Root Reinforcement in Slope Stability Models: A Review
Abstract
:1. Introduction
2. Hydrological and Mechanical Effects of Vegetation on Slope Stability
- Suction: vegetation affects soil moisture by a root-water uptaking process driven by transpiration [15]: moisture is adsorbed by roots from the surrounding soil (trees can reduce soil moisture levels from distances up to three times the crown radius [12]), inducing soil suction (e.g., [16]); in regions where precipitation consistently exceeds the potential evapotranspiration, the soil moisture detraction by the latter is negligible; nevertheless, in case of moderate rainfall events, evapotranspiration may reduce soil moisture before the rainfall, increasing the amount of water storable in the soil [11];
- Interception: the effect of this process is the redistribution of gross rainfall falling onto plant surfaces, the rain is temporarily retained and successively lost in the atmosphere by evaporation or flows-drops onto the ground [17]; the magnitude of this phenomenon depends on climate, plant species and age, and forest structure (e.g., [18,19]); branches and foliage are capable of intercepting and then evaporating nearly all rainfall in case of low intensities, while during high-intensity rainfall, plants can intercept only a fraction [20];
- Soil reinforcement: root systems of plants increase the shear strength of soils through a combined action by the large and the small roots (Figure 2); large woody roots can anchor the superficial soil layers to more stable substrates crossing potential planes of weakness, while small roots strengthen bonds with the soil particles, increasing the overall cohesion of the soil–roots matrix; the reinforcement by roots can work on the basal failure plane of a landslide or on lateral failure (e.g., [23,24,25]);
- Surcharge: vegetation (particularly trees) weight increases both the normal and the tangential forces acting on slopes, but generally, the influence of this factor on the slope stability is negligible [26,27]; the surcharge due to the weight of mature forest of beech for instance is unlikely higher than 2.5 kPa, the equivalent of a layer of stony soil 15 cm thick [28,29];
2.1. Root Reinforcement Effect
2.2. Issues in Considering Root Reinforcement in Slope Stability Models
3. Root Reinforcement Modelling: Recent Applications
3.1. Approaches for Estimating the Root Reinforcement Distribution at a Regional Scale
3.2. New Slope Stability Models Including Root Reinforcement
3.3. Influence of Particular Plant Species on Slope Stability
3.4. Influence Forest Structure, Wildfires, and Soil Moisture Gradient
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schmaltz, E.M.; Steger, S.; Glade, T. The influence of forest cover on landslide occurrence explored with spatio-temporal information. Geomorphology 2017, 290, 250–264. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Michoud, C.; Derron, M.H.; Voumard, J.; Leibundgut, G.; Sudmeier-Rieux, K.; Nadim, F.; Leroi, E. Human-induced landslides: Toward the analysis of anthropogenic changes of the slope environment. In Landslides and Engineering Slopes—Experiences, Theory and Practices; Aversa, S., Cascini, L., Picarelli, L., Scavia, C., Eds.; CRC Press: London, UK, 2016; pp. 217–232. [Google Scholar]
- Roering, J.J.; Schmidt, K.M.; Stock, J.D.; Dietrich, W.E.; Montgomery, D.R. Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range. Can. Geotech. J. 2003, 40, 237–253. [Google Scholar] [CrossRef] [Green Version]
- Crosta, G.B.; Frattini, P. Rainfall-induced landslides and debris flows. Hydrol. Process. 2008, 22, 473–477. [Google Scholar] [CrossRef]
- Gabet, E.J.; Mudd, S.M. The mobilization of debris flows from shallow landslides. Geomorphology 2006, 74, 207–218. [Google Scholar] [CrossRef]
- Van Asch, T.W.; Buma, J.; Van Beek, L.P.H. A view on some hydrological triggering systems in landslides. Geomorphology 1999, 30, 25–32. [Google Scholar] [CrossRef]
- Pollen-Bankhead, N.; Simon, A. Hydrologic and hydraulic effects of riparian root networks on streambank stability: Is mechanical root-reinforcement the whole story? Geomorphology 2010, 116, 353–362. [Google Scholar] [CrossRef]
- Cohen, D.; Schwarz, M.; Or, D. An analytical fiber bundle model for pullout mechanics of root bundles. J. Geophys. Res. Earth Surf. 2011, 116, 11. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, J.R.; Norris, J.E.; Wint, J. Assessing the contribution of vegetation to slope stability. Proc. Inst. Civ. Eng. Geotech. Eng. 2004, 157, 199–207. [Google Scholar] [CrossRef]
- Wu, W.; Switala, B.M.; Acharya, M.D.; Tamagnini, R.; Auer, M.; Graf, F.; te Kamp, L.; Xiang, W. Effect of Vegetation on Stability of Soil Slopes: Numerical Aspect. In Recent Advances in Modeling Landslides and Debris Flows; Wu, W., Ed.; Springer Series in Geomechanics and Geoengineering; Springer: Cham, Switzerland, 2015; pp. 163–177. [Google Scholar]
- Vergani, C.; Giadrossich, F.; Buckley, P.; Conedera, M.; Pividori, M.; Salbitano, F.; Rauch, H.S.; Lovreglio, R.; Schwarz, M. Root reinforcement dynamics of European coppice woodlands and their effect on shallow landslides: A review. Earth Sci. Rev. 2017, 167, 88–102. [Google Scholar] [CrossRef]
- Gray, D.H.; Sotir, R.B. Biotechnical and Soil Bioengineering Slope Stabilization: A Practical Guide for Erosion Control; John Wiley & Sons: New York, NY, USA, 1996; pp. 1–400. [Google Scholar]
- Schwarz, M.; Cohen, D.; Or, D. Root-soil mechanical interactions during pullout and failure of root bundles. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Forbes, K.; Broadhead, J. Forests and landslides: The role of trees and forests in the prevention of landslides and rehabilitation of landslide-affected areas in Asia. RAP Publ. 2013, 2, 1–61. [Google Scholar]
- Zhu, H.; Zhang, L.M.; Garg, A. Investigating plant transpiration-induced soil suction affected by root morphology and root depth. Comput. Geotech. 2018, 103, 26–31. [Google Scholar] [CrossRef]
- Li, Y.; Fuchs, M.; Cohen, S.; Cohen, Y.; Wallach, R. Water uptake profile response of corn to soil moisture depletion. Plant Cell Environ. 2002, 25, 491–500. [Google Scholar] [CrossRef]
- Muzylo, A.; Llorens, P.; Valente, F.; Keizer, J.J.; Domingo, F.; Gash, J.H.C. A review of rainfall interception modelling. J. Hydrol. 2009, 370, 191–206. [Google Scholar] [CrossRef] [Green Version]
- Herbst, M.; Rosier, P.T.W.; McNeil, D.D.; Harding, R.J.; Gowing, D.J. Seasonal variability of interception evaporation from the canopy of a mixed deciduous forest. Agric. For. Meteorol. 2008, 148, 1655–1667. [Google Scholar] [CrossRef]
- Carlyle-Moses, D.E.; Gash, J.H.C. Rainfall interception loss by forest canopies. In Forest Hydrology and Biogeochemistry: Synthesis of Past Research and Future Directions; Levia, D.F., Carlyle-Moses, D.E., Tanaka, T., Eds.; Springer Ecological Studies No. 216; Springer: Dordrecht, The Netherlands, 2011; pp. 407–423. [Google Scholar]
- Keim, R.F.; Skaugset, A.E. Modelling effects of forest canopies on slope stability. Hydrol. Process. 2003, 17, 1457–1467. [Google Scholar] [CrossRef]
- Vergani, C.; Schwarz, M.; Soldati, M.; Corda, A.; Giadrossich, F.; Chiaradia, E.A.; Morando, P.; Bassanelli, C. Root reinforcement dynamics in subalpine spruce forests following timber harvest: A case study in Canton Schwyz, Switzerland. Catena 2015, 143, 275–288. [Google Scholar] [CrossRef] [Green Version]
- Balzano, B.; Tarantino, A.; Ridley, A. Preliminary analysis on the impacts of the rhizosphere on occurrence of rainfall-induced shallow landslides. Landslides 2019, 16, 1885–1901. [Google Scholar] [CrossRef] [Green Version]
- Waldron, L.J.; Dakessian, S. Soil reinforcement by roots: Calculation of increased soil shear resistance from root properties. Soil Sci. 1981, 132, 427–435. [Google Scholar] [CrossRef]
- Wu, T.H.; McKinnell, W.P., III; Swanston, D.N. Strength of tree roots and landslides on Prince of Wales Island, Alaska. Can. Geotech. J. 1979, 16, 19–33. [Google Scholar] [CrossRef]
- Pollen, N.; Simon, A.; Collison, A. Advances in assessing the mechanical and hydrologic effects of riparian vegetation on streambank stability. In Riparian Vegetation and Fluvial Geomorphology; Bennett, S.J., Simon, A., Eds.; American Geophysical Union: Washington, DC, USA, 2004; pp. 125–139. [Google Scholar]
- Selby, M.J. Hillslope Materials and Processes, 2nd ed.; Oxford University Press: Oxford, UK, 1993; pp. 1–466. [Google Scholar]
- Stokes, A.; Norris, J.; van Beek, L.P.H.; Bogaard, T.; Cammeraat, E.; Mickovski, S.B.; Jenner, A.; Di Iorio, A.; Fourcaud, T. How vegetation reinforces soil on slopes. In Slope Stability and Erosion Control: Ecotechnological Solutions; Norris, J.E., Stokes, A., Mickovski, S.B., Cammeraat, E., Van Beek, R., Nicoll, B.C., Achim, A., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 1–288. [Google Scholar]
- O’Loughlin, C.L. The effect of timber removal on the stability of forest soils. J. Hydrol. 1974, 121–134. [Google Scholar]
- Dhakal, A.S.; Sidle, R.C. Long-term modelling of landslides for different forest management practices. Earth Surf. Process. Landf. 2003, 28, 853–868. [Google Scholar] [CrossRef]
- Nilaweera, N.S.; Nutalaya, P. Role of tree roots in slope Stabilisation. Bull. Eng. Geol. Environ. 1999, 57, 337–342. [Google Scholar] [CrossRef]
- Coppin, N.J.; Richards, I.G. Use of Vegetation in Civil Engineering; Construction Industry Research and Information Association: London, UK, 1990; pp. 1–310. [Google Scholar]
- Hasenmueller, E.A.; Gu, X.; Weitzman, J.N.; Adams, T.S.; Stinchcomb, G.E.; Eissenstat, D.M.; Drohan, P.J.; Brantley, S.L.; Kaye, J.P. Weathering of rock to regolith: The activity of deep roots in bedrock fractures. Geoderma 2017, 300, 11–31. [Google Scholar] [CrossRef] [Green Version]
- Li, S.C.; Sun, H.L.; Yang, Z.R.; Xiong, W.L.; Cui, B.S. Root anchorage of Vitex negundo L. on rocky slopes under different weathering degrees. Ecol. Eng. 2007, 30, 27–33. [Google Scholar]
- Pawlik, Ł.; Phillips, J.D.; Šamonil, P. Roots, rock, and regolith: Biomechanical and biochemical weathering by trees and its impact on hillslopes—A critical literature review. Earth Sci. Rev. 2016, 159, 142–159. [Google Scholar] [CrossRef] [Green Version]
- Kokutse, N.K.; Temgoua, A.G.T.; Kavazović, Z. Slope stability and vegetation: Conceptual and numerical investigation of mechanical effects. Ecol. Eng. 2016, 86, 146–153. [Google Scholar] [CrossRef]
- Chok, Y.H.; Jaksa, M.B.; Kaggwa, W.S.; Griffiths, D.V. Assessing the influence of root reinforcement on slope stability by finite elements. Int. J. Geoeng. 2015, 6, 12. [Google Scholar] [CrossRef] [Green Version]
- Greenway, D.R. Vegetation and slope stability. In Slope Stability: Geotechnical Engineering and Geomorphology; Anderson, M.G., Richards, K.S., Eds.; Wiley: Chichester, UK, 1987; pp. 187–230. [Google Scholar]
- Waldron, L.J. The shear resistance of root-permeated homogeneous and stratified soil. Soil Sci. Soc. Am. J. 1977, 41, 843–849. [Google Scholar] [CrossRef]
- Ennos, A.R. The anchorage of leek seedlings: The effect of root length and soil strength. Ann. Bot. 1990, 65, 409–416. [Google Scholar] [CrossRef]
- Beaudoin, J.J. Handbook of Fiber-Reinforced Concrete. Principles, Properties, Developments and Applications; William Andrew: Park Ridge, NJ, USA, 1990; pp. 1–332. [Google Scholar]
- Genet, M.; Li, M.; Luo, T.; Fourcaud, T.; Clément-Vidal, A.; Stokes, A. Linking carbon supply to root cell-wall chemistry and mechanics at high altitudes in Abies georgei. Ann. Bot. 2010, 107, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Hales, T.C.; Cole-Hawthorne, C.; Lovell, L.; Evans, S.L. Assessing the accuracy of simple field based root strength measurements. Plant Soil 2013, 372, 553–565. [Google Scholar] [CrossRef]
- Hales, T.C.; Miniat, C.F. Soil moisture causes dynamic adjustments to root reinforcement that reduce slope stability. Earth Surf. Process. Landf. 2017, 42, 803–813. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.J.; Coutts, M.P.; Ritchie, R.M.; Campbell, D.J. Root extraction force measurements for Sitka spruce. Forestry 1989, 62, 127–137. [Google Scholar] [CrossRef]
- Schmidt, K.M.; Roering, J.J.; Stock, J.D.; Dietrich, W.E.; Montgomery, D.R.; Schaub, T. The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range. Can. Geotech. J. 2001, 38, 995–1024. [Google Scholar] [CrossRef]
- Riestenberg, M.M. Anchoring of Thin Colluvium by Roots of Sugar Maple and White Ash on Hillslopes in Cincinnati; U.S. Geological Survey Bulletin 2059-E; U.S. Government Printing Office: Washington, DC, USA, 1994; pp. 1–25. [Google Scholar]
- Bischetti, G.B.; Chiaradia, E.A.; Simonato, T.; Speziali, B.; Vitali, B.; Vullo, P.; Zocco, A. Root strength and root area ratio of forest species in Lombardy (northern Italy). Plant Soil 2005, 278, 11–22. [Google Scholar] [CrossRef]
- Giadrossich, F.; Schwarz, M.; Cohen, D.; Cislaghi, A.; Vergani, C.; Hubble, T.; Phillips, C.; Stokes, A. Methods to measure the mechanical behaviour of tree roots: A review. Ecol. Eng. 2017, 109, 256–271. [Google Scholar] [CrossRef]
- Abdi, E. Root tensile force and resistance of several tree and shrub species of hyrcanian forest, Iran. Croat. J. For. Eng. 2018, 39, 255–270. [Google Scholar]
- Genet, M.; Stokes, A.; Salin, F.; Mickovski, S.B.; Fourcaud, T.; Dumail, J.F.; Van Beek, R. The influence of cellulose content on tensile strength in tree roots. Plant Soil 2005, 278, 1–9. [Google Scholar] [CrossRef]
- Pollen, N.; Simon, A. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Reubens, B.; Wemans, K.; De Baerdemaeker, J.; Muys, B. Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant Soil 2008, 305, 207–226. [Google Scholar] [CrossRef]
- Fan, C.C.; Su, C.F. Role of roots in the shear strength of root-reinforced soils with high moisture content. Ecol. Eng. 2008, 33, 157–166. [Google Scholar] [CrossRef]
- Hales, T.C.; Ford, C.R.; Hwang, T.; Vose, J.M.; Band, L.E. Topographic and ecologic controls on root reinforcement. J. Geophys. Res. Earth Surf. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Mao, Z.; Saint-André, L.; Genet, M.; Mine, F.X.; Jourdan, C.; Rey, H.; Courbaud, B.; Stokes, A. Engineering ecological protection against landslides in diverse mountain forests: Choosing cohesion models. Ecol. Eng. 2012, 45, 55–69. [Google Scholar] [CrossRef]
- Reubens, B.; Poesen, J.; Danjon, F.; Geudens, G.; Muys, B. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: A review. Trees 2007, 21, 385–402. [Google Scholar] [CrossRef]
- Dazio, E.; Conedera, M.; Schwarz, M. Impact of different chestnut coppice managements on root reinforcement and shallow landslide susceptibility. For. Ecol. Manag. 2018, 417, 63–76. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Morgenstern, N.R.; Widger, R.A. The shear strength of unsaturated soils. Can. Geotech. J. 1978, 15, 313–321. [Google Scholar] [CrossRef]
- Niklas, K.J. Plant Biomechanics: An Engineering Approach to Plant Form and Function; University of Chicago Press: Chicago, IL, USA, 1992; pp. 1–607. [Google Scholar]
- Gray, D.H.; Leiser, A.T. Biotechnical Slope Protection and Erosion Control; Van Nostrand Reinhold Company Inc.: New York, NY, USA, 1982; pp. 1–271. [Google Scholar]
- Gray, D.H.; Ohashi, H. Mechanics of fiber reinforcement in sand. J. Geotech. Eng. 1983, 109, 335–353. [Google Scholar] [CrossRef]
- Operstein, V.; Frydman, S. The influence of vegetation on soil strength. Proc. Inst. Civ. Eng. Ground Improv. 2000, 4, 81–89. [Google Scholar] [CrossRef]
- Docker, B.B.; Hubble, T.C.T. Quantifying root-reinforcement of river bank soils by four Australian tree species. Geomorphology 2008, 100, 401–418. [Google Scholar] [CrossRef]
- Pollen, N. Temporal and spatial variability in root reinforcement of streambanks: Accounting for soil shear strength and moisture. Catena 2007, 69, 197–205. [Google Scholar] [CrossRef]
- Böhm, W. Methods of Studying Root Systems; Ecological Studies Series, No. 33; Springer: Berlin/Heidelberg, Germany, 1979; pp. 1–188. [Google Scholar]
- Subedi, K.D.; Ma, B.L.; Liang, B.C. New method to estimate root biomass in soil through root-derived carbon. Soil Biol. Biochem. 2006, 38, 2212–2218. [Google Scholar] [CrossRef]
- Dowdy, R.H.; Smucker, A.J.M.; Dolan, M.S.; Ferguson, J.C. Automated image analyses for separating plant roots from soil debris elutriated from soil cores. Plant Soil 1998, 200, 91–94. [Google Scholar] [CrossRef]
- Costa, C.; Dwyer, L.M.; Hamilton, R.I.; Hamel, C.; Nantais, L.; Smith, D.L. A sampling method for measurement of large root systems with scanner-based image analysis. Agron. J. 2000, 92, 621–627. [Google Scholar] [CrossRef] [Green Version]
- Pan, W.B.; Bolton, R.P.; Lundquist, E.J.; Hiller, L.K. Portable rhizotron and color scanner system for monitoring root development. In Root Demographics and Their Efficiencies in Sustainable Agriculture, Grasslands and Forest Ecosystems; Box, J.E., Jr., Ed.; Springer: Dordrecht, Netherlands, 1998; pp. 745–756. [Google Scholar]
- Masi, E.B.; Bicocchi, G.; Catani, F. Soil organic matter relationships with the geotechnical-hydrological parameters, mineralogy and vegetation cover of hillslope deposits in Tuscany (Italy). Bull. Eng. Geol. Environ. 2020, 79, 4005–4020. [Google Scholar] [CrossRef]
- Genet, M.; Kokutse, N.; Stokes, A.; Fourcaud, T.; Cai, X.; Ji, J.; Mickovski, S. Root reinforcement in plantations of Cryptomeria japonica D. Don: Effect of tree age and stand structure on slope stability. For. Ecol. Manag. 2008, 256, 1517–1526. [Google Scholar] [CrossRef]
- Stone, E.L.; Kalisz, P.J. On the maximum extent of tree roots. For. Ecol. Manag. 1991, 46, 59–102. [Google Scholar] [CrossRef]
- Osman, N.; Barakbah, S.S. The effect of plant succession on slope stability. Ecol. Eng. 2011, 37, 139–147. [Google Scholar] [CrossRef]
- Rouse, J., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Todd, S.W.; Hoffer, R.M.; Milchunas, D.G. Biomass estimation on grazed and ungrazed rangelands using spectral indices. Int. J. Remote Sens. 1998, 19, 427–438. [Google Scholar] [CrossRef]
- Gao, T.; Xu, B.; Yang, X.; Jin, Y.; Ma, H.; Li, J.; Yu, H. Using MODIS time series data to estimate aboveground biomass and its spatio-temporal variation in Inner Mongolia’s grassland between 2001 and 2011. Int. J. Remote Sens. 2013, 34, 7796–7810. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Wang, G.; Liu, S.; Liu, T.; Fu, Z.; Yu, J.; Xue, B. Modelling above-ground biomass based on vegetation indexes: A modified approach for biomass estimation in semi-arid grasslands. Int. J. Remote Sens. 2019, 40, 3835–3854. [Google Scholar] [CrossRef]
- Chiang, S.H.; Chang, K.T. The potential impact of climate change on typhoon-triggered landslides in Taiwan, 2010–2099. Geomorphology 2011, 133, 143–151. [Google Scholar] [CrossRef]
- Huang, J.C.; Kao, S.J.; Hsu, M.L.; Lin, J.C. Stochastic procedure to extract and to integrate landslide susceptibility maps: An example of mountainous watershed in Taiwan. Nat. Hazards Earth Syst. Sci. 2006, 6, 803–815. [Google Scholar] [CrossRef]
- Hwang, T.; Band, L.E.; Hales, T.C.; Miniat, C.F.; Vose, J.M.; Bolstad, P.V.; Miles, B.; Price, K. Simulating vegetation controls on hurricane-induced shallow landslides with a distributed ecohydrological model. J. Geophys. Res. Biogeosci. 2015, 120, 361–378. [Google Scholar] [CrossRef]
- Hales, T.C. Modelling biome-scale root reinforcement and slope stability. Earth Surf. Process. Landf. 2018, 43, 2157–2166. [Google Scholar] [CrossRef]
- Schenk, H.J.; Jackson, R.B. Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J. Ecol. 2002, 90, 480–494. [Google Scholar] [CrossRef] [Green Version]
- Chave, J.; Coomes, D.; Jansen, S.; Lewis, S.L.; Swenson, N.G.; Zanne, A.E. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009, 12, 351–366. [Google Scholar] [CrossRef]
- Cislaghi, A.; Chiaradia, E.A.; Bischetti, G.B. Including root reinforcement variability in a probabilistic 3D stability model. Earth Surf. Process. Landf. 2017, 42, 1789–1806. [Google Scholar] [CrossRef]
- Cislaghi, A.; Rigon, E.; Lenzi, M.A.; Bischetti, G.B. A probabilistic multidimensional approach to quantify large wood recruitment from hillslopes in mountainous-forested catchments. Geomorphology 2018, 306, 108–127. [Google Scholar] [CrossRef]
- Arnone, E.; Caracciolo, D.; Noto, L.V.; Preti, F.; Bras, R.L. Modeling the hydrological and mechanical effect of roots on shallow landslides. Water Resour. Res. 2016, 52, 8590–8612. [Google Scholar]
- Richter, J.P. The Notebooks of Leonardo da Vinci; Dover Publications: New York, NY, USA, 1970; Volume 1, 396p. [Google Scholar]
- Salvatici, T.; Tofani, V.; Rossi, G.; D’Ambrosio, M.; Stefanelli, C.T.; Masi, E.B.; Rosi, A.; Pazzi, V.; Vannocci, P.; Petrolo, M.; et al. Application of a physically based model to forecast shallow landslides at a regional scale. Nat. Hazards Earth Syst. Sci. 2018, 18, 1919–1935. [Google Scholar] [CrossRef] [Green Version]
- Rossi, G.; Catani, F.; Leoni, L.; Segoni, S.; Tofani, V. HIRESSS: A physically based slope stability simulator for HPC applications. Nat. Hazards Earth Syst. Sci. 2013, 13, 151–166. [Google Scholar] [CrossRef] [Green Version]
- Cuomo, S.; Masi, E.B.; Tofani, V.; Moscariello, M.; Rossi, G.; Matano, F. Multiseasonal probabilistic slope stability analysis of a large area of unsaturated pyroclastic soils. Landslides 2020, 18, 1259–1274. [Google Scholar] [CrossRef]
- Baum, R.L.; Savage, W.Z.; Godt, J.W. TRIGRS—A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis; U.S. Geological Survey Open-File Report, 424:38; U.S. Geological Survey: Reston, VA, USA, 2002; pp. 1–61. [Google Scholar]
- Saadatkhah, N.; Tehrani, M.H.; Mansor, S.; Khuzaimah, Z.; Kassim, A.; Saadatkhah, R. Impact assessment of land cover changes on the runoff changes on the extreme flood events in the Kelantan River basin. Arab. J. Geosci. 2016, 9, 687. [Google Scholar] [CrossRef]
- Bathurst, J.C.; Bovolo, C.I.; Cisneros, F. Modelling the effect of forest cover on shallow landslides at the river basin scale. Ecol. Eng. 2002, 36, 317–327. [Google Scholar] [CrossRef]
- Świtała, B.M.; Wu, W. Numerical modelling of rainfall-induced instability of vegetated slopes. Géotechnique 2018, 68, 481–491. [Google Scholar] [CrossRef]
- Tamagnini, R. An extended Cam-clay model for unsaturated soils with hydraulic hysteresis. Géotechnique 2004, 54, 223–228. [Google Scholar] [CrossRef]
- Świtała, B.M.; Wu, W. Simulation of Rainfall-Induced Landslide of the Vegetated Slope. In Recent Advances in Geotechnical Research; Wu, W., Ed.; Springer Series in Geomechanics and Geoengineering; Springer: Cham, Switzerland, 2019; pp. 187–196. [Google Scholar]
- Cohen, D.; Schwarz, M. Tree-root control of shallow landslides. Earth Surf. Dyn. 2017, 5, 451–477. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Ollauri, A.; Mickovski, S.B. Plant-Best: A novel plant selection tool for slope protection. Ecol. Eng. 2017, 106, 154–173. [Google Scholar] [CrossRef] [Green Version]
- Bordoni, M.; Meisina, C.; Vercesi, A.; Bischetti, G.B.; Chiaradia, E.A.; Vergani, C.; Chersich, S.; Valentino, R.; Bittelli, M.; Comolli, R.; et al. Quantifying the contribution of grapevine roots to soil mechanical reinforcement in an area susceptible to shallow landslides. Soil Tillage Res. 2016, 163, 195–206. [Google Scholar] [CrossRef]
- Cislaghi, A.; Bordoni, M.; Meisina, C.; Bischetti, G.B. Soil reinforcement provided by the root system of grapevines: Quantification and spatial variability. Ecol. Eng. 2017, 109, 169–185. [Google Scholar] [CrossRef]
- Bordoni, M.; Cislaghi, A.; Vercesi, A.; Bischetti, G.B.; Meisina, C. Effects of plant roots on soil shear strength and shallow landslide proneness in an area of northern Italian Apennines. Bull. Eng. Geol. Environ. 2020, 79, 3361–3381. [Google Scholar] [CrossRef]
- Wang, X.; Hong, M.M.; Huang, Z.; Zhao, Y.F.; Ou, Y.S.; Jia, H.X.; Li, J. Biomechanical properties of plant root systems and their ability to stabilize slopes in geohazard-prone regions. Soil Tillage Res. 2019, 189, 148–157. [Google Scholar] [CrossRef]
- Chiaradia, E.A.; Vergani, C.; Bischetti, G.B. Evaluation of the effects of three European forest types on slope stability by field and probabilistic analyses and their implications for forest management. For. Ecol. Manag. 2016, 370, 114–129. [Google Scholar] [CrossRef]
- Wang, S.; Meng, X.; Chen, G.; Guo, P.; Xiong, M.; Zeng, R. Effects of vegetation on debris flow mitigation: A case study from Gansu province, China. Geomorphology 2017, 282, 64–73. [Google Scholar] [CrossRef]
- Likitlersuang, S.; Takahashi, A.; Eab, K.H. Modeling of root-reinforced soil slope under rainfall condition. Eng. J. 2017, 21, 123–132. [Google Scholar] [CrossRef]
- Rossi, L.M.W.; Rapidel, B.; Roupsard, O.; Villatoro-Sánchez, M.; Mao, Z.; Nespoulous, J.; Perez, J.; Prieto, I.; Roumet, C.; Metselaar, K.; et al. Sensitivity of the landslide model LAPSUS_LS to vegetation and soil parameters. Ecol. Eng. 2017, 109, 249–255. [Google Scholar] [CrossRef]
- Claessens, L. Modelling Landslide Dynamics in Forested Landscapes. Addressing Landscape Evolution, Landslide Soil Redistribution and Vegetation Patterns in the Waitakere Ranges, West Auckland, New Zealand. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2005. [Google Scholar]
- Rickli, C.; Graf, F. Effects of forests on shallow landslides—Case studies in Switzerland. For. Snow Landsc. Res. 2009, 82, 33–44. [Google Scholar]
- Schwarz, M.; Thormann, J.J.; Zürcher, K.; Feller, K. Quantifying root reinforcement in protection forests: Implications for slope stability and forest management. In Proceedings of the 12th Congress Interpraevent, Grenoble, France, 23–26 April 2012. [Google Scholar]
- Moos, C.; Bebi, P.; Graf, F.; Mattli, J.; Rickli, C.; Schwarz, M. How does forest structure affect root reinforcement and susceptibility to shallow landslides? Earth Surf. Process. Landf. 2016, 41, 951–960. [Google Scholar] [CrossRef]
- Rickli, C.; Bebi, P.; Graf, F.; Moos, C. Shallow landslides: Retrospective analysis of the protective effects of forest and conclusions for prediction. In Recent Advances in Geotechnical Research; Wu, W., Ed.; Springer Series in Geomechanics and Geoengineering; Springer: Cham, Switzerland, 2019; pp. 175–185. [Google Scholar]
- Schmaltz, E.M.; Mergili, M. Integration of root systems into a GIS-based slip surface model: Computational experiments in a generic hillslope environment. Landslides 2018, 15, 1561–1575. [Google Scholar] [CrossRef]
- Cislaghi, A.; Vergani, C.; Chiaradia, E.A.; Bischetti, G.B. A Probabilistic 3-D Slope Stability Analysis for Forest Management. In Recent Advances in Geotechnical Research; Wu, W., Ed.; Springer Series in Geomechanics and Geoengineering; Springer: Cham, Switzerland, 2019; pp. 11–21. [Google Scholar]
- Vergani, C.; Graf, F. Soil permeability, aggregate stability and root growth: A pot experiment from a soil bioengineering perspective. Ecohydrology 2016, 9, 830–842. [Google Scholar] [CrossRef]
- Schmaltz, E.M.; Van Beek, L.P.H.; Bogaard, T.A.; Kraushaar, S.; Steger, S.; Glade, T. Strategies to improve the explanatory power of a dynamic slope stability model by enhancing land cover parameterisation and model complexity. Earth Surf. Process. Landf. 2019, 44, 1259–1273. [Google Scholar] [CrossRef]
- Wang, H.; He, Y.; Shang, Z.; Han, C.; Wang, Y. Model Test of the Reinforcement of Surface Soil by Plant Roots under the Influence of Precipitation. Adv. Mater. Sci. 2018, 2018, 3625053. [Google Scholar] [CrossRef] [Green Version]
- Vergani, C.; Werlen, M.; Conedera, M.; Cohen, D.; Schwarz, M. Investigation of root reinforcement decay after a forest fire in a Scots pine (Pinus sylvestris) protection forest. For. Ecol. Manag. 2017, 400, 339–352. [Google Scholar] [CrossRef]
- Jackson, M.; Roering, J.J. Post-fire geomorphic response in steep, forested landscapes: Oregon Coast Range, USA. Quat. Sci. Rev. 2009, 28, 1131–1146. [Google Scholar] [CrossRef]
- Shakesby, R.A.; Doerr, S.H. Wildfire as a hydrological and geomorphological agent. Earth Sci. Rev. 2006, 74, 269–307. [Google Scholar] [CrossRef]
- Gehring, E.; Conedera, M.; Maringer, J.; Giadrossich, F.; Guastini, E.; Schwarz, M. Shallow landslide disposition in burnt European beech (Fagus sylvatica L.) forests. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Abbate, A.; Longoni, L.; Ivanov, V.I.; Papini, M. Wildfire impacts on slope stability triggering in mountain areas. Geosciences 2019, 9, 417. [Google Scholar] [CrossRef] [Green Version]
- Preti, F.; Giadrossich, F. Root reinforcement and slope bioengineering stabilization by Spanish Broom (Spartium junceum L.). Hydrol. Earth Syst. Sci. 2009, 13, 1713–1726. [Google Scholar] [CrossRef] [Green Version]
- Jaedicke, C.; Van Den Eeckhaut, M.; Nadim, F.; Hervás, J.; Kalsnes, B.; Vangelsten, B.V.; Smith, J.T.; Tofani, V.; Ciurean, R.; Winter, M.G.; et al. Identification of landslide hazard and risk ‘hotspots’ in Europe. Bull. Eng. Geol. Environ. 2014, 73, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Juang, C.S.; Stanley, T.A.; Kirschbaum, D.B. Using citizen science to expand the global map of landslides: Introducing the Cooperative Open Online Landslide Repository (COOLR). PLoS ONE 2019, 14, e0218657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Findeis, V. An Overview of Forest Management in Austria. Nova Meh. Šumarstva Časopis Teor. Praksu Šumarskoga Inženjerstva 2016, 37, 69–75. [Google Scholar]
- Jandl, R.; Ledermann, T.; Kindermann, G.; Freudenschuss, A.; Gschwantner, T.; Weiss, P. Strategies for Climate-Smart Forest Management in Austria. Forests 2018, 9, 592. [Google Scholar] [CrossRef] [Green Version]
Authors | Measures on Roots | Roots Modeling | Slope or Smaller Scale SSM | Basin or Larger Scale SSM | Other |
---|---|---|---|---|---|
Abdi et al. 2018 [49] | x | ||||
Arnone et al. 2016 [87] | x | x | |||
Bordoni et al. 2020 [102] | x | x | x | ||
Bordoni et al. 2016 [100] | x | x | |||
Chiaradia et al. 2016 [104] | x | x | x | ||
Chok et al. 2015 [36] | x | x | |||
Cislaghi et al. 2017 [101] | x | x | |||
Cislaghi et al. 2017 [85] | x | x | x | ||
Cislaghi et al. 2018 [86] | x | ||||
Cislaghi et al. 2019 [114] | x | x | x | ||
Cuomo et al. 2020 [91] | x | ||||
Dazio et al. 2018 [57] | x | x | |||
Gehring et al. 2019 [121] | x | x | |||
Giadrossich et al. 2017 [48] | x | ||||
Gonzalez-Ollauri 2017 [99] | x | x | x | ||
Hales et al. 2018 [82] | x | x | |||
Hales and Miniat 2017 [43] | x | x | x | ||
Hwang et al. 2015 [81] | x | x | x | ||
Kokutse et al. 2016 [35] | x | x | |||
Likitlersuang et al. 2017 [106] | x | ||||
Masi et al. 2020 [70] | x | ||||
Moos et al. 2016 [111] | x | x | x | ||
Rickli et al. 2019 [112] | x | ||||
Rossi et al. 2017 [107] | x | ||||
Saadatkhah et al. 2016 [93] | x | x | |||
Salvatici et al. 2018 [89] | x | ||||
Schmaltz and Mergili 2018 [113] | x | x | |||
Schmaltz et al. 2019 [116] | x | x | |||
Switala and Wu 2018 [95] | x | ||||
Switala and Wu 2019 [97] | x | ||||
Vergani et al. 2017 [11] | x | ||||
Vergani et al. 2017 [118] | x | x | |||
Vergani et al. 2015 [21] | x | x | |||
Wang et al. 2017 [105] | x | x | x | ||
Wang et al. 2018 [117] | x | x | |||
Wang et al. 2019 [103] | x | x | x | ||
Total Papers: 36 | Count: 19 | 24 | 13 | 12 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masi, E.B.; Segoni, S.; Tofani, V. Root Reinforcement in Slope Stability Models: A Review. Geosciences 2021, 11, 212. https://doi.org/10.3390/geosciences11050212
Masi EB, Segoni S, Tofani V. Root Reinforcement in Slope Stability Models: A Review. Geosciences. 2021; 11(5):212. https://doi.org/10.3390/geosciences11050212
Chicago/Turabian StyleMasi, Elena Benedetta, Samuele Segoni, and Veronica Tofani. 2021. "Root Reinforcement in Slope Stability Models: A Review" Geosciences 11, no. 5: 212. https://doi.org/10.3390/geosciences11050212
APA StyleMasi, E. B., Segoni, S., & Tofani, V. (2021). Root Reinforcement in Slope Stability Models: A Review. Geosciences, 11(5), 212. https://doi.org/10.3390/geosciences11050212