U-Pb Age and Hf Isotope Systematics of Zircon from Eclogite Xenoliths in Devonian Kimberlites: Preliminary Data on the Archaean Roots in the Junction Zone between the Sarmatian and Fennoscandian Segments of the East European Platform
Abstract
:1. Introduction
2. Geological Setting
2.1. The Prypyat Horst
2.2. Geophysical Data
2.3. Kimberlite Samples and Their Setting
2.4. Zircon Description
3. Analytical Techniques
4. Results
4.1. U–Pb Dating
4.2. Hf Isotopes
5. Discussion
5.1. Origins of Zircons and Their Ages
5.2. The Possible Protolith of the Eclogites
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hacker, B.R. Eclogite formation and the rheology, buoyancy, seismicity, and H2O content of oceanic crust. In Subduction Top to Bottom; Bebout, G.E., Scholl, D.W., Kirby, S.H., Platt, J.P., Eds.; AGU: Washington, DC, USA, 1996. [Google Scholar] [CrossRef] [Green Version]
- Becker, H.; Jochum, K.P.; Carlson, R.W. Trace element fractionation during dehydration of eclogites from high-pressure terranes and the implications for element fluxes in subduction zones. Chem. Geol. 2000, 163, 65–99. [Google Scholar] [CrossRef]
- Boniface, N.; Schenk, V.; Appel, P. Paleoproterozoic eclogites of MORB-type chemistry and three Proterozoic orogenic cycles in the Ubendian Belt (Tanzania): Evidence from monazite and zircon geochronology, and geochemistry. Precam. Res. 2012, 192–195, 16–33. [Google Scholar] [CrossRef]
- François, C.; Debaille, V.; Paquette, J.-L.; Baudet, D.; Javaux, E.J. The earliest evidence for modern-style plate tectonics recorded by HP–LT metamorphism in the Paleoproterozoic of the Democratic Republic of the Congo. Sci. Rep. 2018, 8, 15452. [Google Scholar] [CrossRef]
- Loose, D.; Schenk, V. 2.09 Ga old eclogites in the Eburnian-Transamazonian orogen of southern Cameroon: Significance for Palaeoproterozoic plate tectonics. Precam. Res. 2018, 304, 1–11. [Google Scholar] [CrossRef]
- Möller, A.; Appel, P.; Mezger, K.; Schenk, V. Evidence for a 2 Ga subduction zone: Eclogites in the Usagaran belt of Tanzania. Geology 1995, 23, 1067–1070. [Google Scholar] [CrossRef]
- Palin, R.M.; Dyck, B. Metamorphic consequences of secular changes in oceanic crust composition and implications for uniformitarianism in the geological record. Geosci. Front. 2018, 9, 1009–1019. [Google Scholar] [CrossRef]
- Palin, R.M.; Santosh, M. Plate tectonics: What, where, why, and when? Gondwana Res. 2020, 100, 3–24. [Google Scholar] [CrossRef]
- Shchukina, E.V.; Agashev, A.M.; Golovin, N.N.; Pokhilenko, N.P. Equigranular Eclogites from the V. Grib Kimberlite Pipe: Evidence for Paleoproterozoic Subduction on the Territory of the Arkhangelsk Diamondiferous Province. Dokl. Earth Sci. 2015, 462, 497–501. [Google Scholar] [CrossRef]
- Shchukina, E.V.; Agashev, A.M.; Zedgenizov, D.A. Origin of zircon-bearing mantle eclogites entrained in the V. Grib kimberlite (Arkhangelsk region, NW Russia): Evidence from mineral geochemistry and the U-Pb and Lu-Hf isotope compositions of zircon. Mineral. Petrol. 2018, 112, 85–100. [Google Scholar] [CrossRef]
- Griffin, W.L.; O’Reilly, S.Y. Cratonic lithospheric mantle: Is anything subducted? Episodes 2007, 30, 43–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agashev, A.M.; Pokhilenko, L.N.; Pokhilenko, N.P.; Shchukina, E.V. Geochemistry of eclogite xenoliths from the Udachnaya Kimberlite Pipe: Section of ancient oceanic crust sampled. Lithos 2018, 314–315, 187–200. [Google Scholar] [CrossRef]
- Barth, M.G.; Rudnick, R.L.; Horn, I.; McDonough, W.F.; Spicuzza, M.J.; Valley, J.W.; Haggerty, S.E. Geochemistry of xenolithic eclogites from West Africa, Part I: A link between low MgO eclogites and Archean crust formation. Geochim. Cosmochim. Acta 2001, 65, 1499–1527. [Google Scholar] [CrossRef]
- Barth, M.G.; Rudnick, R.L.; Horn, I.; McDonough, W.F.; Spicuzza, M.J.; Valley, J.W.; Haggerty, S.E. Geochemistry of xenolithic eclogites from West Africa, part 2: Origins of the high MgO eclogites. Geochim. Cosmochim. Acta 2002, 66, 4325–4345. [Google Scholar] [CrossRef]
- Heaman, L.M.; Creaser, R.A.; Cookenboo, H.O.; Chacko, T. Multi-Stage Modification of the Northern Slave Mantle Lithosphere: Evidence from Zircon- and Diamond-Bearing Eclogite Xenoliths Entrained in Jericho Kimberlite, Canada. J. Petrol. 2006, 47, 821–858. [Google Scholar] [CrossRef]
- Sun, J.; Rudnick, R.L.; Kostrovitsky, S.; Kalashnikova, T.; Kitajima, K.; Li, R.; Shu, Q. The origin of low-MgO eclogite xenoliths from Obnazhennaya kimberlite, Siberian craton. Contrib. Mineral. Petrol. 2020, 175, 25. [Google Scholar] [CrossRef]
- Shumlyanskyy, L.; Mitrokhin, O.; Billström, K.; Ernst, R.; Vishnevska, E.; Tsymbal, S.; Cuney, M.; Soesoo, A. The ca. 1.8 Ga mantle plume related magmatism of the central part of the Ukrainian shield. GFF 2016, 138, 86–101. [Google Scholar] [CrossRef] [Green Version]
- Tsymbal, S.N. Kimberlites of the central part of the Prypyat swell, Ukraine. Mineral. J. (Ukr.) 2003, 25, 70–87. (In Russian) [Google Scholar]
- Tsymbal, S.N.; Kryvdik, S.G. Xenoliths of deep-seated rocks from kimberlites of the Kirovograd area, Ukrainian shield. Mineral. J. (Ukr.) 1999, 21, 97–111. (In Russian) [Google Scholar]
- Korzun, V.P.; Makhnach, A.S. Upper Devonian Alkaline Association of the Prypyat Basin; Nauka i Tekhnika: Minsk, Belarus, 1977; 154p. (In Russian) [Google Scholar]
- Pervov, V.A.; Nikitin, E.A.; Levskiy, L.K. Ultramafic alkaline volcanic rocks of the Zlobino field (Republic of Belarus): Sources and evolution of the magmas. Petrology 2004, 12, 354–373. (In Russian) [Google Scholar]
- Mikhailov, N.D.; Laptsevich, A.G.; Vladykin, N.V. Sr and Nd isotope composition in the Devonian alkaline igneous rocks. Litasfera 2011, 35, 113–122. (In Russian) [Google Scholar]
- Aizberg, Y. Pripyat area of the Late-Devonian magmatism and its association with the plume tectonics of the Dnieper lithosphere segment. Dokl. Natl. Acad. Sci. Belarus 2019, 63, 597–607. (In Russian) [Google Scholar] [CrossRef]
- Kuzmenkova, O.F.; Laptsevich, A.G.; Nosova, A.A. The Upper Devonian magmatic complexes of the south-east Belarus. Dokl. Natl. Acad. Sci. Belarus 2020, 64, 599–608. (In Russian) [Google Scholar] [CrossRef]
- Wilson, M.; Lyashkevich, Z.M. Magmatism and the geodynamics of rifting of the Pripyat-Dnieper-Donets rift, East European platform. Tectonophysics 1996, 268, 65–81. [Google Scholar] [CrossRef]
- Yutkina, E.V.; Kononova, V.A.; Bogatikov, O.A.; Knyazkov, A.P.; Kozar, N.A.; Ovchinnikova, G.V.; Levsky, L.K. Kimberlites of the eastern Priazove (Ukraine) and geochemical characteristics of their sources. Petrology 2004, 12, 134–148. [Google Scholar]
- Yutkina, E.V.; Nosova, A.A.; Sazonova, L.V.; Larionova, Y.O.; Kondrashov, I.A.; Shumlyanskyy, L.V.; Albekov, A.Y.; Savko, K.A. Devonian volcanics in the Voronezh crystalline Massif, East European Platform: Evolution of the melts and characteristics of crustal contamination. Petrology 2017, 25, 241–271. [Google Scholar] [CrossRef]
- Sazonova, L.V.; Nosova, A.A.; Yutkina, E.V.; Kondrashov, I.A.; Shumlyanskyy, L.V. Genesis and evolution of mantle melts of the Devonian mafic-ultramafic rocks from the Eastern Azov region (Dnieper-Donets rift, Ukraine): Evidence from clinopyroxene geochemistry. Petrology 2019, 27, 633–654. [Google Scholar] [CrossRef]
- Buturlinov, N.V. Magmatism in the Graben-Like Basins of the Southern East European Platform in Phanerozoic. Ph.D. Thesis, Donetsk Polytechnic Institute, Donetsk, Ukraine, 1979; 484p. (In Russian). [Google Scholar]
- de Boorder, H.; van Beek, A.J.J.; Dijkstra, A.H.; Galetsky, L.S.; Koldewe, G.; Panov, B.S. Crustal architecture of the Donets Basin: Tectonic implications for diamond and mercury-antimony mineralization. Tectonophysics 1996, 268, 293–309. [Google Scholar] [CrossRef]
- Sheremet, E.M.; Kryvdik, S.G.; Kozar, N.A.; Strekozov, S.N.; Vovkotrub, N.V.; Setaya, L.D.; Nikolayev, I.Y.; Agarkova, N.G.; Dubina, A.V.; Gatsenko, V.A.; et al. Phanerozoic Magmatism of the Eastern Azov Area of the Ukrainian Shield and Related Commercial Minerals (Petrology, Geochemistry, and Ore Potential); Comprint Publisher: Kyiv, Ukraine, 2015; 318p. (In Russian) [Google Scholar]
- Shumlyanskyy, L.V.; Kamenetsky, V.S.; Tsymbal, S.M.; Wilde, S.A.; Nemchin, A.A.; Ernst, R.E.; Shumlianska, L.O. Zircon megacrysts from Devonian kimberlites of the Azov Domain, Eastern part of the Ukrainian Shield: Implications for the origin and evolution of kimberlite melts. Lithos 2021, 406–407, 106528. [Google Scholar] [CrossRef]
- Bogdanova, S.V.; Gorbatschev, R.; Garetsky, R.G. Europe/East European Craton Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–18. [Google Scholar]
- Melnychuk, G.V. The Paleoproterozoic crystalline basement of the Volyn Paleozoic uplift: Peculiarities of the construction and geological history. Geol. Zhurnal 2013, 4, 24–32. (In Ukrainian) [Google Scholar]
- Kozlovskaya, E.; Taran, L.; Karatayev, G.; Astapenko, V.; Yliniemi, J. Structure of the lithosphere along the CEL05 profile in Belarus (western part of the East European Craton): Constraints from geological and non-seismic geophysical data. Litasfera 2013, 38, 75–92. [Google Scholar]
- Shcherbak, N.P.; Pap, A.M.; Bartnitsky, E.N.; Zayats, A.P. The uranium-lead isotopic age of granitoids in Belorussia. In Doklady Akademii Nauk Belarusi; Academii Nauk Belarusi: Minsk, Belarus, 1990; Volume 34, pp. 740–743. (In Russian) [Google Scholar]
- Bogdanova, S.V.; Bibikova, E.V.; Gorbatchev, R. Palaeoproterozoic U-Pb zircon ages from Belorussia: New tectonic implications for the East European Craton. Precambr. Res. 1994, 68, 231–240. [Google Scholar] [CrossRef]
- Aksamentova, N.V.; Tolkachikova, A.A. Petrography and Geochemistry of the Crystalline Basement of Belarus; BelNIGRI: Minsk, Belarus, 2012; pp. 1–232. (In Russian) [Google Scholar]
- Krzeminska, E.; Krzeminski, L.; Wiszniewska, J.B.; Demaiffe, D.; Johansson, Å.E.; Williams, I.S. Geological Map of Crystalline Basement in the Polish Part of the East European Platform 1:1,000,000; Polish Geological Institute: Warsaw, Poland, 2017. [Google Scholar]
- Claesson, S.; Bogdanova, S.V.; Bibikova, E.V.; Gorbatschev, R. Isotopic evidence for Palaeorpoterozoic accretion in the basement of the East European Craton. Tectonophysics 2001, 339, 1–18. [Google Scholar] [CrossRef]
- Shumlyanskyy, L.V. Geochemistry of the Osnitsk–Mikashevichy volcanoplutonic complex of the Ukrainian Shield. Geochem. Int. 2014, 52, 912–924. [Google Scholar] [CrossRef]
- Shumlyanskyy, L.; Hawkesworth, C.; Dhuime, B.; Billström, K.; Claesson, S.; Storey, C. 207Pb/206Pb ages and Hf isotope composition of zircons from sedimentary rocks of the Ukrainian shield: Crustal growth of the south-western part of East European craton from Archaean to Neoproterozoic. Precam. Res. 2015, 260, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Paszkowski, M.; Budzyń, B.; Mazur, S.; Sláma, J.; Shumlyanskyy, L.; Środoń, J.; Dhuime, B.; Kędzior, A.; Liivamägi, S.; Pisarzowska, A. Detrital zircons U-Pb and Hf constraints on provenance and timing of deposition of the Mesoproterozoic to Cambrian sedimentary cover of the East European Craton, Belarus. Precam. Res. 2019, 331, 105352. [Google Scholar] [CrossRef]
- Makhnach, A.S.; Garetskiy, R.G.; Matveev, A.V. Geology of Belarus; Institute of Geological Sciences: Minsk, Belarus, 2001; 815p. (In Russian) [Google Scholar]
- Chumakov, N.M. Precambrian tillites and tillitoids (the problem of the Precambrian glaciations). Works GIN 1978, 308, 1–204. (In Russian) [Google Scholar]
- Kuzmenkova, O.F.; Nosova, A.A.; Shumlyanskyy, L.V. A comparison of the Neoproterozoic Volyn-Brest magmatic province with large continental flood basalt provinces of the world, the nature of low-Ti and high-Ti basic magmatism. Litasfera 2010, 33, 3–16. (In Russian) [Google Scholar]
- Shumlyanskyy, L.; Nosova, A.; Billström, K.; Söderlund, U.; Andréasson, P.-G.; Kuzmenkova, O. The U-Pb zircon and baddeleyite ages of the Neoproterozoic Volyn Large Igneous Province: Implication for the age of the magmatism and the nature of a crustal contaminant. GFF 2016, 138, 17–30. [Google Scholar] [CrossRef]
- Shumlyanskyy, L.V.; Andréasson, P.G.; Buchan, K.L.; Ernst, R.E. The Volynian Flood Basalt Province and coeval (Ediacaran) magmatism in Baltoscandia and Laurentia. Mineral. J. (Ukr.) 2007, 29, 47–55. [Google Scholar]
- Garetsky, R.G.; Karatayev, G.I. A tectonogeodynamic model for the junction zone between the Fennoscandian and Sarmatian segments of the East European Platform. Russ. Geol. Geophys. 2011, 52, 1228–1235. [Google Scholar] [CrossRef]
- Thibo, H.; Janik, T.; Omelchenko, V.D.; Grad, M.; Garetsky, R.G.; Belinsky, A.A.; Karatayev, G.I.; Zlotski, G.; Knudsen, M.E.; Sand, R.; et al. Upper lithosphere seismic velocity structure across the Pripyat Trough and Ukrainian Shield along the EURUBRIDGE’ 97 profile. Tectonophysics 2003, 371, 41–79. [Google Scholar] [CrossRef]
- Shumlianska, L.O.; Tripolsky, A.A.; Tsvetkova, T.A. The influence of the crust velocity structure on the results of seismic tomography of the Ukrainian Shield. Geophys. J. 2014, 36, 95–117. (In Russian) [Google Scholar]
- Heiko, Y.V.; Tarasko, I.V.; Prykhodko, V.L.; Drozdetskyi, V.V.; Shymkiv, L.M. Perspectives of detection of deposits of diamonds in the Kohotsko-Bilska area. Mineral. Resour. Ukr. 2018, 2, 10–20. (In Ukrainian) [Google Scholar]
- Volovnik, B.Y.; Vlasov, B.I.; Zlobenko, I.F.; Lavrov, D.A. On the composition and age of breccia of the central part of the Prypyat swell. Geochem. Ore Form. 1980, 8, 19–28. (In Russian) [Google Scholar]
- Tsymbal, S.N.; Kryvdik, S.G. On the composition of kimberlites of Ukraine. In The Current State, Prospective and Directions for Further Exploration for Diamonds in Ukraine; UkrDGRI: Kyiv, Ukraine, 2004; pp. 136–143. (In Russian) [Google Scholar]
- Gerdes, A.; Zeh, A. Combined U–Pb and Hf isotope LA-(MC-) ICP-MS analysis of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet. Sci. Lett. 2006, 249, 47–61. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, Y.H.; Xie, L.W.; Yang, J.H.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Machado, N.; Simonetti, A. U-Pb dating and Hf isotopic composition of zircon by laser-ablation MC-ICPMS. In Laser Ablation-ICPMS in the Earth Sciences: Principles and Applications; Sylvester, P., Ed.; Mineral. Assoc.: St. John’s, NL, Canada, 2001; pp. 121–146. [Google Scholar]
- Iizuka, T.; Hirata, T. Improvements of precision and accuracy in in-situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chem. Geol. 2005, 220, 121–137. [Google Scholar] [CrossRef]
- Morel, M.L.A.; Nebel, O.; Nebel-Jacobsen, Y.J.; Miller, J.S.; Vroon, P.Z. Hafnium isotope characterization of the GJ-1 zircon and reference material by solution and laser-ablation MC-ICPMS. Chem. Geol. 2008, 255, 231–235. [Google Scholar] [CrossRef]
- Söderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. The 176Lu decay constant etermined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Griffin, W.L.; Belousova, E.A.; Shee, S.R.; Pearson, N.J.; O’Reilly, S.Y. Archean crustal evolution in the northern Yilgarn Craton: U–Pb and Hf-isotope evidence from detrital zircons. Precam. Res. 2004, 131, 231–282. [Google Scholar] [CrossRef]
- Kemp, A.I.S.; Hawkesworth, C.J.; Paterson, B.A.; Kinny, P.D. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 2006, 439, 580–583. [Google Scholar] [CrossRef]
- Melnik, A.E.; Korolev, N.M.; Skublov, S.G.; Müller, D.; Li, Q.-L.; Li, X.-H. Zircon in mantle eclogite xenoliths: A review. Geol. Mag. 2021, 158, 1371–1382. [Google Scholar] [CrossRef]
- Shumlyanskyy, L.; Wilde, S.A.; Nemchin, A.A.; Claesson, S.; Billström, K.; Bagiński, B. Eoarchean rock association in the Dniester-Bouh Domain of the Ukrainian shield: A suite of LILE-depleted enderbites and mafic granulites. Precam. Res. 2021, 352, 106001. [Google Scholar] [CrossRef]
- Bogdanova, S.; Gorbatschev, R.; Grad, M.; Janik, T.; Guterch, A.; Kozlovskaya, E.; Motuza, G.; Skridlaite, G.; Starostenko, V.; Taran, L.; et al. EUROBRIDGE: New insight into the geodynamic evolution of the East European Craton. In European Lithosphere Dynamics; Gee, D.G., Stephensson, R.A., Eds.; The Geological Society of London: London, UK, 2006; Volume 32, pp. 599–625. [Google Scholar] [CrossRef]
- Elming, S.-Å.; Shumlyanskyy, L.; Kravchenko, S.; Layer, P.; Söderlund, U. Proterozoic Basic dykes in the Ukrainian Shield: A palaeomagnetic, geochronologic and geochemical study—The accretion of the Ukrainian Shield to Fennoscandia. Precam. Res. 2010, 178, 119–135. [Google Scholar] [CrossRef]
- Lubnina, N.V.; Bogdanova, S.V.; Shumlyanskyy, L.V. East-European craton in the Paleoproterozoic: New palaeomagnetic determinations on igneous complexes of the Ukrainian Shield. Geofizika (Geophys.) 2009, 5, 56–64. (In Russian) [Google Scholar]
- Bogdanova, S.V.; Gintov, O.B.; Kurlovich, D.; Lubnina, N.V.; Nilsson, M.; Orlyuk, M.I.; Pashkevich, I.K.; Shumlyanskyy, L.V.; Starostenko, V.I. Late Palaeoproterozoic mafic dyking in the Ukrainian Shield (Volgo-Sarmatia) caused by rotations during the assembly of supercontinent Columbia. Lithos 2013, 174, 196–216. [Google Scholar] [CrossRef]
- Shumlyanskyy, L.; Ernst, R.E.; Albekov, A.; Söderlund, U.; Wilde, S.A.; Bekker, A. The early Statherian (ca. 1800–1750 Ma) Prutivka-Novogol large igneous province of Sarmatia: Geochronology and implication for the Nuna/Columbia supercontinent reconstruction. Precam. Res. 2021, 358, 106185. [Google Scholar] [CrossRef]
- Shumlyanskyy, L.; Hawkesworth, C.; Billström, K.; Bogdanova, S.; Mytrokhyn, O.; Romer, R.; Dhuime, B.; Claesson, S.; Ernst, R.; Whitehouse, M.; et al. The origin of the Palaeoproterozoic AMCG complexes in the Ukrainian Shield: New U-Pb ages and Hf isotopes in zircon. Precam. Res. 2017, 292, 216–239. [Google Scholar] [CrossRef] [Green Version]
- Shumlyanskyy, L.; Franz, G.; Glynn, S.; Mytrokhyn, O.; Voznyak, D.; Bilan, O. Geochronology of granites of the western Korosten AMCG complex (Ukrainian Shield): Implications for the emplacement history and origin of miarolitic pegmatites. Eur. J. Mineral. 2021, 33, 703–716. [Google Scholar] [CrossRef]
- Shumlyanskyy, L.; Billström, K.; Hawkesworth, C.; Elming, S.-Å. U-Pb age and Hf isotope compositions of zircons from the north-western region of the Ukrainian shield: Mantle melting in response to post-collision extension. Terra Nova 2012, 24, 373–379. [Google Scholar] [CrossRef]
- Claesson, S.; Bibikova, E.; Shumlyanskyy, L.; Dhuime, B.; Hawkesworth, C. The oldest crust in the Ukrainian Shield—Eoarchean U-Pb ages and Hf-Nd constraints from enderbites and metasediments. In Continent Formation through Time; Van Kranendonk, N.M.W., Parman, S., Shirey, S., Clift, P.D., Eds.; The Geological Society of London: London, UK, 2015; Volume 389, pp. 227–259. [Google Scholar] [CrossRef] [Green Version]
- Claesson, S.; Bibikova, E.V.; Shumlyanskyy, L.; Whitehouse, M.J.; Billström, K. Can oxygen isotopes in magmatic zircon be modified by metamorphism? A case study from the Eoarchean Dniester-Bug Series, Ukrainian Shield. Precam. Res. 2016, 273, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Stepanyuk, L.M.; Bibikova, E.V.; Claesson, S.; Skobelev, V.M. Sm-Nd isotope systematics of the Precambrian rocks of the western part of the Ukrainian Shield. Mineral. J. (Ukr.) 1998, 20, 72–79. (In Russian) [Google Scholar]
- Shumlyanskyy, L.V.; Stepanyuk, L.M.; Claesson, S.; Rudenko, K.V.; Bekker, A.Y. The U-Pb zircon and monazite geochronology of granitoids of the Zhytomyr and Sheremetiv complexes, the Northwestern region of the Ukrainian Shield. Mineral. J. (Ukr.) 2018, 40, 63–85. (In Ukrainian) [Google Scholar] [CrossRef]
- Markwick, A.J.W.; Downes, H.; Veretennikov, N. The lower crust of SE Belarus: Petrological, geophysical and geochemical constraints from xenoliths. Tectonophysics 2001, 339, 215–235. [Google Scholar] [CrossRef]
- Ponomarenko, A.N.; Lesnaya, I.M.; Zyultsle, O.V.; Gatsenko, V.A.; Dovbush, T.I.; Kanunikova, L.I.; Shumlyanskyy, L.V. Neoarchean of the Ros-Tikych Domain of the Ukrainian Shield. Geochem. Ore Form. 2010, 28, 11–16. (In Russian) [Google Scholar]
- Mints, M.V.; Belousova, E.A.; Konilov, A.N.; Natapov, L.M.; Shchipansky, A.A.; Griffin, W.L.; O’Reilly, S.Y.; Dokukina, K.A.; Kaulina, T.V. Mesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia. Geology 2010, 38, 739–742. [Google Scholar] [CrossRef]
- Bogdanova, S.; Gorbatschev, R.; Skridlaite, G.; Soesoo, A.; Taran, L.; Kurlovich, D. Trans-Baltic Palaeoproterozoic correlations towards thereconstruction of supercontinent Columbia/Nuna. Precam. Res. 2015, 259, 5–33. [Google Scholar] [CrossRef]
- Męźyk, M.; Malinowski, M.; Mazur, S. Structure of a diffuse suture between Fennoscandia and Sarmatia in SE Poland based on interpretation of regional reflection seismic profiles supported by unsupervised clustering. Precam. Res. 2021, 358, 106176. [Google Scholar] [CrossRef]
Isotope Ratios | Ages (Ma ± 2σ) | Degree of Concor dance (%) | U | Th | Th/U Ratio | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
207Pb | 2σ (%) | 206Pb | 2σ (%) | 207Pb | 2σ (%) | 207Pb | 206Pb | 207Pb | Concentrations (ppm) | |||||
Spot # | 235U | 238U | Error Correllation | 206Pb | 235U | 238U | 206Pb | |||||||
Grain 1 | ||||||||||||||
B1 | 5.9369 | 3.1 | 0.35933 | 2.8 | 0.90 | 0.1198 | 1.3 | 1967 ± 27 | 1979 ± 48 | 1954 ± 24 | 101 | 30 | 12 | 0.39 |
B2 | 4.9965 | 4.5 | 0.32898 | 3.8 | 0.85 | 0.1102 | 2.4 | 1819 ± 39 | 1833 ± 61 | 1802 ± 43 | 102 | 20 | 7 | 0.20 |
Grain 2 | ||||||||||||||
B3 | 4.7844 | 5.4 | 0.31114 | 4.8 | 0.88 | 0.1115 | 2.6 | 1782 ± 47 | 1746 ± 74 | 1824 ± 47 | 96 | 40 | 15 | 0.50 |
B4 | 4.3428 | 5.2 | 0.29660 | 4.3 | 0.82 | 0.1062 | 3.0 | 1702 ± 44 | 1674 ± 64 | 1735 ± 54 | 97 | 38 | 13 | 0.43 |
Isotope Ratios | DM Model Ages (Ma) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Spot # | 207Pb/206Pb Age (Ma) | 176Lu/177Hf | 176Yb/177Hf | 176Hf/177Hf ± 1σ | 176Hf/177HfT | εHfT ± 2σ | Actual Lu/Hf | Felsic Crust | Mafic Crust |
Grain 1 | |||||||||
B1 | 1954 | 0.000087 | 0.002696 | 0.281211±17 | 0.281207 | −12 ± 1 | 2778 | 3103 | 3929 |
B2 | 1802 | 0.000031 | 0.000915 | 0.281168±15 | 0.281166 | −17 ± 1 | 2831 | 3234 | 4259 |
Grain 2 | |||||||||
B3 | 1824 | 0.000687 | 0.018131 | 0.281738 ± 14 | 0.281714 | 3 ± 1 | 2106 | 2211 | 2492 |
B4 | 1735 | 0.001255 | 0.035319 | 0.281156 ± 16 | 0.281114 | −20 ± 1 | 2938 | 3354 | 4508 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shumlyanskyy, L.; Tsymbal, S.; Kusiak, M.A.; Wilde, S.A.; Nemchin, A.A.; Tarasko, I.; Shumlianska, L.; Hofmann, M. U-Pb Age and Hf Isotope Systematics of Zircon from Eclogite Xenoliths in Devonian Kimberlites: Preliminary Data on the Archaean Roots in the Junction Zone between the Sarmatian and Fennoscandian Segments of the East European Platform. Geosciences 2021, 11, 487. https://doi.org/10.3390/geosciences11120487
Shumlyanskyy L, Tsymbal S, Kusiak MA, Wilde SA, Nemchin AA, Tarasko I, Shumlianska L, Hofmann M. U-Pb Age and Hf Isotope Systematics of Zircon from Eclogite Xenoliths in Devonian Kimberlites: Preliminary Data on the Archaean Roots in the Junction Zone between the Sarmatian and Fennoscandian Segments of the East European Platform. Geosciences. 2021; 11(12):487. https://doi.org/10.3390/geosciences11120487
Chicago/Turabian StyleShumlyanskyy, Leonid, Stepan Tsymbal, Monika A. Kusiak, Simon A. Wilde, Alexander A. Nemchin, Iryna Tarasko, Liudmyla Shumlianska, and Mandy Hofmann. 2021. "U-Pb Age and Hf Isotope Systematics of Zircon from Eclogite Xenoliths in Devonian Kimberlites: Preliminary Data on the Archaean Roots in the Junction Zone between the Sarmatian and Fennoscandian Segments of the East European Platform" Geosciences 11, no. 12: 487. https://doi.org/10.3390/geosciences11120487
APA StyleShumlyanskyy, L., Tsymbal, S., Kusiak, M. A., Wilde, S. A., Nemchin, A. A., Tarasko, I., Shumlianska, L., & Hofmann, M. (2021). U-Pb Age and Hf Isotope Systematics of Zircon from Eclogite Xenoliths in Devonian Kimberlites: Preliminary Data on the Archaean Roots in the Junction Zone between the Sarmatian and Fennoscandian Segments of the East European Platform. Geosciences, 11(12), 487. https://doi.org/10.3390/geosciences11120487