Two-Scale Investigation of the Retention Behavior of a Well-Graded Mixed Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Composition and State after Compaction
2.2. Experimental Set Up
3. Retention Behavior under Wetting
3.1. Wetting Branch of the WRC Deduced from the Physical Model Data
3.2. Soil Volumetric Collapse under Wetting
3.3. Wetting Branch of WRC Deduced through Element Testing
4. Shrinkage under Drying and Hydraulic Hysteresis
4.1. Experimental Determination of the Drying Branch of WRC
4.2. Shrinkage during Drying Stages in Oedometer Apparatus
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aitchison, G.D. Engineering concepts of moisture equilibria and moisture changes in soils. Statement of the Review Panel. In Moisture Equilibria and Moisture Changes in Soils Beneath Covered Areas; A Symposium in Print, Butterworths: Sydney, Australia, 1964; pp. 7–21. [Google Scholar]
- Zhai, Q.; Rahardjo, H.; Satyanaga, A. Estimation of the air permeability function from the soil-water characteristic curve. Can. Geotech. J. 2019, 56, 505–513. [Google Scholar] [CrossRef]
- Lu, N.; Likos, W.J. Suction stress characteristic curve for unsaturated soil. J. Geotech. Geoenviron. Eng. 2006, 132, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Cafaro, F.; Hoffmann, C.; Cotecchia, F.; Buscemi, A.; Bottiglieri, O.; Tarantino, A. Modellazione del comportamento idraulico di terreni parzialmente saturi a grana media e grossa. Riv. Ital. Di Geotec. 2008, 3, 54–72. [Google Scholar]
- Kodesová, R. Determination of Hydraulic Properties of Unsaturated Soil via Inverse Modeling; Lecture Given at the College on Soil Physics: Trieste, Italy, 2003. [Google Scholar]
- Richards, L.A. Capillary conduction of liquids through porous media. Physics 1931, 1, 318–333. [Google Scholar] [CrossRef]
- Luckner, L.; Van Genuchten, M.T.; Nielsen, D.R. A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface. Water Resour. Res. 1989, 25, 2187–2193. [Google Scholar] [CrossRef]
- Vilar, O.M. Suction controlled oedometer tests on compacted clay. In Unsaturated Soils: Proceedings of the 1st International Conference on Unsaturated Soils, Paris, France, 6–8 September1995; Alonso, E.E., Delage, P., Eds.; Balkema: Rotterdam, The Netherlands, 1995; Volume 1, pp. 201–206. [Google Scholar]
- Tadepalli, R.; Fredlund, D.G. The Collapse Behavior of a Compacted Soil During Inundation. Can. Geotech. J. 1991, 28, 477–488. [Google Scholar] [CrossRef]
- Rodrigues, R.A.; Vilar, O.M. Relationship between collapse and soil-water retention curve of a sandy soil. In Proceedings of the 4th International Conference on Unsaturated Soils, Carefree, AZ, USA, 2–6 April 2006; Volume 1, pp. 1025–1036. [Google Scholar]
- van Genuchten, M.T. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Burdine, N.T. Relative permeability calculation from pore size distribution data. Trans. Am. Inst. Min. Eng. 1953, 198, 71–78. [Google Scholar] [CrossRef]
- Fatt, I.; Dykstra, H. Relative permeability studies. Trans. Am. Inst. Min. Eng. 1951, 192, 249–255. [Google Scholar] [CrossRef]
- Touma, J. Comparison of the soil hydraulic conductivity predicted from its water retention expressed by the equation of Van Genuchten and different capillary models. Eur. J. Soil Sci. 2009, 60, 671–680. [Google Scholar] [CrossRef]
- Sakellariou-Makrantonakia, M.; Angelaki, A.; Evangelides, C.; Bota, V.; Tsianou, E.; Floros, N. Experimental determination of hydraulic conductivity at unsaturated soil column. Procedia Eng. 2016, 162, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Federico, A.M.; Bottiglieri, O.; Cafaro, F.; Elia, G. Hydraulic Characterization of a Self-Weight Compacted Coal. Studia Geotech. Et Mech. 2020, 42, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Cafaro, F.; Cotecchia, F. Influence of the mechanical properties of consolidated clays on their water retention curve. Ital. Geotech. J. 2015, 2, 11–27. [Google Scholar]
- Marzulli, V.; Cafaro, F.; Ziccarelli, M. Hydraulic characterization of a pervious concrete for deep draining trenches. J. Mater. Civ. Eng. 2018, 30, 04018100. [Google Scholar] [CrossRef] [Green Version]
- Hopmans, J.W.; Dane, J.H. Thermal conductivity of two porous media as a function of water content, temperature, and density. Soil Sci. 1986, 142, 187–195. [Google Scholar] [CrossRef]
- Stauffer, F.; Kinzelbach, W. Cyclic hysteretic flow in porous medium column: Model, experiment, and simulations. J. Hydrol. 2001, 240, 264–275. [Google Scholar] [CrossRef]
- Milatz, M.; Grabe, J. A New Simple Shear Apparatus and Testing Method for Unsaturated Sands. Geotech. Test. J. 2015, 38, 9–22. [Google Scholar] [CrossRef]
- Pedone, G.; Tsiampousi, A.; Cotecchia, F.; Zdravkovic, L. Coupled hydro-mechanical modelling of soil-vegetation-atmosphere interaction in natural clay slopes. Can. Geotech. J. 2021. [Google Scholar] [CrossRef]
- Leal-Vaca, J.C.; Gallegos-Fonseca, G.; Rojas-González, E. The decrease of the strength of unsaturated silty sand. Eng. Res. Technol. 2012, XIII, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Cotecchia, F.; Fratino, U.; Fanelli, L. Monitoring and modelling the erosion processes on the hillslopes of the Rendina lake. In Proceedings of the Ninth International Symposium on River Sedimentation (Volume IV), Yichang, China, 18–21 October 2004; pp. 2243–2251, ISBN 7-302-09684-8. [Google Scholar]
- Levenberg, K. A method for the solution of certain nonlinear problems in least squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. SIAM 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Cassel, D.K.; Klute, A. Water Potential: Tensiometry. In Methods of Soil Analysis, Part 1; American Society of Agronomy: Madison, WI, USA, 1986; pp. 563–596. [Google Scholar]
- Simunek, J.; Sejna, M.; van Genuchten, M. New features of version 3 of the HYDRUS (2D/3D) computer software package. J. Hydrol. Hydromech. 2018, 66, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Zheng, C. HYDRUS: Software for Flow and Transport Modeling in Variably Saturated Media, Software Spotlight. Ground Water 2010, 48, 787–791. [Google Scholar] [CrossRef]
- Bottiglieri, O. Caratterizzazione Idraulica di un Terreno a Grana Media Parzialmente Sa-turi. Ph.D. Thesis, Politecnico di Bari, Bari, Italy, 2009. [Google Scholar]
- Leong, E.C.; Rahardjo, H. Review of Water Characteristic Curve Functions. Geotech. Geo-Environ. Eng. 1997, 123, 1106–1117. [Google Scholar] [CrossRef] [Green Version]
- Dudley, J.H. Review of collapsing soils. J. Soil Mech. Found. Div. Proc. Am. Soc. Civ. Eng. 1970, 96, 925–947. [Google Scholar] [CrossRef]
- Fredlund, D.C. Unsaturated soil mechanics in Engineering Practice. J. Geotech. Geoenviron. Eng. 2006, 132, 286–321. [Google Scholar] [CrossRef] [Green Version]
- Van Genuchten, M.V.; Leij, F.J.; Yates, S.R. The RETC Code for Quantifying Hydraulic Functions of Unsaturated Soils; EPA/600/2-91/065, R.S.; U.S. Environmental Protection Agency: Ada, OK, USA, 1991; Volume 83.
- Stannard, D.I. Tensiometers: Theory, construction, and use. Geotech. Test. J. 1992, 15, 48–58. [Google Scholar]
- Bottiglieri, O.; Cafaro, F.; Cotecchia, F. Estimating the Retention Curve of a Compacted Soil through Different Testing and Interpretation Methods. In Unsaturated Soils: Research and Applications; Mancuso, C., Jommi, C., D’Onza, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 47–54. [Google Scholar]
- Ridley, A.M.; Burland, J.B. A new instrument for the measurement of soil moisture suction. Geotechnique 1993, 43, 321–324. [Google Scholar] [CrossRef]
- Lu, N.; Likos, W.J. Unsaturated Soil Mechanics; John Wiley: Hoboken, NJ, USA, 2004; p. 556. [Google Scholar]
- Marinho, F.A.M.; Oliveira, O.M. The Filter Paper Method Revisited. Geotech. Test. J. 2006, 29, 250–258. [Google Scholar]
- Leong, E.C.; He, L.; Rahardjo, H. Factors affecting the filter paper method for total and matric suction measurements. Geotech. Test. J. 2002, 25, 321–332. [Google Scholar]
- Salager, S.; ElYoussoufi, M.S.; Saix, C. Definition and experimental determination of a soil-water retention surface. Can. Geotech. J. 2010, 47, 609–622. [Google Scholar] [CrossRef] [Green Version]
- Indrawan, I.G.; Rahardjo, H.; Leong, E. Effects of coarse-grained materials on properties of residual soil. Eng. Geol. 2006, 82, 154–164. [Google Scholar] [CrossRef]
- Henry, K.; Rahardjo, H.; Leong, E. Effects of different drying rates on shrinkage characteristics of a residual soil and soil mixtures. Eng. Geol. 2008, 102, 31–37. [Google Scholar] [CrossRef]
- Li, P.; Vanapalli, S.; Li, T. Review of collapse triggering mechanism of collapsible soils due to wetting. J. Rock Mech. Geotech. Eng. 2016, 8, 256–274. [Google Scholar] [CrossRef]
- Raadt, P.; Delwyn, F.; Clifton, A.W.; Klassen, M.J.; Jubien, W.E. Soil suction measurements at several sites in Western Canada. Transp. Res. Rec. 1987, 1137, 24–35. [Google Scholar]
Materials | Saturation Degree When Suction Disappears |
---|---|
SILTY SAND [24] | 70% |
PERVIOUS CONCRETE [19] | 30% |
MEDIUM COARSE SAND [22] | 80% |
Gs | γd (kN/m3) | wi (%) | ei | ni | Sr (%) | θi |
---|---|---|---|---|---|---|
2.649 | 14.3 | 1.44 | 0.81 | 0.45 | 4.7 | 0.021 |
WRC | θr | θ0 | α (kPa−1) | n | Strategy |
---|---|---|---|---|---|
PW-WRC-i.a.1 | 0.01 | 0.350 | 1.590 | 1.645 | i.a. |
PW-WRC-e.v.1 | 0.01 | 0.353 | 0.396 | 1.622 | e.v. |
PW-WRC-ia2-FP based | 0.01 | 0.350 | 0.550 | 2.050 | i.a. |
PW-WRC-e.v.1-FP based | 0.01 | 0.353 | 0.389 | 1.669 | e.v. |
MD-WRC-e.v.1 | 0.01 | 0.352 | 0.104 | 1.668 | e.v. |
MD-WRC-e.v.1-FP based | 0.04 | 0.362 | 0.136 | 1.681 | e.v. |
Data Set | Volumetric Water Content θw | Average Matric Suction (kPa) |
---|---|---|
e.v.(PW)-FP | 2.0% | 3663 |
e.v.(MD)-FP | 6.8% | 1031 |
e.v.(MD)-FP | 4.3% | 11,316 |
Specimen | θw | Matric Suction at Top Base (kPa) | Matric Suction at Bottom Base (kPa) |
---|---|---|---|
7.25 kPa(3) | 8.30% | 282 | 267 |
3.63 kPa(1) | 5.64% | 1234 | 1192 |
7.25 kPa(2) | 2.27% | 34,228 | 33,866 |
3.63 kPa(2) | 1.77% | 35,932 | 34,136 |
Specimen | θw | Total Suction at Top Base (kPa) | Matric Suction at Bottom Base (kPa) |
---|---|---|---|
1 | 4.08% | 12,811 | 8669 |
2 | 4.82% | 6880 | 5895 |
3 | 5.07% | 4741 | 4470 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bottiglieri, O.; Cafaro, F.; Cotecchia, F. Two-Scale Investigation of the Retention Behavior of a Well-Graded Mixed Soil. Geosciences 2021, 11, 431. https://doi.org/10.3390/geosciences11100431
Bottiglieri O, Cafaro F, Cotecchia F. Two-Scale Investigation of the Retention Behavior of a Well-Graded Mixed Soil. Geosciences. 2021; 11(10):431. https://doi.org/10.3390/geosciences11100431
Chicago/Turabian StyleBottiglieri, Osvaldo, Francesco Cafaro, and Federica Cotecchia. 2021. "Two-Scale Investigation of the Retention Behavior of a Well-Graded Mixed Soil" Geosciences 11, no. 10: 431. https://doi.org/10.3390/geosciences11100431
APA StyleBottiglieri, O., Cafaro, F., & Cotecchia, F. (2021). Two-Scale Investigation of the Retention Behavior of a Well-Graded Mixed Soil. Geosciences, 11(10), 431. https://doi.org/10.3390/geosciences11100431