A Predictive Model for Maceral Discrimination by Means of Raman Spectra on Dispersed Organic Matter: A Case Study from the Carpathian Fold-and-Thrust Belt (Ukraine)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Rock-Eval Pyrolysis
2.3. Vitrinite Reflectance Analysis
2.4. Raman Spectroscopy
2.5. Multivariate PCA and PLS-DA Analyses on Raman Spectra
3. Results
3.1. Rock-Eval Pyrolysis
3.2. Organic Petrography and Vitrinite Reflectance (Ro%)
3.3. Micro-Raman Spectroscopy
3.3.1. Raman Spectra and Raman Parameters
3.3.2. Multivariate Analysis on Raman Spectra
4. Discussion
4.1. Source Rocks Quality, Organic Facies and Thermal Maturity
4.2. Raman Spectroscopy and Vitrinite Reflectance Equivalent (Ro%eq)
4.3. Multivariate Analyses on Raman Spectra
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hackley, P.C.; Cardott, B.J. Application of organic petrography in North American shale petroleum systems: A review. Int. J. Coal Geol. 2016, 163, 8–51. [Google Scholar] [CrossRef]
- Lucca, A.; Storti, F.; Molli, G.; Muchez, P.; Schito, A.; Artoni, A.; Balsamo, F.; Corrado, S.; Mariani, E.S. Seismically enhanced hydrothermal plume advection through the process zone of the Compione extensional Fault, Northern Apennines, Italy. Bull. Geol. Soc. Am. 2018, 131, 547–571. [Google Scholar] [CrossRef]
- Bullock, L.; Parnell, J.; Muirhead, D.; Armstrong, J.; Schito, A.; Corrado, S. A thermal maturity map based on vitrinite reflectance of british coals. J. Geol. Soc. 2019, 176, 1136–1142. [Google Scholar] [CrossRef]
- Corrado, S.; Aldega, L.; Perri, F.; Critelli, S.; Muto, F.; Schito, A.; Tripodi, V. Detecting syn-orogenic extension and sediment provenance of the Cilento wedge top basin (southern Apennines, Italy): Mineralogy and geochemistry of fine-grained sediments and petrography of dispersed organic matter. Tectonophysics 2019, 750, 404–418. [Google Scholar] [CrossRef]
- Balestra, M.; Corrado, S.; Aldega, L.; Rudkiewicz, J.-L.; Morticelli, M.G.; Sulli, A.; Sassi, W. 3D structural modeling and restoration of the Apennine-Maghrebian chain in Sicily: Application for non-cylindrical fold-and-thrust belts. Tectonophysics 2019, 761, 86–107. [Google Scholar] [CrossRef]
- Bensley, D.F.; Crelling, J.C. The inherent heterogeneity within the vitrinite maceral group. Fuel 1994, 73, 1306–1316. [Google Scholar] [CrossRef]
- Malinconico, M.L. Using reflectance crossplots and rotational polarization for determining first-cycle vitrinite for maturation studies. Int. J. Coal Geol. 2000, 43, 105–120. [Google Scholar] [CrossRef]
- Mählmann, R.F.; Le Bayon, R. Vitrinite and vitrinite like solid bitumen reflectance in thermal maturity studies: Correlations from diagenesis to incipient metamorphism in different geodynamic settings. Int. J. Coal Geol. 2016, 157, 52–73. [Google Scholar] [CrossRef]
- Hackley, P.C.; Valentine, B.J.; Hatcherian, J.J. On the petrographic distinction of bituminite from solid bitumen in immature to early mature source rocks. Int. J. Coal Geol. 2018, 196, 232–245. [Google Scholar] [CrossRef]
- Schmidt, J.S.; Menezes, T.R.; Souza, I.V.A.F.; Spigolon, A.L.D.; Pestilho, A.L.S.; Coutinho, L.F.C. Comments on empirical conversion of solid bitumen reflectance for thermal maturity evaluation. Int. J. Coal Geol. 2019, 201, 44–50. [Google Scholar] [CrossRef]
- Atouabat, A.; Corrado, S.; Schito, A.; Haissen, F.; Gimeno-Vives, O.; Mohn, G.; Frizon de Lamotte, D. Validating Structural Styles in the Flysch Basin Northern Rif (Morocco) by Means of Thermal Modeling. Geosciences 2020, 10, 325. [Google Scholar] [CrossRef]
- Suarez-Ruiz, I.; Flores, D.; Mendonca Filho, J.G.; Hackley, P.C. Review and update of the applications of organic petrology: Part 1, geological applications. Int. J. Coal Geol. 2012, 99, 54–112. [Google Scholar]
- Schito, A.; Corrado, S.; Aldega, L.; Grigo, D. Overcoming pitfalls of vitrinite reflectance measurements in the assessment of thermal maturity: The case history of the lower Congo basin. Mar. Pet. Geol. 2016, 74, 59–70. [Google Scholar] [CrossRef]
- Spina, A.; Vecoli, M.; Riboulleau, A.; Clayton, G.; Cirilli, S.; Di Michele, A.; Marcogiuseppe, A.; Rettori, R.; Sassi, P.; Servais, T. Application of Palynomorph Darkness Index (PDI) to assess the thermal maturity of palynomorphs: A case study from North Africa. Int. J. Coal Geol. 2018, 188, 64–78. [Google Scholar] [CrossRef]
- Sorci, A.; Cirilli, S.; Clayton, G.; Corrado, S.; Hints, O.; Goodhue, R.; Schito, A.; Spina, A. Palynomorph optical analyses for thermal maturity assessment of Upper Ordovician ( Katian-Hirnantian ) rocks from Southern Estonia. Mar. Pet. Geol. 2020, 120, 104574. [Google Scholar] [CrossRef]
- Ganz, H.H.; Kalkreuth, W. IR classification of kerogen type, thermal maturation, hydrocarbon potential and lithological characteristics. J. Southeast Asian Earth Sci. 1991, 5, 19–28. [Google Scholar] [CrossRef]
- Landais, P.; Rochdi, A.; Largeau, C.; Derenne, S. Chemical characterization of torbanites by transmission micro-FTIR spectroscopy: Origin and extent of compositional heterogeneities. Geochim. Cosmochim. Acta 1993, 57, 2529–2539. [Google Scholar] [CrossRef]
- Lis, G.P.; Mastalerz, M.; Schimmelmann, A.; Lewan, M.D.; Stankiewicz, B.A. FTIR absorption indices for thermal maturity in comparison with vitrinite reflectance R0 in type-II kerogens from Devonian black shales. Org. Geochem. 2005, 36, 1533–1552. [Google Scholar] [CrossRef]
- Di Paolo, L.; Aldega, L.; Corrado, S.; Mastalerz, M. Maximum burial and unroofing of Mt. Judica recess area in Sicily: Implication for the Apenninic–Maghrebian wedge dynamics. Tectonophysics 2012, 530, 193–207. [Google Scholar] [CrossRef]
- Corrado, S.; Schito, A.; Romano, C.; Grigo, D.; Poe, B.T.; Aldega, L.; Caricchi, C.; Paolo, D.; Zattin, M. An integrated platform for thermal maturity assessment of polyphase, long-lasting sedimentary basins, from classical to brand-new thermal parameters and models: An example from the on-shore Baltic Basin (Poland). Mar. Pet. Geol. 2020, 122, 104547. [Google Scholar] [CrossRef]
- Kelemen, S.R.; Afeworki, M.; Gorbaty, M.L.; Sansone, M.; Kwiatek, P.J.; Walters, C.C.; Freund, H.; Siskin, M.; Bence, A.E.; Curry, D.J. Direct characterization of kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods. Energy Fuels 2007, 21, 1548–1561. [Google Scholar] [CrossRef]
- Valentim, B.; Guedes, A.; Boavida, D. Nitrogen functionality in “oil window” rank range vitrinite rich coals and chars. Org. Geochem. 2011, 42, 502–509. [Google Scholar] [CrossRef]
- Guedes, A.; Valentim, B.; Prieto, A.C.; Rodrigues, S.; Noronha, F. Micro-Raman spectroscopy of collotelinite, fusinite and macrinite. Int. J. Coal Geol. 2010, 83, 415–422. [Google Scholar] [CrossRef]
- Hinrichs, R.; Brown, M.T.; Vasconcellos, M.A.Z.; Abrashev, M.V.; Kalkreuth, W. Simple procedure for an estimation of the coal rank using micro-Raman spectroscopy. Int. J. Coal Geol. 2014, 136, 52–58. [Google Scholar] [CrossRef]
- Muirhead, D.K.; Bond, C.E.; Watkins, H.; Butler, R.W.H.; Schito, A.; Crawford, Z.; Marpino, A. Raman Spectroscopy: An effective thermal marker in low temperature carbonaceous fold-thrust belts. Geol. Soc. London, Spec. Publ. 2019, 490, 135–151. [Google Scholar] [CrossRef]
- Wilkins, R.W.T.; Boudou, R.; Sherwood, N.; Xiao, X. International Journal of Coal Geology Thermal maturity evaluation from inertinites by Raman spectroscopy: The ‘RaMM’technique. Int. J. Coal Geol. 2014, 128, 143–152. [Google Scholar] [CrossRef]
- Wilkins, R.W.T.; Sherwood, N.; Li, Z. RaMM (Raman maturity method) study of samples used in an interlaboratory exercise on a standard test method for determination of vitrinite reflectance on dispersed organic matter in rocks. Mar. Pet. Geol. 2018, 91, 236–250. [Google Scholar] [CrossRef]
- Lünsdorf, N.K.; Dunkl, I.; Schmidt, B.C.; Rantitsch, G.; von Eynatten, H. Towards a Higher Comparability of Geothermometric Data Obtained by Raman Spectroscopy of Carbonaceous Material. Part 2: A Revised Geothermometer. Geostand. Geoanalytical Res. 2017, 41, 593–612. [Google Scholar] [CrossRef]
- Schito, A.; Romano, C.; Corrado, S.; Grigo, D.; Poe, B. Diagenetic thermal evolution of organic matter by Raman spectroscopy. Org. Geochem. 2017, 106, 57–67. [Google Scholar] [CrossRef]
- Schito, A.; Corrado, S.; Trolese, M.; Aldega, L.; Caricchi, C.; Cirilli, S.; Grigo, D.; Guedes, A.; Romano, C.; Spina, A.; et al. Assessment of thermal evolution of Paleozoic successions of the Holy Cross Mountains (Poland). Mar. Pet. Geol. 2017, 80, 112–132. [Google Scholar] [CrossRef]
- Schmidt, J.S.; Hinrichs, R.; Araujo, C.V. Maturity estimation of phytoclasts in strew mounts by micro-Raman spectroscopy. Int. J. Coal Geol. 2017, 173, 1–8. [Google Scholar] [CrossRef]
- Schito, A.; Spina, A.; Corrado, S.; Cirilli, S.; Romano, C. Comparing optical and Raman spectroscopic investigations of phytoclasts and sporomorphs for thermal maturity assessment: The case study of Hettangian continental facies in the Holy cross Mts. (central Poland). Mar. Pet. Geol. 2019, 104, 331–345. [Google Scholar] [CrossRef]
- Henry, D.G.; Jarvis, I.; Gillmore, G.; Stephenson, M. Raman spectroscopy as a tool to determine the thermal maturity of organic matter: Application to sedimentary, metamorphic and structural geology. Earth Sci. Rev. 2019, 198, 102936. [Google Scholar] [CrossRef]
- Bonoldi, L.; Frigerio, F.; Di Paolo, L.; Savoini, A.; Barbieri, D.; Grigo, D. Organic Matter Maturity Profile of a Well Case Study by Combination of Raman Spectroscopy and Principal Component Analysis-Partial Least Squares Regression (PCA-PLS) Chemometric Methods. Energy Fuels 2018, 32, 8955–8965. [Google Scholar] [CrossRef]
- Zhou, Q.; Xiao, X.; Pan, L.; Tian, H. The relationship between micro-Raman spectral parameters and reflectance of solid bitumen. Int. J. Coal Geol. 2014, 121, 19–25. [Google Scholar] [CrossRef]
- Lupoi, J.S.; Fritz, L.P.; Hackley, P.C.; Solotky, L.; Weislogel, A.; Schlaegle, S. Quantitative evaluation of vitrinite reflectance and atomic O/C in coal using Raman spectroscopy and multivariate analysis. Fuel 2018, 230, 1–8. [Google Scholar] [CrossRef]
- Jubb, A.M.; Botterell, P.J.; Birdwell, J.E.; Burruss, R.C.; Hackley, P.C.; Valentine, B.J.; Hatcherian, J.J.; Wilson, S.A. High microscale variability in Raman thermal maturity estimates from shale organic matter. Int. J. Coal Geol. 2018, 199, 1–9. [Google Scholar] [CrossRef]
- Schito, A.; Corrado, S. An automatic approach for characterization of the thermal maturity of dispersed organic matter Raman spectra at low diagenetic stages. Geol. Soc. London, Spec. Publ. 2018, 484, 107–119. [Google Scholar] [CrossRef]
- Khatibi, S.; Ostadhassan, M.; Tuschel, D.; Gentzis, T.; Bubach, B.; Carvajal-Ortiz, H. Raman spectroscopy to study thermal maturity and elastic modulus of kerogen. Int. J. Coal Geol. 2018, 185, 103–118. [Google Scholar] [CrossRef]
- Henry, D.G.; Jarvis, I.; Gillmore, G.; Stephenson, M.; Emmings, J.F. International Journal of Coal Geology Assessing low-maturity organic matter in shales using Raman spectroscopy: E ff ects of sample preparation and operating procedure. Int. J. Coal Geol. 2018, 191, 135–151. [Google Scholar] [CrossRef]
- Hackley, P.C.; Lünsdorf, N.K. Application of raman spectroscopy as thermal maturity probe in shale petroleum systems: Insights from natural and artificial maturation series. Energy Fuels 2018, 32, 11190–11202. [Google Scholar] [CrossRef]
- Schito, A.; Aldega, L.; Corrado, S.; Di Paolo, L.; Gangemi, G. Thermal evolution of Paleozoic and Mesozoic-Cenozoic successions of the Carpathian orogenic system (central sector-Ukraine) from the fold and thrust belt to the foreland by means of organic petrography, spectroscopy and XR Diffraction: Preliminary resul. Rend. Online Soc. Geol. Ital. 2013, 29, 162–164. [Google Scholar]
- Jankowski, L.; Kopciowski, R.; Rylko, W. Geological Map of the Outer Carpathians: Borderland of Ukraine and Romani 1: 200 000; Ministry of the Environment: Tokyo, Janpan, 2007.
- Behar, F.; Beaumont, V.; Penteado, H.L.D.B. Rock-Eval 6 technology: Performances and developments. Oil Gas Sci. Technol. 2001, 56, 111–134. [Google Scholar] [CrossRef]
- Robl, T.L.; Davis, B.H. Comparison of the HF-HCl and HF-BF3 maceration techniques and the chemistry of resultant organic concentrates. Org. Geochem. 1993, 20, 249–255. [Google Scholar] [CrossRef]
- Standard, A. Standard Practice for Preparing Coal Samples for Microscopical Analysis by Reflected Light; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- Standard, A. Standard Test Method for Microscopical Determination of the Reflectance of Vitrinite Dispersed in Sedimentary Rocks; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Li, C.-Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal. Fuel 2007, 86, 1664–1683. [Google Scholar] [CrossRef]
- Potgieter-Vermaak, S.; Maledi, N.; Wagner, N.; Van Heerden, J.H.P.; Van Grieken, R.; Potgieter, J.H. Raman spectroscopy for the analysis of coal: A review. J. Raman Spectrosc. 2011, 42, 123–129. [Google Scholar] [CrossRef]
- Pócsik, I.; Hundhausen, M.; Koós, M.; Ley, L. Origin of the D peak in the Raman spectrum of microcrystalline graphite. J. Non. Cryst. Solids 1998, 227, 1083–1086. [Google Scholar] [CrossRef]
- Reich, S.; Thomsen, C. Raman spectroscopy of graphite. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2004, 362, 2271–2288. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cancado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290. [Google Scholar] [CrossRef] [PubMed]
- Negri, F.; Di Donato, E.; Tommasini, M.; Castiglioni, C.; Zerbi, G.; Müllen, K. Resonance Raman contribution to the D band of carbon materials: Modeling defects with quantum chemistry. J. Chem. Phys. 2004, 120, 11889–11900. [Google Scholar] [CrossRef]
- Castiglioni, C.; Mapelli, C.; Negri, F.; Zerbi, G. Origin of the D line in the Raman spectrum of graphite: A study based on Raman frequencies and intensities of polycyclic aromatic hydrocarbon molecules. J. Chem. Phys. 2001, 114, 963–974. [Google Scholar] [CrossRef]
- Di Donato, E.; Tommasini, M.; Fustella, G.; Brambilla, L.; Castiglioni, C.; Zerbi, G.; Simpson, C.D.; Müllen, K.; Negri, F. Wavelength-dependent Raman activity of D2h symmetry polycyclic aromatic hydrocarbons in the D-band and acoustic phonon regions. Chem. Phys. 2004, 301, 81–93. [Google Scholar] [CrossRef]
- Lünsdorf, N.K. Raman spectroscopy of dispersed vitrinite-Methodical aspects and correlation with reflectance. Int. J. Coal Geol. 2016, 153, 75–86. [Google Scholar] [CrossRef]
- Rebelo, S.L.H.; Guedes, A.; Szefczyk, M.E.; Pereira, A.M.; Araújo, J.P.; Freire, C. Progress in the Raman spectra analysis of covalently functionalized multiwalled carbon nanotubes: Unraveling disorder in graphitic materials. Phys. Chem. Chem. Phys. 2016, 18, 12784–12796. [Google Scholar] [CrossRef]
- Ferralis, N.; Matys, E.D.; Knoll, A.H.; Hallmann, C.; Summons, R.E. Rapid, direct and non-destructive assessment of fossil organic matter via microRaman spectroscopy. Carbon 2016, 108, 440–449. [Google Scholar] [CrossRef]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Romero-Sarmiento, M.-F.; Rouzaud, J.-N.; Bernard, S.; Deldicque, D.; Thomas, M.; Littke, R. Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation. Org. Geochem. 2014, 71, 7–16. [Google Scholar] [CrossRef]
- Abdullah, W.H.; Togunwa, O.S.; Makeen, Y.M.; Hakimi, M.H.; Mustapha, K.A.; Baharuddin, M.H.; Sia, S.G.; Tongkul, F. Hydrocarbon source potential of Eocene-Miocene sequence of Western Sabah, Malaysia. Mar. Pet. Geol. 2017, 83, 345–361. [Google Scholar] [CrossRef]
- Kotarba, M.J.; Koltun, Y.V. The origin and habitat of hydrocarbons of the Polish and Ukrainian Parts of the Carpathian Province. AAPG Memoir. 2006, 84, 395–442. [Google Scholar]
- Ferrari, A.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Castiglioni, C.; Tommasini, M.; Zerbi, G. Raman spectroscopy of polyconjugated molecules and materials: Confinement effect in one and two dimensions. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2004, 362, 2425–2459. [Google Scholar] [CrossRef] [PubMed]
- Henry, D.G.; Jarvis, I.; Gillmore, G.; Stephenson, M. A rapid method for determining organic matter maturity using Raman spectroscopy: Application to Carboniferous organic-rich mudstones and coals. Int. J. Coal Geol. 2019, 203, 87–98. [Google Scholar] [CrossRef]
- Khatibi, S.; Ostadhassan, M.; Hackley, P.; Tuschel, D.; Abarghani, A.; Bubach, B. Understanding organic matter heterogeneity and maturation rate by Raman spectroscopy. Int. J. Coal Geol. 2019, 206, 46–64. [Google Scholar] [CrossRef]
- Lupoi, J.S.; Fritz, L.P.; Parris, T.M.; Hackley, P.C.; Solotky, L.; Eble, C.F.; Schlaegle, S. Assessment of thermal maturity trends in Devonian-Mississippian source rocks using Raman spectroscopy: Limitations of peak-fitting method. Front. Energy Res. 2017, 5, 24. [Google Scholar] [CrossRef]
- Lupoi, J.S.; Hackley, P.C.; Birsic, E.; Fritz, L.P.; Solotky, L.; Weislogel, A.; Schlaegle, S. Quantitative evaluation of vitrinite reflectance in shale using Raman spectroscopy and multivariate analysis. Fuel 2019, 254, 115573. [Google Scholar] [CrossRef]
Raman Shift (cm−1) | Band | Vibrational Mode | Authors |
---|---|---|---|
~1580 cm−1 | G | In-plane vibration of the carbon atoms in the graphene sheet (E2g-symmetry) | Tuinstra and Koening, 1970 Reich and Thomsen, 2004 |
~1500 cm−1 | Gl | Polyacetylene like structures | Rebelo et al., 2016 |
D3 | Out-of-plane tetrahedral carbons in amorphous carbon | Sadezky et al., 2005 | |
~1400 cm−1 | Dr | Low size aromatic domains | Castiglioni et al., 2001 |
D5 | Trapped hydrocarbons | Romero-Sarmiento et al., 2014 | |
~1350 cm−1 | D1 | Disordered graphitic lattice (A1g symmetry) | Tuinstra and Koening, 1970 |
D | Ring breathing vibration in PAHs | Castiglioni et al., 2001 | |
D1 | Double resonant Raman scattering process | Reich and Thomsen, 2004 | |
~1300 cm−1 | Dl | Low size aromatic domains | Castiglioni et al., 2001 |
D5 | C-H species in aliphatic hydrocarbon chains | Ferralis et al.,2016 | |
~1200 cm−1 | S | Polyacetylene like structures | Rebelo et al., 2016 |
D4 | Disordered graphitic lattice (A1g symmetry) or polyene | Sadezky et al., 2005 | |
D4 | C-H species in aliphatic hydrocarbon chains | Ferralis et al.,2016 |
Sample | Coordinates | Tectonic Unit | Age | Formation | Rock Type | TOC (%Wt) | S1 (mg/g) | S2 (mg/g) | HI | Tmax (°C) | Type of Kerogen | Ro% (n°) | stdv |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PL 93.1 | N48,034 E24,92101 | Skiba Unit | Ol-LM | LKb | Pelite | 4.55 | 0.30 | 12.18 | 268 | 421 | Mixed II/III | 0.46 (50) | 0.03 |
PL 93.2 | N48,034 E24,92101 | Skiba Unit | Ol-LM | LKb | Pelite | 11.29 | 1.21 | 41.26 | 365 | 422 | II | 0.42 (31) | 0.03 |
PL 95 | N48,094 E24,98933 | Skiba Unit | Ol-LM | UKb | Black Shale | 6.61 | 0.52 | 18.69 | 283 | 427 | Mixed II/III | 0.45 (27) | 0.05 |
PL 97 | N48,145 E25,07269 | Skiba Unit | Ol-LM | Mb | Pelite | 2.92 | 0.32 | 9.54 | 327 | 433 | II | 0.44 (11) | 0.03 |
PL 101.1 | N47,9107 E25,251883 | Skiba Unit | Ol-LM | UKb | Pelite | 1.25 | 0.03 | 1.35 | 108 | 439 | III | 0.51 (50) | 0.03 |
PL 102 | N47,878 E25,22077 | Skiba Unit | E-Ol | UKb/Mb/Gmrl | Pelite | 0.58 | 0.04 | 0.91 | 157 | 433 | III | 0.45 (32) | 0.04 |
PL 103 | N47,803 E25,15563 | Chornogora Unit | Ht-Al | Sb | Black Shale | 3.13 | 0.43 | 9.15 | 292 | 436 | Mixed II/III | 0.61 (30) | 0.07 |
Sample | pD | s.d pD | pG | s.d. pG | wD | s.d. wD | wG | s.d. wG | aD | s.d. aD | aG |
---|---|---|---|---|---|---|---|---|---|---|---|
PL 93.1 | 1359.59 | 5.62 | 1616.91 | 1.43 | 225.96 | 47.16 | 117.75 | 6.64 | 14,441.28 | 7881.37 | 15,052.34 |
PL 93.2 | 1361.29 | 9.06 | 1617.37 | 2.55 | 192.30 | 56.52 | 118.65 | 6.89 | 30,166.66 | 30,653.46 | 27,534.29 |
PL 95 | 1356.94 | 8.70 | 1616.65 | 1.84 | 222.11 | 49.24 | 132.87 | 7.90 | 48,153.24 | 14,578.57 | 73,846.22 |
PL 97 | 1364.53 | 3.62 | 1616.60 | 2.67 | 182.02 | 34.33 | 119.99 | 6.50 | 28,237.92 | 15,814.34 | 28,118.21 |
PL 101.1 | 1351.85 | 4.44 | 1607.29 | 4.30 | 252.44 | 57.36 | 143.24 | 15.57 | 32,410.07 | 15,889.49 | 50,086.10 |
PL 102 | 1353.76 | 3.92 | 1612.22 | 2.64 | 206.50 | 53.44 | 129.51 | 13.46 | 42,512.17 | 27,135.25 | 61,250.41 |
PL 103 | 1344.60 | 5.81 | 1609.86 | 2.47 | 246.83 | 46.97 | 120.14 | 6.97 | 76,033.64 | 37,048.33 | 93,230.31 |
Sample | s.d. aG | ΔD-G | s.d. ΔD-G | ID/IG | s.d. ID/IG | aD/aG | s.d. aD/aG | wD/wG | s.d. wD/wG | Ro% equivalent | s.d. Ro% equivalent |
PL 93.1 | 7082.74 | 257.32 | 5.77 | 0.40 | 0.06 | 0.96 | 0.20 | 1.94 | 0.48 | 0.51 | 0.18 |
PL 93.2 | 18,645.36 | 256.08 | 7.59 | 0.47 | 0.05 | 1.01 | 0.35 | 1.63 | 0.52 | 0.43 | 0.23 |
PL 95 | 23,325.32 | 259.71 | 9.56 | 0.40 | 0.04 | 0.66 | 0.13 | 1.68 | 0.42 | 0.50 | 0.22 |
PL 97 | 11,977.36 | 252.07 | 3.49 | 0.48 | 0.07 | 1.01 | 0.30 | 1.52 | 0.31 | 0.35 | 0.07 |
PL 101.1 | 23,709.26 | 255.43 | 6.89 | 0.36 | 0.06 | 0.65 | 0.20 | 1.75 | 0.35 | 0.46 | 0.13 |
PL 102 | 29,505.44 | 258.46 | 4.57 | 0.43 | 0.10 | 0.72 | 0.27 | 1.62 | 0.48 | 0.48 | 0.15 |
PL 103 | 43,684.14 | 265.26 | 6.66 | 0.41 | 0.06 | 0.82 | 0.17 | 2.06 | 0.40 | 0.67 | 0.14 |
Observed | After PLS-DA | |||||
---|---|---|---|---|---|---|
Sample | Ro%eq | s.d. | Counts | Ro%eq | s.d. | Counts |
PL 93.1 | 0.45 | 0.09 | 15 | 0.45 | 0.09 | 24 |
PL 93.2 | 0.39 | 0.08 | 14 | 0.39 | 0.11 | 26 |
PL 95 | 0.42 | 0.07 | 11 | 0.44 | 0.08 | 25 |
PL 97 | 0.40 | 0.07 | 5 | - | - | - |
PL 101.1 | 0.57 | 0.10 | 26 | 0.54 | 0.11 | 58 |
PL 102 | 0.43 | 0.07 | 11 | 0.42 | 0.07 | 15 |
PL 103 | 0.57 | 0.09 | 15 | 0.60 | 0.11 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schito, A.; Guedes, A.; Valentim, B.; Vergara Sassarini, N.A.; Corrado, S. A Predictive Model for Maceral Discrimination by Means of Raman Spectra on Dispersed Organic Matter: A Case Study from the Carpathian Fold-and-Thrust Belt (Ukraine). Geosciences 2021, 11, 213. https://doi.org/10.3390/geosciences11050213
Schito A, Guedes A, Valentim B, Vergara Sassarini NA, Corrado S. A Predictive Model for Maceral Discrimination by Means of Raman Spectra on Dispersed Organic Matter: A Case Study from the Carpathian Fold-and-Thrust Belt (Ukraine). Geosciences. 2021; 11(5):213. https://doi.org/10.3390/geosciences11050213
Chicago/Turabian StyleSchito, Andrea, Alexandra Guedes, Bruno Valentim, Natalia A. Vergara Sassarini, and Sveva Corrado. 2021. "A Predictive Model for Maceral Discrimination by Means of Raman Spectra on Dispersed Organic Matter: A Case Study from the Carpathian Fold-and-Thrust Belt (Ukraine)" Geosciences 11, no. 5: 213. https://doi.org/10.3390/geosciences11050213
APA StyleSchito, A., Guedes, A., Valentim, B., Vergara Sassarini, N. A., & Corrado, S. (2021). A Predictive Model for Maceral Discrimination by Means of Raman Spectra on Dispersed Organic Matter: A Case Study from the Carpathian Fold-and-Thrust Belt (Ukraine). Geosciences, 11(5), 213. https://doi.org/10.3390/geosciences11050213