Development Environments and Factors of Subsidence Dolines
Abstract
:1. Introduction
2. Spatial Patterns of Subsidence Dolines
2.1. Local Pattern
2.2. Row Pattern
2.3. Areal Pattern
3. Bedrock Factors (Variables) of Doline Development
- -
- the inclination of the bearing surface,
- -
- the secondary porosity of the bedrock,
- -
- the characteristics of the cover,
- -
- water inlet into the cover,
- -
- the presence of karstwater or groundwater,
- -
- the melting permafrost,
- -
- anthropogenic activity.
3.1. Inclination of the Bearing Surface
3.2. Porosity of the Bedrock
3.3. Characteristics of the Geological Cover
3.3.1. Cover Thickness
3.3.2. Grain Size
3.3.3. Calcareous Content of the Cover
3.4. Bedrock Hydrology
3.4.1. Water Inlet at Rock Boundary
- -
- The karstic rock is overlain by impermeable cover patch. Permeable sediment is present in its continuation, but on the impermeable cover too. Infiltration increases at the termination of the impermeable bed if the surface of impermeable rocks dips in the direction of karstic surfaces. Suffosion dolines are formed at the termination of the impermeable bed (Figure 7d). Such environments occur on fluviokarsts where patches of the impermeable cover may survive in the side of epigenetic valleys and rock boundaries develop at the margins near the valley floor.
- -
- Impermeable intercalation may be present in the cover too. This intercalation directs the water accumulating above it to the wedging out of the impermeable bed, where a subsidence doline may develop since the water moves downwards here. This may occur at thinning out cover superimposed on horizontal bedrock where the impermeable bed terminates, for example, in the Bakony Region or at the wedging out impermeable bed of the cover of solution dolines such as on the Western Mecsek Karst [11].
- -
- It may happen that the depression does not develop at rock boundary but on clay that superimposed on limestone where the porosity of the bedrock is locally high, for example, in Florida (Figure 11, [18]). The depressions do not have a linear pattern and develop above karstwater cavities, thus, they are postgenetic.
- -
- A rock boundary resulting in depression development may be formed in case of not being superimposed, but intercalated rock if the non-karstic rock dips towards the karstic rock because of the tilting of the bearing block (Figure 7e), where the two rocks reached a similar elevation by faulting. Such rock boundary can be mentioned from the Bakony Region [63]. Syngenetic depressions with linear pattern develop at the border of karstic and non-karstic rocks when the karstic rock is overlain by permeable cover.
3.4.2. Water Inlet at Surface Features
- -
- In erosion features (in fluvial valleys, creeks, gullies, and glacier valleys), mainly the water accumulates on valley floors results in water surplus if the surface runoff of meteoric water is impeded. This is particularly significant where the valley floor is of low gradient (above the limestone outcrop restraining valley incision), where the valley floor is anti-dip (glacier valley) or where a permanent water course is on the valley floor because of the closeness of the karstwater level such as in Florida [18]. This environment is particularly widespread on fluviokarst, on glaciokarst, and on taiga karst. On glaciokarst, in addition to glacier valleys, it is also widespread in creeks that were formed on moraine and in gullies too. However, on interfluves as well, as already mentioned, doline density increases because of the indirect effect of valleys since the latter play a role in the transportation of the cover of the interfluves and thus, in their thinning out.
- -
- Closed features and karst depressions (doline, depression of superficial deposit, uvala, polje) particularly favor the development of water surplus. Subsidence dolines can develop in depressions with superficial deposit such as in the paleo dolines of glaciokarst [14], in the cockpit dolines [69] and fengcong dolines of tropical karst, in the poljes of Mediterranean and tropical karst [3], in the dolines, uvalas, and depressions of superficial deposit of temperate karsts or on the areic or nearly areic terrains between the mounds of the exhuming limestone bedrock [11]. Water surplus in the depressions is indicated by larger and smaller valleys leading to them or on their floor, the springs at the margin of depressions (Figure 12). Sites of water accumulation thus, sites of water surplus can occur at the deepest points of smaller depressions, at the foot of the slopes of larger depressions (if the floor dips towards the side slope), and on their slopes, particularly at places where the cover is thinning out because of its denudation. At the deepest point, the pattern of subsidence dolines is local, at the foot of the slope it is an arcuate row. The latter are close to the rock boundary (Figure 12). Probably, there is a relation between the grain size of the fill of subsidence dolines and that of the bearing depressions since grain size affects the direction of water motion in the cover. Thus, as a result of great aggregate pore volume, water motion is vertical in coarse-grained cover, which favors subsidence doline development. In the cover of the depressions of Pádis containing sandstone debris as a result of vertical water motion, cover beds of low position are thinning out by material loss and create a depression into which the upper beds are deflected and thus, a doline develops at the surface (Figure 13, [47]). Similarly, dolines occur at the deflections of sand cover on the coastal karst in Florida [98].
- -
- On karst rocks, stepped surfaces may be formed independently of rock quality (for example on glaciokarsts). Stepped surfaces are dissected by scarp fronts (escarpments). If the beds are inclined, the surface with bedding planes dips towards the escarpments, as a result water surplus can develop in the filled solution dolines at their feet, which favors subsidence doline development. The developing subsidence dolines have a banded pattern and asymmetric cross section (Crimea Peninsula, Figure 14).
- -
- If their drainage decreases, subsidence dolines are filled with water in the rainy season [29]. The overflowing water of intermittent lakes results in water surplus in their environs, which causes the development of newer subsidence dolines at new absorption sites. The presence of channels leading from inactive dolines to active dolines is evidence for this [67]. The overflowing water of permanent lakes may also cause subsidence doline development [58].
3.4.3. Rainfalls
- -
- Flood lakes develop in depressions since drainage passages become plugged either temporarily, but of complete degree or partially. The weight of the lake water may be the cause of collapses (smaller dropout dolines of floor position may develop), but the continuously percolating water also increases the saturation of the fill (as a result cover cavities may collapse). To the effect of the water continuously infiltrating from the lake, the chance of suffosion increases both in the cover and in the passages of the bedrock (the fill of the latter may also increase). Lake development may also increase the chance of the development of postgenetic inner (floor) dolines or the reactivation of the already existing dolines [100].
- -
- The water arriving at the cover redeposits the superficial deposit, while it compacts it during its emptying and the chance of cavity formation in the superficial deposit increases.
- -
- The superficial deposit is filled with water, which may restrain material transportation from the cover.
3.5. Water Level Changes
- -
- -
- The karstic rock is thin and its bedrock is impermeable non-karstic rock for example on the Lagoa Santa Area karst in Brazil [30].
- -
- On fluviokarst where the incising streams reach the karstwater level if the karst originally has a low elevation, such as in the area of Florida [18].
- -
- The karst is of low elevation either because it subsided (the Adriatic coast) or it is of low altitude originally (coast of Florida).
- -
- As a result of the non-karstic denudation and subsidence of the surface, for example, at the poljes of the Dinarides.
- -
- The appearance and percolation of water in the cover results in horizontal material redeposition.
- -
- The chance of the cavity collapse of the cover is greater and greater as water level decreases in the cavity because of the increasing lack of support. Such effects can be caused by droughts, pumping and earthquakes. Water level both in the cover and in its cavity decreases permanently to earthquake effect [106]. There was a permanent decrease of 30–50 cm in water level after the earthquakes at the depressions of Mečenčani [37].
- -
- The appearance of water above the already present cavities in the cover increases material weight and thus, the chance of collapse.
- -
- Water loss results in compaction triggering surface subsidence.
- -
- The decrease of water level increases vertical suffosion in the cover, which results in cavity formation.
- -
- -
- Only the cover is affected when there is no vertical suffosion material transport and suffosion doline development either. However, there is dropout doline development since groundwater decrease triggers cavity formation in the cover even without reaching the bedrock level [31]. The collapse of the cover can be caused by several factors (for example earthquakes [37]). Basically, dolines of such development may also be formed independently of the karst.
- -
- Only the bedrock is affected by which suffosion processes and thus, doline development may take place during the whole year, the transported part of the superficial deposit gets into the karstwater and settles down at the arriving site or it is transported further during flow.
- -
- Oscillation can be spread both onto the cover (high karstwater level) and the bedrock (low karstwater level). Suffosion only occurs at low karstwater level, thus during rainfall in the dry season (1) or at the end of wet seasons (2), when the water level is in the bedrock and suffosion can take place from the cover (of course, cover cavity collapse and thus, dropout doline development may happen during the sinking of high karstwater level when the karstwater level is still in the cover). Suffosion takes place until the water level does not rise above the bedrock surface, which happens at a certain quantity (intensity) of precipitation. If the elevation of the water level exceeds the elevation of the bedrock surface, suffosion only takes place within the superficial deposit, suffosion doline development, and the growth of the already developed dolines stops (dropout doline development may take place of course). The time and duration of the interruption of material transport from the cover depends on the quantity and distribution of precipitation, and on the position of the karstwater level as compared to the bedrock surface. It also depends on the degree of the water level rise at a certain quantity of precipitation, which is determined by the degree and pattern of cavity formation.
- -
- It can also affect the surface when the elevation of the high karstwater level may exceed the elevation of the surface. The fluctuation of the karstwater level results in the development of katavotra (estavelles). Lakes of fluctuating level are formed both on tropical karst and Mediterranean karsts [3]. In this case, the rising karstwater creates passages opening onto the surface (from the upward moving water, barrier-like sediments are formed around them.) The intensity of depression development increases since precipitation and streams accumulate superficial deposit into the open (opening onto the surface) passages. Thus, the katavothron (estavelle) and the subsidence dolines around it is turned into depressions of superficial deposit. Newer subsidence dolines are formed inside the depression of superficial deposit (Figure 2C, [11]).
3.6. Permafrost Degradation
3.7. Anthropogenic Activity
- -
- -
- The collapse of the mine cavity is inherited onto the vault where cavities are formed and their collapse results in depression development [137].
- -
- -
- -
4. Joint Effect of Development Environments and Factors on Doline Development
5. Conclusions
- -
- Development environment group being independent of water level, when development is mainly affected by the surface morphology and cover characteristics. Dolines may be syngenetic and postgenetic.
- -
- Development environment group dependent of karstwater level, when primarily water level changes are responsible for doline development, these changes are controlled by the intensity, and distribution of precipitation falls. The dolines are postgenetic with areal pattern.
- -
- Anthropogenic development environment, when development is influenced by changes caused by society. Its effect mainly occurs on evaporates. The development is syngenetic and the dolines are of areal pattern on evaporites.
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gutierrez, F.; Parise, M.; De Waele, J.; Jourde, H. A review on natural and human-induced geohazards and impacts in karst. Earth Sci. Rev. 2014, 138, 61–88. [Google Scholar] [CrossRef]
- Parise, M. Sinkholes. In Encyclopedia of Caves, 3rd ed.; White, W.B., Culver, D.C., Pipan, T., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2019; pp. 934–942. [Google Scholar]
- Sweeting, M.M. Karst Landforms; Columbia University Press: New York, NY, USA, 1973; 362p. [Google Scholar]
- Williams, P.W. Dolines. In Encyclopedia of Caves and Karst Science; Gunn, J., Ed.; Fitzroy Dearborn: New York, NY, USA; London, UK, 2004; pp. 304–310. [Google Scholar]
- Ford, D.C.; Williams, P.W. Karst Hydrogeology and Geomorphology; John Wiley & Sons: Chichester, UK, 2007; 561p. [Google Scholar]
- Gutiérrez, F.; Guerrero, J.; Lucha, P. A genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain. Environ. Geol. 2008, 53, 993–1006. [Google Scholar] [CrossRef]
- Dogan, U.; Cicek, I. Occurrence of cover-collapse sinkholes [cover-collapse dolines] in the May Dam reservoir area (Konya, Turkey). Cave Karst Sci. 2002, 29, 111–116. [Google Scholar]
- Waltham, A.C.; Fookes, P.G. Engineering classification of karst ground conditions. Q. J. Eng. Geol. Hydrogeol. 2003, 36, 101–118. [Google Scholar] [CrossRef]
- Gutie’rrez, F.; Cooper, A.H. Surface morphology of gypsum karst. In Treatise on Geomorphology; Shroder, J., Frumkin, A., Eds.; Academic Press: San Diego, CA, USA, 2013; Volume 6, pp. 425–437. [Google Scholar]
- Khomenko, V.P.; Tolmachev, V.V. Sinkholes. In Encyclopedia of Engineering Geology. Encyclopedia of Earth Sciences Series; Bobrowsky, P.T., Marker, B., Eds.; Springer Cham: Copenhagen, Denmark, 2018. [Google Scholar] [CrossRef]
- Veress, M. Covered Karst; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2016; 536p. [Google Scholar] [CrossRef]
- Amato, V.; Aucelli, P.P.C.; Cesarano, M.; Filocamo, F.; Leone, N.; Petrosino, P.; Rosskopf, C.M.; Valente, E.; Casciello, E.; Giralt, S.; et al. Geomorphic response to late Quaternary tectonics in the axial portion of the Southern Apennines (Italy): A case study from the Calore River valley. Earth Surf. Process. Landf. 2018, 43, 2463–2480. [Google Scholar] [CrossRef]
- Pazzi, V.; di Filippo, M.; di Nezza, M.; Carlà, T.; Bardi, F.; Marini, F.; Fontanelli, K.; Intrieri, E.; Fanti, R. Integrated geophysical survey in a sinkhole-prone area: Microgravity, electrical resistivity tomographies, and seismic noise measurements to delimit its extension. Eng. Geol. 2018, 243, 282–293. [Google Scholar] [CrossRef]
- Veress, M. Glaciális felszíntípusok karsztosodása (Karstification of glacial surface types). Földrajzi Közlemények 2013, 187, 2–27. [Google Scholar]
- Waltham, T. Fengcong, fenglin, cone karst and tower karst. Cave Karst Sci. 2008, 35, 77–88. [Google Scholar]
- Veress, M. Karst Types and Their Karstification. J. Earth Sci. 2020, 30, 621–634. [Google Scholar] [CrossRef]
- Korzhuev, S.S. Merzlotnij karszt Szrednego Prilenja i nekotorije oszobennoszti jego projavlenija. In Regionalnoje Karsztovedenije; Sokolov, N.I., Gvozdetskiy, N.A., Balashov, L.S., Eds.; Izdatelsztvo AN SzSzSzR: Moscow, Russia, 1961; pp. 207–220. [Google Scholar]
- Upchurch, S.; Scott, T.M.; Alfieri, M.C.; Fratesi, B.; Dobecki, T.L. Epigene and Hypogene Karst—The Karst Systems of Florida; Springer: Copenhagen, Denmark, 2019; pp. 359–441. [Google Scholar]
- Quinlan, J.F.; Smith, A.R.; Johnson, K.S. Gypsum karst and salt karst of the United States of America. Le Grotte D’Italia 1986, 4, 73–92. [Google Scholar]
- Calligaris, C.; Zini, L.; Nisio, S.; Piano, C. Sinkholes in the Friuli Venezia Giulia Region Focus on the Evaporites. In Applied Geology; De Maio, M., Tiwari, A., Eds.; Springer: Copenhagen, Denmark, 2020; pp. 73–90. [Google Scholar] [CrossRef]
- Cooper, A.H.; Waltham, A.C. Subsidence caused by gypsum dissolution at Ripon North Yorkshire. Q. J. Eng. Geol. 1999, 32, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.D.; Johnson, K.S.; Neal, J.T. Sinkholes in Evaporite Rocks. Am. Sci. 1998, 86, 38–51. [Google Scholar] [CrossRef]
- Klimchouk, A.; Andrejchuk, V. Karst breakdown mechanisms from observations in the gypsum caves of the western Ukraine: Implications for subsidence hazard assessment. Environ. Earth Sci. 2003, 1, 20. Available online: www.speleogenesis.info (accessed on 2 January 2021).
- Santo, A.; Ascione, A.; Prete, S.D.; Crescenzo, G.; Santangelo, N. Collapse Sinkholes Distribution in the Carbonate Massifs of Central and Southern Apennines. Acta Carsologica 2011, 40, 95–112. [Google Scholar]
- Santo, A.; Budetta, P.; Forte, G.; Marino, E.; Pignalosa, A. Karst collapse susceptibility assessment: A case study on the Amalfi Coast (Southern Italy). Geomorphology 2017, 285, 247–259. [Google Scholar] [CrossRef]
- Caramanna, G.; Ciotoli, G.; Nisio, S. A review of natural sinkhole phenomena in Italian plain areas. Nat. Hazards 2008, 45, 145–172. [Google Scholar] [CrossRef]
- Parise, M. A procedure for evaluating the susceptibility to natural and anthropogenic sinkholes. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2015, 9, 272–285. [Google Scholar] [CrossRef]
- Cui, Z.; Li, D.; Feng, J.; Liu, G.; Li, H. The covered karst, weathering crust and karst (double-level). Sci. China 2002, 45, 366–378. [Google Scholar]
- Waltham, T.; Bell, F.; Culshaw, M. Sinkholes and Subsidence; Springer: Berlin/Heidelberg, Germany, 2005; 382p. [Google Scholar]
- Pessoa, P. Karst Hydrogeology of the Lagoa Santa Area, in Lagoa Santa Karst Brazil’s Iconic Karst Region; Springer: Copenhagen, Denmark, 2020; pp. 135–188. [Google Scholar] [CrossRef]
- Jia, L.; Li, L.; Meng, Y.; Wu, Y.; Pan, Z.; Yin, R. Responses of cover-collapse sinkholes to groundwater changes: A case study of early warning of soil cave and sinkhole activity on Datansha Island in Guangzhou, China. Environ. Earth Sci. 2018, 77, 488. [Google Scholar] [CrossRef]
- Williams, P.W. The role of the epikarst in karst and cave hydrogeology: A review. Int. J. Speleol. 2008, 37, 1–10. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Liu, C.; Wang, S. Karst collapse related to over-pumping and a criterion for its stability. Environ. Geol. 2003, 43, 720–724. [Google Scholar] [CrossRef]
- Chen, J.; Beck, B.F. Qualitative modelling of the cover-collapse process. In Engineering and Environmental Impacts of Sinkholes and Karst; Beck, B.F., Ed.; Balkema: Rotterdam, The Netherlands, 1989; pp. 89–95. [Google Scholar]
- Santo, A.; Santangelo, N.; De Falco, M.; Forte, G.; Valente, E. Cover collapse sinkhole over a deep buried carbonate bedrock: The case study of Fossa San Vito (Sarno-Southern Italy). Geomorphology 2019, 345, 106838. [Google Scholar] [CrossRef]
- Yuan, D. Environmental and engineering problems of karst geology in China. In Karst Hydrogeology: Engineering and Environmental Applications; Beck, B.F., Wilson, W.L., Eds.; Balkema: Rotterdam, The Netherlands, 1987; pp. 1–11. [Google Scholar]
- Miranda, E.; Brzev, S.; Bijeli´c, N.; Arbanas, Ž.; Bartolac, M.; Jagodnik, V.; Lazarevi´c, D.; Mihali´c Arbanas, S.; Zlatovi´c, S.; Acosta, A.; et al. PRJ-2959/StEER-EERI: Petrinja, Croatia December 29, 2020, Mw 6.4 earthquake (PI: Kijewski-Correa, T.). Field Research, Joint Reconnaissance Report; DesignSafe: Seattle, WA, USA, 15 March 2021; p. 206. [Google Scholar]
- Drumm, E.C.; Kane, W.F.; Yoon, C.J. Application of limit plasticity to the stability of sinkholes. Eng. Geol. 1990, 29, 213–225. [Google Scholar] [CrossRef]
- Tharp, T.M. Mechanics of upward propagation of cover-collapse sinkholes. Eng. Geol. 1999, 52, 23–33. [Google Scholar] [CrossRef]
- Veress, M.; Gárdonyi, I.; Deák, G. Fedett karsztosodás vizsgálata fedővel borított gipsztáblán (The study of covered karstification on a gypsum plate with cover). Karsztfejlődés 2014, 14, 159–171. (In Hungarian) [Google Scholar]
- Currens, I.C.; Paylor, R.L.; Beck, F.G.; Davidson, B. A method to determine cover—Collapse frequency in the Western Pennyroyal karst of Kentucky. J. Cave Karst Stud. 2012, 74, 292–299. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, G. Mechanism and prevention of karst collapse near mine areas in China. Environ. Geol. Water Sci. 1988, 12, 37–42. [Google Scholar]
- Wilson, W.L. Sinkhole and buried sinkhole densities and new sinkhole frequencies in karsts of northwest peninsular Florida. In Karst Geohazards; Beck, B.F., Ed.; Balkema: Rotterdam, The Netherlands, 1995; pp. 79–91. [Google Scholar]
- Benson, R.C.; Kaufmann, R.D. Characterization of a highway sinkhole within the gypsum karst of Michigan. In Geotechnical and Environmental Applications of Karst Geology and Hydrology; Beck, B.F., Herring, J.G., Eds.; Balkema: Lisse, The Netherlands, 2001; pp. 103–112. [Google Scholar]
- Benson, R.C.; Yuhr, L.B. Assessment and long term monitoring of localized subsidence using ground penetrating radar. In Karst Hydrogeology: Engineeering and Environmental Applications; Beck, B.F., Wilson, W.L., Eds.; Balkema: Rotterdam, The Netherlands, 1987; pp. 161–169. [Google Scholar]
- Veress, M. Investigation of covered karst form development using geophysical measurements. Z. Für Geomorph. 2009, 53, 469–486. [Google Scholar] [CrossRef]
- Veress, M. The Evolution and Development of Solution Dolines with Horizontal Growth and the Processes of Their Floors: A Case Study on the Plate-Shaped Dolines of the Bükk Mountains, Aggtelek Karst and Pádis Plataeu. Earth 2020, 1, 47–74. [Google Scholar] [CrossRef]
- Crawford, N.C. Environmental problems associated with urban development upon karst, Bowling Green, Kentucky. In Geotechnical and Environmental Applications of Karst Geology and Hydrology; Beck, B.F., Herring, J.G., Eds.; Balkema: Lisse, The Netherlands, 2001; pp. 397–424. [Google Scholar]
- Jakucs, L. Morphogenetics of Karst Regions; Adam Hilgar: Bristol, UK, 1977; 284p. [Google Scholar]
- Bulla, B. Morfológiai megfigyelések a magyarországi löszös területeken (Morphological observations on Hungarian loess areas). Földrajzi Közlemények 1933, 61, 136–149. (In Hungarian) [Google Scholar]
- White, W.B. Geomorphology and Hydrology of Karst Terrains; Oxford University Press: New York, NY, USA; Oxford, UK, 1988. [Google Scholar]
- Halliday, W.R. Piping Caves and Badlands Pseudokarst. In Encyclopedia of Caves and Karst Science; Gunn, J., Ed.; Fritzroy Dearban: New York, NY, USA, 2004; pp. 589–593. [Google Scholar]
- Halliday, W.R. Pseudokarst. In Encyclopedia of Caves and Karst Science; Gunn, J., Ed.; Fritzroy Dearban: New York, NY, USA, 2004; pp. 604–608. [Google Scholar]
- Veress, M. Covered Karst Evolution Northern Bakony Mountains, W-Hungary; A Bakony Természettud. Kut. Eredményei, 23; Bakonyi Természettudományi Múzeum: Zirc, Hungary, 2000; 167p. [Google Scholar]
- Veress, M. Adatok a Hárskúti-fennsík karsztmorfogenetikájához. (Data on the morphogenesis of the Hárskút Plateau). In Karszt és Barlang; Lénárt, L., Eszterhás, I., Cholnoky, J., Eds.; Hungarian Karst and Cave Research Society: Budapest, Hungary, 1982; Volume II, pp. 71–82. (In Hungarian) [Google Scholar]
- Trudgill, S.T. The influence of drifts and soils on limestone weathering in N.W. Claire, Ireland. Proc. Univ. Bristol. Speleol. Soc. 1972, 13, 113–118. [Google Scholar]
- Trudgill, S.T. Limestone Geomorphology; Longman: New York, NY, USA, 1985; 196p. [Google Scholar]
- Beck, B.F.; Sinclair, W.C. Sinkholes in Florida: An Introduction; Florida Sinkhole Research Institute Report; Florida Sinkhole Research Institute: Orlando, FL, USA, 1986; Volume 85-86-4, 16p. [Google Scholar]
- Beck, B.F. On calculating the risk of sinkhole collapse. In Proceedings of the Appalochian Karst Symposium, Radford, VA, USA, 23–26 March 1991; National Speleological Society Huntsville: Huntsville, AL, USA, 1991; pp. 231–236. [Google Scholar]
- Ketelle, R.H.; Newton, J.G.; Tanner, J.M. Karst subsidence in East Tennessee. In Proceedings of the 2nd Conference on Environmental Problems in Karst Terranes and Their Solution, Bowling Green, KY, USA, 28–30 October 1986; National Water Well Association: Dublin, OH, USA, 1988; pp. 51–65. [Google Scholar]
- Hoyk, E. A Nyugat-Mecsek karszt dolináinak morfometriai vizsgálata (A morphometric investigation of the karst dolines of Western Mecsek). Karsztfejlődés 2002, 7, 161–171. (In Hungarian) [Google Scholar]
- Mezősi, G. Magyarország természetföldrajza (Physical Geography of Hungary); Akadémia Kiadó: Budapest, Hungary, 2011; 393p. (In Hungarian) [Google Scholar]
- Veress, M.; Vetési-Foith, S. The Distribution of Surface Karst Features in the Bakony Region (Transdanubian Mountains Hungary). J. Geol. Res. 2019, 1, 21–25. [Google Scholar] [CrossRef]
- Lippmann, L.; Kiss, K.; Móga, J. Az Abaliget-Orfűi karszt karsztos felszínformáinak vizsgálata térinformatikai módszerekkel (Investigation of the karstic phenomenon near Orfű and Abaliget by GIS methods). Karsztfejlődés 2008, 13, 151–166. (In Hungarian) [Google Scholar]
- Vetési-Foith, S. A Mecseki karszt oldódásos és utánsüllyedéses töbreinek morfometriai elemzése (Morphometric analysis of dissolved- and subsidence dolines in the Mecsek Karst). Karsztfejlődés 2017, 22, 119–138. (In Hungarian) [Google Scholar] [CrossRef]
- Hevesi, A. A Nyugat-Mecsek felszíni karsztosodásának kérdései (Questions of the surface karstification of the West Mecsek). Karsztfejlődés 2011, 7, 103–111. (In Hungarian) [Google Scholar]
- Veress, M. Északi-Bakony fedett karsztja (Covered karst of the Northern Bakony); Bakonyi Természettudományi Múzeum: Zirc, Hungary, 1999; 167p. (In Hungarian) [Google Scholar]
- Soriano, M.A.; Simón, J.L. Subsidence rates of alluvial dolines in the central Ebro basin, Northeastern Spain. In Geotechnical and Environmental Applications of Karst Geology and Hydrology; Beck, B.F., Herring, J.G., Eds.; Balkema: Lisse, The Netherlands, 2001; pp. 47–52. [Google Scholar]
- Williams, P.W. Illustrating morphometric analysis of karst with examples from New Guinea. Z. Für Geomorphol. 1971, 15, 40–61. [Google Scholar]
- Vetési-Foith, S. Az utánsüllyedéses dolinák képződését befolyásoló paraméterek kapcsolatrendszerének vizsgálata modell kísérlettel (Analysing the relation of the parameters that influences the subsidence dolines formation using model experiments). Karsztfejlődés 2019, 24, 61–78. (In Hungarian) [Google Scholar] [CrossRef]
- Cramer, H.C. Die Systematik der Karstdolinen. N. Jb. Miner. Geol. Paläont. 1941, 85, 293–382. [Google Scholar]
- Clayton, K.M. The origin of the landforms of the Malham area. Field Stud. 1966, 2, 359–384. [Google Scholar]
- Beck, B.F. A generalized genetic framework for the development of sinkholes and karst in Florida, USA. Environ. Geol. Water Sci. 1986, 8, 5–18. [Google Scholar] [CrossRef]
- Lu, Y.; Cooper, A.H. Gypsum karst geohazards in China. In Engineering Geology and Hydrogeology of Karst Terrains; Beck, B.F., Stephenson, J.B., Eds.; Balkema: Rotterdam, The Netherlands, 1997; pp. 117–126. [Google Scholar]
- Hevesi, A. Adatok a Bükk hegység negyedidőszaki ősföldrajzi képéhez (Data to the Quaternary Paleogeographical Features of the Bükk Mountains). Földtani Közlöny 1980, 110, 540–550. (In Hungarian) [Google Scholar]
- Veress, M. Shaft Lengths and Shaft Development Types in the Vadose Zone of the Bakony Region (Transdanubian Mountains, Hungary). J. Soil Water Sci. 2019, 3, 54–74. Available online: ojs.bilpublishing.com/index.php/jgr-a (accessed on 2 January 2021).
- Hyatt, J.A.; Wilson, R.; Givens, J.S.; Jacobs, P.M. Topographic, geologic and hydrogeologic controls on dimension and locations of sinkholes in thick covered karst, Lowndes Country, Georgia. In Geotechnical and Environmental Applications of Karst Geology and Hydrology; Beck, B.F., Herring, J.G., Eds.; Balkema: Lisse, The Netherlands, 2001; pp. 37–45. [Google Scholar]
- Lei, M.; Jiang, X.; Yu, L. New advances of karst collapse research in China. In Geology and Hydrology; Beck, B.F., Ed.; Balkema: Lisse, The Netherlands, 2001; pp. 145–151. [Google Scholar]
- Chen, J. Karst collapses in cities and mining areas, China. Environ. Geol. Water Sci. 1988, 12, 29–35. [Google Scholar] [CrossRef]
- Beggs, T.F.; Ruth, B.E. Factors affecting the collapse of cavities. In Sinkholes: Their Geology, Engineering and Environmental Impact; Beck, B.F., Ed.; Balkema: Rotterdam, The Netherlands, 1984; pp. 183–188. [Google Scholar]
- Upchurch, S.B.; Littlefield, J.R. Evalutions of data for sinkhole-development risk models. In Karst Hydrogeology: Engineering and Environmental Applications; Beck, B.F., Wilson, W.L., Eds.; Balkema: Rotterdam, The Netherlands, 1987; pp. 359–364. [Google Scholar]
- Xiang, S.; Chen, J.; Wilson, W.L.; Beck, B.F. Sinkholes as a consequence of groundwater development in karst regions. Am. Inst. Hydrol. J. 1988, 4, 160–173. [Google Scholar]
- Silvestru, E. Dolines in the Padiş Plateau (Bihor Mountains, Romania), One peculiar case, many questions. Theor. Appl. Karstology 1997, 10, 127–132. [Google Scholar]
- Arrington, D.V.; Lindquist, R.C. Thickly mantled karst of the Interlachen, Florida area. In Karst Hydrogeology: Engineering and Environmental Applications; Beck, B.F., Wilson, W.L., Eds.; Balkema: Rotterdam, The Netherlands, 1987; pp. 31–39. [Google Scholar]
- Beck, B.F. Report on Italian sinkhole conference. KWI Conduit 2000, 8. Available online: www.karstwaters.org (accessed on 2 January 2021).
- Deák, G.; Szemes, M.; Veress, M. A gipsz fedőjének vízmozgásai fizikai analóg modelleken (Water movements of the plaster cover on physical analogue models). Karsztfejlődés 2015, 20, 215–229. (In Hungarian) [Google Scholar] [CrossRef]
- Stefanovits, P. Talajtan (Soil Science); Mezőgazdasági Kiadó: Budapest, Hungary, 1981; 470p. (In Hungarian) [Google Scholar]
- Veress, M.; Gárdonyi, I.; Deák, G. Gipsz hasadékkarrjainak vizsgálata modellkísérletekkel (The study of grikes of plaster with model experiments). Karsztfejlődés 2015, 20, 231–250. (In Hungarian) [Google Scholar] [CrossRef]
- Zámbó, L. A vörösagyagok és a felszíni karsztosodás kapcsolata az Aggteleki-karszt délnyugati részén (The relationship between red clays and surface karstification at the southwestern part of Aggtelek Karst). Földrajzi Közlemények 1970, 94, 281–293. (In Hungarian) [Google Scholar]
- Zámbó, L. Karsztvörösagyagok CO2 termelés és a karsztkorrózió összefüggése (The connection between the CO2 production of karst red clays and karst corrosion). A Nehézipari Műszaki Egy. Közleményei I. Sor. Bányászat 1986, 33, 125–138. (In Hungarian) [Google Scholar]
- Williams, P.W. Limestone pavements with special reference to western Ireland. Trans. Inst. Br. Geogr. 1966, 40, 155–172. [Google Scholar] [CrossRef]
- Balázs, D. Kísérletek a talaj alatti karsztos korrózióról (Experiments on subsoil karst corrosion). Karszt És Barlang 1969, 2, 57–60. (In Hungarian) [Google Scholar]
- Trudgill, S.T. Measurement of erosional weight-loss of rock tables. British Geomorphological Research Group. Tech. Bull. 1975, 17, 13–19. [Google Scholar]
- Trudgill, S.T. Limestone erosion under soil. In Proceedings of the 6th International Congress of Speleology, Olomouc, Czechoslovakia, 9 September 1973; Panos, V., Ed.; Academia: Prague, Checz Republic, 1976; pp. 409–422. [Google Scholar]
- Trudgill, S.T. The erosion of limestones under soil and long term stability of soil—Vegetation systems on limestone. Earth Surf. Process. 1976, 1, 31–41. [Google Scholar] [CrossRef]
- Kiss, K.; Zámbó, L.; Fehér, K.; Móga, J. A lösztakaró karsztosodásban játszott szerepének vizsgálata a Tési-fennsíkon (An investigation of the role of the loess mantle in karstification on the Tés Plateau). Karsztfejlődés 2007, 12, 193–205. (In Hungarian) [Google Scholar]
- Füzesi, I. Loess tests carried out in the surroundings of some covered karstic depressions (Tési-Plateau). Carpathian J. Earth Environ. Sci. 2007, 2, 39–44. [Google Scholar]
- Sinkholes. 20 August 2020. Available online: http://www.dep.state.flius/geology/geologictopics/sinkhole.htm (accessed on 2 January 2021).
- Hyatt, J.A.; Jacobs, P.M. Distribution and morphology of sinkholes triggered by flooding Tropical Storm Alberto at Albany, Georgia, USA. Geomorphology 1996, 17, 305–316. [Google Scholar] [CrossRef]
- Jammal, S.E. Maturation of the Winter Park sinkhole. In Sinkholes: Their Geology, Engineering and Environmental Impact; Beck, B.F., Ed.; Balkema: Rotterdam, The Netherlands, 1984; pp. 363–369. [Google Scholar]
- Sweeting, M.M. Karst in China: Its Geomorphology and Environment; Springer: Berlin, Germany, 1995; p. 265. [Google Scholar]
- Foose, R.M. Surface subsidence and collapse caused by ground water withdrawal in carbonate rock areas. In Proceedings of the 23rd International Geological Congress, Prague, Czech Republic, 6 June 1968; Academia: Prague, Czech Republic, 1968; Volume 12, pp. 155–166. [Google Scholar]
- LaMoreaux, P.E.; Newton, J.G. Catastrophic subsidence: An environmental hazard, Shelby County, Alabama. Environ. Geol. Water Sci. 1986, 8, 25–40. [Google Scholar] [CrossRef]
- Waltham, A.C.; Smart, P.L. Civil engineering difficulties in the karst of China. Q. J. Eng. Geol. 1988, 21, 2–6. [Google Scholar] [CrossRef]
- Foose, R.M. Groundwater behaviour in the Hershey Valley. Penn. Bull. Geol. Soc. Am. 1953, 54, 623–645. [Google Scholar] [CrossRef]
- Brassington, R. Field Hydrogeology; Geological Society of London, Professional Handbook Series; Open University Press: Maidenhead, UK, 1988. [Google Scholar]
- Mádl Szőnyi, J.; Czaune, B.; Simon, S.; Erőss, A.; Zsemle, F.; Pulay, E.; Havril, T. Hidrogeológia, Digitális Tankönyv ELTE; Hydrogeology, Digital Book; ELTE: Budapest, Hungary, 2013. (In Hungarian) [Google Scholar]
- Jefferies, M.; Been, K. Soil Liquefaction: A Critical State Approach, 1st ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar] [CrossRef]
- Cvijič, J. Hydrographie souterraine et evolution morphologique du karst. Rev. De Géographie Alp. 1918, 6, 375–426. [Google Scholar] [CrossRef]
- Cholnoky, J. A csillagoktól a tenger fenékig (From the Stars to the Sea Bottom); Franklin Társulat: Budapest, Hungary, 1940; p. 496. (In Hungarian) [Google Scholar]
- Gams, I. The polje: The problem of its definition. Z. Für Geomorphol. 1978, 22, 170–181. [Google Scholar]
- Beese, A.P.; Creed, M.J. A database for subsidence sinkholes near Cork, Ireland. Dan. Geotech. Soc. Bull. 1995, 4, 19–24. [Google Scholar]
- Czerniawska, J.; Chlachula, J. Climate-change induced permafrost degradation in Yakutia. Arctic 2020, 73, 509–528. [Google Scholar] [CrossRef]
- Likens, G.E. River Ecosystem Ecology: A Global Perspective; Academic Press: San Diego, CA, USA, 2010; 424p. [Google Scholar]
- Rowley, T.; Giardino, R.; Granados Aguilar, R.; Vitek, J.D. Periglacial processes and landforms in the critical zona. Dev. Earth Surf. Process. 2015, 19, 397–447. [Google Scholar]
- Van Everdingen, R.O. Morphology, Hydrology and Hydrochemistry of Karst in Permafrost Near Great Bear Lake, Northwest Territories; Paper 11; National Hydrological Research Institute of Canada: Saskatoon, SK, Canada, 1981. [Google Scholar]
- Pollard, W.; Omelon, C.; Andersen, D.; McKay, C. Perennial spring occurrence in the Expedition Fiord area of western Axel Heiberg Island, Canadian High Arctic. Can. J. Earth Sci. 1999, 36, 105–120. [Google Scholar] [CrossRef]
- Lungersgauzen, G.F. Inflyuviy-osobyi geneticheskiy tip materikovykh obrazovaniy. Dokl. Akad. Nauk. SSSR 1966, 171, 690–693. [Google Scholar]
- Korzhuev, S.S. Drevniy karst i tsikly karstoobrazovaniya Sibirskoy platformy. Tr. Mosk. Obs. Ispyt. Prir. 1972, 47, 141–151. [Google Scholar]
- Pulina, M. Le karst et les phenomenes karstiques similaires des regions froides. In Les Karsts des Regions Climatiques Extremes; Salomon, J.N., Pulina, M., Eds.; Presses Universitaires de Bordeaux: Pessac, France, 2005; Volume 14, pp. 11–100. [Google Scholar]
- Parise, M. Recognition of instability features in artificial cavities. In Proceedings of the 16th International Congress of Speleology, Brno, Czech Republic, 21–28 July 2013; p. 28. [Google Scholar]
- Fazio, N.L.; Perrotti, M.; Lollino, P.; Parise, M.; Vattano, M.; Madonia, G.; Di Maggio, C. A three-dimensional back-analysis of the collapse of an underground cavity in soft rocks. Eng. Geol. 2017, 228, 301–311. [Google Scholar] [CrossRef]
- De Waele, J.; Piccini, L.; Columbu, A.; Madonia, G.; Vattano, M.; Calligaris, C.; D’Angeli, I.; Parise, M.; Chiesi, M.; Sivelli, M.; et al. Evaporite karst in Italy: A review. Int. J. Speleol. 2017, 46, 137–168. Available online: https://digitalcommons.usf.edu/ijs/vol46/iss2/3 (accessed on 2 January 2021). [CrossRef] [Green Version]
- Cucchi, F.; Forti, P.; Finocchiaro, F. Gypsum degradation in Italy with respect to climatic textural and erosional conditions. Geogr. Fis. E Din. Quat. 1998, 3, 41–49. [Google Scholar]
- Parise, M.I. Sinkholes in Puglia. Mem. Descr. Della Carta Geol. D’italia 2008, 85, 309–334. [Google Scholar]
- Fidelibus, M.D.; Gutiérrez, F.; Spilotro, G. Human-induced hydrogeological changes and sinkholes in the coastal gypsum karst of Lesina Marina area (Foggia Province, Italy). Eng. Geol. 2011, 118, 1–19. [Google Scholar]
- Di Maggio, C.; Di Trapani, F.P.; Madonia, G.; Salvo, D.; Vattano, M. Primo contributo sui sinkhole nelle evaporiti della Sicilia (Italia)/First report on the sinkhole phenomena in the Sicilian evaporites (Italy). In Proceedings of the 2 Workshop Internazionale. I Sinkholes. Gli Sprofondamenti Catastrofici Nell’Ambiente Naturale ed in Quello Antropizzato, Roma, Italy, 3–4 December 2009; ISPRA: Rome, Italy, 2010; pp. 299–313. [Google Scholar]
- Johnson, K.S. Development of the Wink Sink in West Texas due to salt dissolution and collapse. In Karst Hydrogeology: Engineering and Environmental Implication; Beck, B.F., Wilson, W.L., Eds.; Balkema: Brookfield, VT, USA; CRC Press: Boca Raton, FL, USA, 1987; pp. 127–136. [Google Scholar]
- Johnson, K.S.; Collins, E.W.; Seni, S.J. Sinkholes and land subsidence due to salt dissolution near Wink, West Texas, and other sites in western Texas and New Mexico. Okla. Geol. Surv. Circ. 2003, 109, 183–195. [Google Scholar]
- Guo, X. Geological Hazards of China and their Prevention and Control; Geological Publishing House: Beijing, China, 1991; 260p. [Google Scholar]
- Johnson, K.S. Land subsidence above man-made salt dissolution cavities. In Land Subsidence Case Studies and Current Research: Proceedings of the Dr. Joseph F. Poland Symposium on Land Subsidence; Assoc. Eng. Geol. Spec. Publ., Borchers, J.W., Eds.; Star Publishing Co.: Belmont, CA, USA, 1998; Volume 8, pp. 385–392. [Google Scholar]
- Vigna, B.; Fiorucci, A.; Banzato, C.; Forti, P.; De Waele, J. Hypogene gypsum karst and sinkhole formation at Moncalvo (Asti, Italy). Z. Für Geomorphol. 2010, 54, 285–306. [Google Scholar] [CrossRef]
- Sowers, G.F. Building on Sinkholes; ASCE Press: New York, NY, USA, 1996; 202p. [Google Scholar]
- Li, J.; Niu, J.; Liu, Q.; Li, G. Subsidence and its treatment in karst coal mines in China. In Proceedings of the 11th International Congress Speleology, Beijing, China, 2–8 August 1993; pp. 180–181. [Google Scholar]
- Dogan, U.; Yilmaz, M. Natural and induced sinkholes of the Obruk Plateau and Karapinar-Hotamis Plain, Turkey. J. Asian Earth Sci. 2011, 40, 496–508. [Google Scholar] [CrossRef]
- Sütő, L.; Homoki, E.; Németh, G. Felszínsüllyedési és Bolygatottsági térkép KészítéSe a Kelet-Borsodi-Szénmedencében (Construction of a Subsidence and Disturbance Map in the East Borsod Coal Basin). In Proceedings of the Geoinformatika és domborzatmodellezés, HunDEM 2009 és GeoInfo konferencia és kerekasztal válogatott tanulmánya, Budapest, Hungary; 2009. Available online: https://docplayer.hu/8279580-Terinformatikai-adatbazis-es-terkepei-az-antropogen-hatasok-kutatasaban-a-kelet-borsodi-szenmedenceben.html (accessed on 2 January 2021). (In Hungarian).
- Wassmann, T.H. Mining subsidence in Twente East Netherlands. Geol. Mijnbouw 1980, 59, 225–231. [Google Scholar]
- Andrejchuk, V. Collapse above the World’s largest Potash Mine (Ural, Russia). Int. J. Speleol. 2002, 31, 137–158. [Google Scholar] [CrossRef] [Green Version]
- Móga, J.; Lippmann, L.; Tombor, E.; Fehér, K.; Kéri, A.; Borsodi, A. Az Aknaszlatinai sókarszt felszínalaktani vizsgálata (Geomorphological investigation of the Aknaszlatina saltkarst (Ukrajna)). Karsztfejlődés 2015, 20, 185–283. (In Hungarian) [Google Scholar] [CrossRef]
- Móga, J.; Szabó, J.; Gönczy, S.; Lippmann, L.; Bódai, B. Az Aknaszlatinai-sókarszt dinamikusan változó felszínformáinak vizsgálata terepi és GIS módszerekkel (The study of the dynamically changing landforms of Aknaszlatina salt karst by field and GIS methods). Karsztfejlődés 2017, 22, 139–161. (In Hungarian) [Google Scholar] [CrossRef]
- Walters, R.F. Land subsidence in central Kansas related to salt dissolution. Bull. Kans. Geol. Surv. 1977, 214, 74–75. [Google Scholar]
- Wassmann, T.H. Mining subsidence in the East Netherlands. In Evaluation and Prediction of Subsidence; Saxena, S.K., Ed.; American Society Civil Engineers: New York, NY, USA, 1979; pp. 283–302. [Google Scholar]
- Spooner, J. Mufulira interim report. Min. J. 1971, 276, 122. [Google Scholar]
- Singh Kalendra, B. Sinkhole subsidence due to mining. Geotech. Geol. Eng. 1997, 15, 327–341. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veress, M. Development Environments and Factors of Subsidence Dolines. Geosciences 2021, 11, 513. https://doi.org/10.3390/geosciences11120513
Veress M. Development Environments and Factors of Subsidence Dolines. Geosciences. 2021; 11(12):513. https://doi.org/10.3390/geosciences11120513
Chicago/Turabian StyleVeress, Márton. 2021. "Development Environments and Factors of Subsidence Dolines" Geosciences 11, no. 12: 513. https://doi.org/10.3390/geosciences11120513
APA StyleVeress, M. (2021). Development Environments and Factors of Subsidence Dolines. Geosciences, 11(12), 513. https://doi.org/10.3390/geosciences11120513