springer: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Li, L.; Qiu, Q.; Huang, Z. Numerical modeling of the morphological change in Lhok Nga, West Banda Aceh, during the 2004 Indian Ocean tsunami: Understanding tsunami deposits using a forward modeling method. Nat. Hazards 2012, 64, 1549–1574. [Google Scholar] [CrossRef]
- Ontowirjo, B.; Paris, R.; Mano, A. Modeling of coastal erosion and sediment deposition during the 2004 Indian Ocean tsunami in Lhok Nga, Sumatra, Indonesia. Nat. Hazards 2013, 65, 1967–1979. [Google Scholar] [CrossRef]
- Sugawara, D.; Takahashi, T.; Imamura, F. Sediment transport due to the 2011 Tohoku-Oki tsunami at Sendai: Results from numerical modeling. Mar. Geol. 2014, 358, 18–37. [Google Scholar] [CrossRef]
- Garres-Díaz, J.; Castro Díaz, M.; Koellermeier, J.; Morales de Luna, T. Shallow Water Moment models for bedload transport problems. arXiv 2020, arXiv:2008.08449. [Google Scholar]
- OpenFOAM v2.3.1. 2014. Available online: https://openfoam.org/release/2-3-1/ (accessed on 21 December 2020).
- Berger, M.; George, D.; LeVeque, R.; Mandli, K. The GeoClaw software for depth-averaged flows with adaptive refinement. Adv. Water Res. 2011, 34, 1195–1206. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, S.C.; Lin, T.C. Tsunami-like solitary waves impinging and overtopping an impermeable seawall: Experiment and RANS modeling. Coast. Eng. 2010, 57, 1–8. [Google Scholar] [CrossRef]
- Larsen, B.; Fuhrman, D. On the over-production of turbulence beneath surface waves in Reynold-averaged Navier-Stokes models. J. Fluid Mech. 2018, 853, 419–460. [Google Scholar] [CrossRef] [Green Version]
- Christensen, E. Large eddy simulation of spilling and plunging breakers. Coast. Eng. 2006, 53, 463–485. [Google Scholar] [CrossRef]
- Meiburg, E.; Radhakrishnan, S.; Nasr-Azadani, M. Modeling Gravity and Turbidity Currents: Computational Approaches and Challenges. Appl. Mech. Rev. 2015, 67, 40802. [Google Scholar] [CrossRef]
- Yu, X.; Ozdemir, C.E.; Hsu, T.J.; Balachandar, S. Numerical Investigation of Turbulence Modulation by Sediment-Induced Stratification and Enhanced Viscosity in Oscillatory Flows. J. Waterw. Port Coast. Ocean Eng. 2014, 140, 160–172. [Google Scholar] [CrossRef]
- Uhlmann, M. An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 2005, 209, 448–476. [Google Scholar] [CrossRef] [Green Version]
- Lynett, P.J.; Gately, K.; Wilson, R.; Montoya, L.; Arcas, D.; Aytore, B.; Bai, Y.; Bricker, J.D.; Castro, M.J.; Cheung, K.F.; et al. Inter-model analysis of tsunami-induced coastal currents. Ocean Model. 2017, 114, 14–32. [Google Scholar] [CrossRef]
- USACE. Interim Survey Report, Morgan City, Louisiana and Vicinity; Technical Report 63; US Army Engineer District: New Orleans, LA, USA, 1963.
- Fosberg, F.R.; Chapman, V. Mangroves v. tidal waves. Biol. Conserv. 1971, 4, 38–39. [Google Scholar] [CrossRef]
- Mazda, Y.; Magi, M.; Kogo, M.; Hong, P.N. Mangroves as a coastal protection from waves in the Tong King Delta, Vietnam. Mangroves Salt Marshes 1997, 1, 127–135. [Google Scholar] [CrossRef]
- Möller, I.; Spencer, T.; French, J.R.; Leggett, D.J.; Dixon, M. Wave transformation over salt marshes: A field and numerical modeling study from North Norfolk, England. Estuar Coast Shelf Sci. 1999, 49, 411–426. [Google Scholar] [CrossRef]
- Harada, K.; Imamura, F. Effects of coastal forest on tsunami hazard mitigation—A preliminary investigation. In Tsunamis; Springer: Berlin/Heidelberg, Germany, 2005; pp. 279–292. [Google Scholar]
- Tanaka, N.; Sasaki, Y.; Mowjood, M.; Jinadasa, K.; Homchuen, S. Coastal vegetation structures and their functions in tsunami protection: Experience of the recent Indian Ocean tsunami. Landsc. Ecol. Eng. 2007, 3, 33–45. [Google Scholar] [CrossRef]
- Tanaka, N.; Nandasena, N.; Jinadasa, K.; Sasaki, Y.; Tanimoto, K.; Mowjood, M. Developing effective vegetation bioshield for tsunami protection. Civ. Eng. Environ. Syst. 2009, 26, 163–180. [Google Scholar] [CrossRef]
- Stoesser, T.; Palau Salavador, G.; Rodi, W.; Diplas, P. Large eddy simulation of flow through submerged vegetation. Transp. Porous. Med. 2009, 78, 347–365. [Google Scholar] [CrossRef]
- Iimura, K.; Tanaka, N. Numerical simulation estimating effects of tree density distribution in coastal forest on tsunami mitigation. Ocean Eng. 2012, 54, 223–232. [Google Scholar] [CrossRef]
- Tanaka, N.; Jinadasa, K.; Mowjood, M.; Fasly, M. Coastal vegetation planting projects for tsunami disaster mitigation: Effectiveness evaluation of new establishments. Landsc. Ecol. Eng. 2011, 7, 127–135. [Google Scholar] [CrossRef]
- Tanaka, N. Effectiveness and limitations of vegetation bioshield in coast for tsunami disaster mitigagation. In The Tsunami Threat-Research and Technology; BoD-Books: Norderstedt, Germany, 2011. [Google Scholar]
- Thuy, N.B.; Tanaka, N.; Tanimoto, K. Tsunami mitigation by coastal vegetation considering the effect of tree breaking. J. Coast. Conserv. 2012, 16, 111–121. [Google Scholar] [CrossRef]
- Muhammad, R.; Tanaka, N. Energy Reduction of a Tsunami Current through a Hybrid Defense System Comprising a Sea Embankment Followed by a Coastal Forest. Geosciences 2019, 247, 1–27. [Google Scholar]
- Nepf, H. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 1999, 35, 479–489. [Google Scholar] [CrossRef]
- Bayas, J.; Marohn, C.; Dercon, G.; Dewi, S.; Piepho, H.; Joshi, L.; van Noordwijk, M.; Cadisch, G. Influence of coastal vegetation on the 2004 tsunami wave impact in West Aceh. Proc. Natl. Acad. Sci. USA 2011, 108, 18612–18617. [Google Scholar] [CrossRef] [Green Version]
- Westerink, J.; Luettich, R.; Baptista, A.; Scheffner, N.; Farrar, P. Tide and storm surge predictions using finite element model. ASCE J. Hydraul. Eng. 1992, 118, 1373–1390. [Google Scholar] [CrossRef]
- Kânoğlu, U.; Synolakis, C. Long wave runup on piecewise linear topographies. J. Fluid Mech. 1998, 374, 1–28. [Google Scholar] [CrossRef]
- Westerink, J.; Luettich, R.; Feyen, J.; Atkinson, J.; Dawson, C.; Roberts, H.; Powell, M.; Dunion, J.; Kubatko, E.; Pourtaheri, H. A basin-to-channel-scale unstructured grid hurricane storm surge model applied to southern Louisiana. Mon. Weather Rev. 2008, 136, 833–864. [Google Scholar] [CrossRef]
- Sun, F.; Carson, R. Coastal wetlands reduce property damage during tropical cyclones. Proc. Natl. Acad. Sci. USA 2020, 117, 5719–5725. [Google Scholar] [CrossRef] [PubMed]
- Jackson, N.; Nordstrom, K.; Feagin, R.; Smith, W. Coastal geomorphology and restoration. Geomorphology 2013, 199, 1–7. [Google Scholar] [CrossRef]
- Day, J.; Boesch, D.; Clairain, E.E.A. Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita. Science 2007, 315, 1679–1684. [Google Scholar] [CrossRef] [Green Version]
- Gedan, K.; Kirwan, M.; Wolanski, E.; Barbier, E.; Silliman, B. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Clim. Chang. 2011, 106, 7–29. [Google Scholar] [CrossRef]
- Shephard, C.; Crain, C.; Beck, M. The protective role of coastal marshes: A systematic review and meta-analysis. PLoS ONE 2012, 6, e27374. [Google Scholar]
- Horstman, E.; Dohmen-Janssen, C.; Narra, P.; van den Berg, N.; Siemerink, M.; Hulscher, S. Wave attenuation in mangroves: A quantitative approach to field observations. Coast. Eng. 2014, 94, 47–62. [Google Scholar] [CrossRef]
- Mattis, S.; Dawson, C.; Kees, C.; Farthing, M. An immersed structure approach for fluid-vegetation interaction. Adv. Water Res. 2015, 80, 1–6. [Google Scholar] [CrossRef]
- Mattis, S.; Kees, C.; Wei, M.; Dimakopoulos, A.; Dawson, C.N. Computational Model for Wave Attenuation by Flexible Vegetation. J. Waterw. Port Coast. Ocean Eng. 2019, 145, 04018033. [Google Scholar] [CrossRef]
- Mukherjee, A.; Cajas, J.; Houzeaux, G.; Lehmkuhl, O.; Vázquez, M.; Suckale, J.; Marras, S. Using fluid-structure interaction to evaluate the energy dissipation of a tsunami run-up through idealized flexible trees. In Proceedings of the ParCFD’2020 32nd International Conference on Parallel Computational Fluid Dynamics, Nice, France, 11–13 May 2020. [Google Scholar]
- Synolakis, C.; Bernard, E. Tsunami science before and beyond boxing day. Philos. Trans. Roy. Soc. Lond. 2006, 364, 2231–2265. [Google Scholar]
- Titov, V.V.; González, F. Implementation and Testing of the Method Of Splitting Tsunami (MOST) Model; NOAA Technical Memorandum ERL PMEL-112 1927; Technical Report; NOAA: Seattle, WA, USA, 1997.
- George, D.L.; LeVeque, R.L. Finite volume methods and adaptive refinement for global tsunami propagation and local inundation. Sci. Tsunami Hazards 2006, 24, 319–328. [Google Scholar]
- Dutykh, D.; Poncet, R.; Dias, F. The VOLNA code for the numerical modeling of tsunami waves: Generation, propagation and inundation. Eur. J. Mech. B/Fluids 2011, 30, 598–615. [Google Scholar] [CrossRef] [Green Version]
- Mandli, K. A numerical method for the two layer shallow water equations with dry states. Ocean Model. 2013, 72, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Baptista, A. An efficient and robust tsunami model on unstructured grids. Part I: Inundation benchmarks. Pure Appl. Geophys. 2008, 165, 2229–2248. [Google Scholar] [CrossRef]
- Harig, S.; Chaeroni, X.; Pranowo, W.; Behrens, J. Tsunami simulations on several scales: Comparison of approaches with unstructured meshes and nested grids. Ocean Dyn. 2008, 58, 429–440. [Google Scholar] [CrossRef]
- Wei, Z.; Dalrympl, R.; Hérault, A.; Bilotta, G.; Rustico, E.; Yeh, H. SPH modeling of dynamic impact of tsunami bore on bridge pier. Coast. Eng. 2015, 104, 26–42. [Google Scholar] [CrossRef]
- Klapp, J.; Areu-Rangel, O.; Cruchaga, M.; Aranguiz, R.; Bonasia, R.; Godoy, M.; Silva-Casarín, R. Tsunami hydrodynamic force on a building using a SPH real-scale numerical simulation. Nat. Hazards 2020, 110, 89–109. [Google Scholar] [CrossRef] [Green Version]
- Behrens, J. Adaptive Atmospheric Modeling. Key Techniques in Grid Generation, Data Structures, and Numerical Operations with Applications; Springer: Berlin/Heidelberg, Germany, 2006; p. 207. [Google Scholar]
- Müller, A.; Kopera, M.; Marras, S.; Wilcox, L.; Isaac, T.; Giraldo, F. Strong scaling for numerical weather prediction at petascale with the atmospheric model NUMA. Int. J. High Perform. Comput. 2018, 33, 411–426. [Google Scholar] [CrossRef] [Green Version]
- Castro, M.; Ferreiro Ferreiro, A.; García-Rodriguez, J.; González-Vida, J.; Macías, J.; Parés, C.; Elena Vázquez-Cendón, M. The numerical treatment of wet/dry fronts in shallow flows: Application to one-layer and two-layer systems. Math. Comput. Model. 2005, 42, 419–439. [Google Scholar] [CrossRef]
- Bunya, S.; Kubatko, E.J.; Westerink, J.J.; Dawson, C. A wetting and drying treatment for the Runge–Kutta discontinuous Galerkin solution to the shallow water equations. Comput. Methods Appl. Mech. Eng. 2009, 198, 1548–1562. [Google Scholar] [CrossRef]
- Kesserwani, G.; Liang, Q. Well-balanced RKDG2 solutions to the shallow water equations over irregular domains with wetting and drying. Comput. Fluids 2010, 39, 2040–2050. [Google Scholar] [CrossRef]
- Berthon, C.; Marche, F.; Turpault, R. An efficient scheme on wet/dry transitions for shallow water equations with friction. Comput. Fluids 2011, 48, 192–201. [Google Scholar] [CrossRef]
- Le, H.; Lambrechts, J.; Ortleb, S.; Gratiot, N.; Deleersnijder, E.; Ao, S.F. An implicit wetting–drying algorithm for the discontinuous Galerkin method: Application to the Tonle Sap, Mekong River Basin. Environ. Fluid Mech. 2020, 20, 923–951. [Google Scholar] [CrossRef]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000; pp. 1–771. [Google Scholar]
- Lin, P.; Liu, P. A numerical study of breaking waves in the surf zone. J. Fluid Mech. 1998, 358, 239–264. [Google Scholar] [CrossRef]
- Lin, P.; Liu, P. Turbulence transport, vorticity dynamics, and solute mixing under plunging breaking waves in surf zone. J. Geophys. Res. 1998, 103, 15677–15694. [Google Scholar] [CrossRef]
- Horrillo, J.; Wood, A.; Kim, G.; Parambath, A. A simplified 3-D/Navier–Stokes numerical model for landslide tsunami: Application to the Gulf of Mexico. J. Geophys. Res./Oceans 2013, 118, 6934–6950. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, F.; Stanev, E.; Grashorn, S. Seamless cross-scale modeling with SCHISM, Ocean Modelling. Ocean Model. 2016, 102, 64–81. [Google Scholar] [CrossRef] [Green Version]
- Jacobsen, N.; Fuhrman, D.; Fredsoe, J. A wave generation toolbox for the open-source CFD library: OpenFOAM (R). Int. J. Numer. Methods Fluids 2012, 70, 1073–1088. [Google Scholar] [CrossRef]
- Ghosh, D.; Mittal, A.; Bhattacharyya, S. Multiphase modeling of tsunami impact on building with openings. J. Comput. Multiph. Flows 2016, 8, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Owen, H.; Houzeaux, G.; Samaniego, C.; Cucchietti, F.; Marin, G.; Tripiana, C.; Hadrien, C.; Vázquez, M. Two Fluids Level Set: High Performance Simulation and Post Processing. In Proceedings of the 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, Salt Lake City, UT, USA, 10–16 November 2012. [Google Scholar]
- Madden, E.; Bader, M.; Behrens, J.; van Dinther, Y.; Gabriel, A.A.; Rannabauer, L.; Ulrich, T.; Uphoff, C.; Vater, S.; Wollherr, S.; et al. Linked 3D modeling of megathrust earthquake-tsunami events: From subduction to tsunami run up. Geophys. J. Int. 2020. [Google Scholar] [CrossRef]
- Pelinovscky, E.N. Non-linear hyperbolic equations and run-up of Huge sea waves. Appl. Anal. 1995, 57, 63–84. [Google Scholar] [CrossRef]
- Rivera, P. Modeling the Asian tsunami evolution and propagation with a new generation mechanism and non-linear dispersive wave model. Sci. Tsunami Hazards 2006, 25, 18–33. [Google Scholar]
- Baba, T.; Allgeyer, S.; Hossen, J.; Cummins, P.R.; Tsushima, H.; Imai, K.; Yamashita, K.; Kato, T. Accurate numerical simulation of the far-field tsunami caused by the 2011 Tohoku earthquake, including the effects of Boussinesq dispersion, seawater density stratification, elastic loading, and gravitational potential change. Ocean Model. 2017, 111, 46–54. [Google Scholar] [CrossRef]
- Chen, X. Dynamic coupling of a three-dimensional hydrodynamic model with a laterally averaged, two-dimensional hydrodynamic model. J. Geophys. Res. Ocean. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.J. Coupling an Unstructured Grid three-dimensional Model with a Laterally Averaged two-dimensional Model for Shallow Water Hydrodynamics and Transport Processes. Int. J. Numer. Methods Fluids 2020. [Google Scholar] [CrossRef]
- Bungartz, H.; Lindner, F.; Gatzhammer, B.; Mehl, M.; Scheufele, K.; Shukaev, A.; Uekermann, B. preCICE–a fully parallel library for multi-physics surface coupling. Comput. Fluids 2016, 141, 250–258. [Google Scholar] [CrossRef]
- Mehl, M.; Uekermann, B.; Bijl, H.; Blom, D.; Gatzhammer, B.; Van Zuijlen, A. Parallel coupling numerics for partitioned fluid–structure interaction simulations. Comput. Math. Appl. 2016, 71, 869–891. [Google Scholar] [CrossRef]
- Lotto, G.; Jeppson, T.; Dunham, E. Fully Coupled Simulations of Megathrust Earthquakes and Tsunamis in the Japan Trench, Nankai Trough, and Cascadia Subduction Zone. Pure Appl. Geophys. 2019, 176, 4009–4041. [Google Scholar] [CrossRef]
- ASCETE. Advanced Simulation of Coupled Earthquake and Tsunami Events. Available online: https://t3projects.cen.uni-hamburg.de/index.php?id=2099 (accessed on 21 December 2020).
- Marras, S.; Kopera, M.; Giraldo, F.X. Simulation of Shallow Water Jets with a Unified Element-based Continuous/Discontinuous Galerkin Model with Grid Flexibility on the Sphere. Q. J. Roy. Meteor. Soc. 2015, 141, 1727–1739. [Google Scholar] [CrossRef] [Green Version]
- Marras, S.; Kopera, M.; Constantinescu, E.; Suckale, J.; Giraldo, F. A Residual-based Shock Capturing Scheme for the Continuous/Discontinuous Spectral Element Solution of the 2D Shallow Water Equations. Adv. Water Res. 2018, 114, 45–63. [Google Scholar] [CrossRef]
- Tolkova, E. Land–water boundary treatment for a tsunami model with dimensional splitting. Pure Appl. Geophys. 2014, 171, 2289–2314. [Google Scholar] [CrossRef] [Green Version]
- Macías, J.; Castro, M.; Ortega, S.; Escalante, C.; González-Vida, J. Performance Benchmarking of Tsunami-HySEA Model for NTHMP’s Inundation Mapping Activities. Pure Appl. Geophys. 2017, 174, 3147–3183. [Google Scholar] [CrossRef] [Green Version]
- Macías, J.; Castro, M.; Ortega, S.; González-Vida, J. Performance assessment of Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Field cases. Ocean Model. 2020, 152, 101645. [Google Scholar] [CrossRef]
- Macías, J.; Castro, M.; Escalante, C. Performance assessment of the Tsunami-HySEA model for NTHMP tsunami currents benchmarking. Laboratory data. Coast. Eng. 2020, 158, 103667. [Google Scholar] [CrossRef]
- Macías, J.; Escalante, C.; Castro, M.J. Multilayer-HySEA model validation for landslide generated tsunamis. Part I Rigid slides. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 2020, 1–33. [Google Scholar] [CrossRef]
- Macías, J.; Escalante, C.; Castro, M.J. Multilayer-HySEA model validation for landslide generated tsunamis. Part II Granular slides. Nat. Hazards Earth Syst. Sci. Discuss. 2020, 2020, 1–34. [Google Scholar] [CrossRef]
- Imamura, F. Tsunami Numerical Simulation with the Staggered Leap-frog Scheme (Numerical Code of TUNAMI-N1 and N2); Disaster Control Res. Center Tohoku Univ.: Miyagi, Japan, 1989. [Google Scholar]
- Imamura, F.; Yalciner, A.; Ozyurt, G. Tsunami Modelling Manual; Technical Report; IOC: Lausanne, Switzerland, 2006. [Google Scholar]
- Yalciner, A.; Pelinovsky, E.; Zaytsev, A.; Kurkin, A.; Ozer, C.; Karakus, H. NAMI DANCE Manual; Technical Report; METU, Civil Engineering Department, Ocean Engineering Research Center: Ankara, Turkey, 2006. [Google Scholar]
- Wang, X. User Manual for COMCOT Version 1.7; Technical Report; Cornell University: New York, NY, USA, 2009. [Google Scholar]
- Pranowo, W.; Behrens, J.; Schlicht, J.; Ziemer, C. Adaptive mesh refinement applied to tsunami modeling: TsunaFLASH. In Proceedings of the the International Conference on Tsunami Warning (ICTW), Denpasar, Bali, Indonesia, 12–14 November 2008; Adrianto, H., Ed.; State Ministry of Research and Technology, Republic of Indonesia (RISTEK): Jakarta, Indonesia, 2008. Available online: http://hdl.handle.net/10013/epic.32425.d001 (accessed on 21 December 2020).
- Reguly, I.Z.; Giles, D.; Gopinathan, D.; Quivy, L.; Beck, J.H.; Giles, M.B.; Guillas, S.; Dias, F. The VOLNA-OP2 tsunami code (version 1.5). Geosci. Model Dev. 2018, 11, 4621–4635. [Google Scholar] [CrossRef] [Green Version]
- Roelvink, J.; Van Banning, G. Design and development of DELFT3D and application to coastal morphodynamics. Oceanogr. Lit. Rev. 1995, 42, 925. [Google Scholar]
- Popinet, S. Basilisk: Simple abstractions for octree-adaptive scheme. In Proceedings of the SIAM Conference on Parallel Processing for Scientific Computing, Boston, MA, USA, 12–15 April 2016. [Google Scholar]
- Popinet, S. A quadtree-adaptive multigrid solver for the Serre–Green–Naghdi equations. J. Comput. Phys. 2015, 302, 336–358. [Google Scholar] [CrossRef] [Green Version]
- Popinet, S. A vertically-Lagrangian, non-hydrostatic, multilayer model for multiscale free-surface flows. J. Comput. Phys. 2020, 418, 109609. [Google Scholar] [CrossRef]
- Roeber, V.; Cheung, K. Boussinesq-type model for energetic breaking waves in fringing reef environment. Coast. Eng. 2012, 70, 1–20. [Google Scholar] [CrossRef]
- Tavakkol, S.; Lynett, P. Celeris: A GPU-accelerated open source software with a Boussinesq-type wave solver for real-time interactive simulation and visualization. Comput. Phys. Commun. 2017, 217, 117–127. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, A.; Chen, Q.; Kirby, J.; Dalrymple, R. Boussinesq modeling of wave transformation, breaking and runup, part I: 1D. J. Waterw. Port Coast. Ocean Eng. 2000, 126, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Shi, F.; Kirby, J.; Harris, J.; Geiman, J.; Grilli, S. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Model. 2012, 43–44, 36–51. [Google Scholar] [CrossRef]
- Lynett, P.J.; Wu, T.R.; Liu, P.L.F. Modeling wave runup with depth-integrated equations. Coast. Eng. 2002, 46, 89–107. [Google Scholar] [CrossRef]
- Kim, D.; Lynett, P. Turbulent mixing and passive scalar transport in shallow flows. Phys. Fluids 2011, 23, 16603. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, Y.; Kowalik, Z.; Cheung, K. Depth-integrated, non-hydrostatic model for wave breaking and run-up. Int. J. Numer. Meth. Fluids 2009, 61, 473–497. [Google Scholar] [CrossRef]
- Horrillo, J.; Grilli, S.; Nicolsky, D.; Roeber, V.; Zhang, J. Performance benchmarking tsunami models for NTHMP’s inundation mapping activities. Pure Appl. Geophys. 2015, 172, 869–884. [Google Scholar] [CrossRef]
- Ma, G.; Shi, F.; Kirby, J. Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Model. 2012, 43–44, 22–35. [Google Scholar] [CrossRef]
- Vázquez, M.; Houzeaux, G. Alya: Multiphysics Engineering Simulation Towards Exascale. J. Comput. Sci 2016, 14, 15–27. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marras, S.; Mandli, K.T. Modeling and Simulation of Tsunami Impact: A Short Review of Recent Advances and Future Challenges. Geosciences 2021, 11, 5. https://doi.org/10.3390/geosciences11010005
Marras S, Mandli KT. Modeling and Simulation of Tsunami Impact: A Short Review of Recent Advances and Future Challenges. Geosciences. 2021; 11(1):5. https://doi.org/10.3390/geosciences11010005
Chicago/Turabian StyleMarras, Simone, and Kyle T. Mandli. 2021. "Modeling and Simulation of Tsunami Impact: A Short Review of Recent Advances and Future Challenges" Geosciences 11, no. 1: 5. https://doi.org/10.3390/geosciences11010005
APA StyleMarras, S., & Mandli, K. T. (2021). Modeling and Simulation of Tsunami Impact: A Short Review of Recent Advances and Future Challenges. Geosciences, 11(1), 5. https://doi.org/10.3390/geosciences11010005