Geochemical Characterization and Trace-Element Mobility Assessment for Metallic Mine Reclamation in Soils Affected by Mine Activities in the Iberian Pyrite Belt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Features of the Mine Site
2.2. Sampling Design
2.3. Geochemical Analysis
2.4. Chemical Simple Extractions
2.5. Mineralogical Analysis
2.6. Multivariate Analysis
2.7. Assessment of Potential Environmental Risk
2.7.1. Contaminant Factor
2.7.2. Pollution Load Index
3. Results and Discussion
3.1. Geochemical Characterization
3.2. Mineralogical Characterization
3.3. Multivariate Analysis
3.4. Selective Extractions
3.4.1. Water Extraction
3.4.2. Acidic Medium Extraction
3.4.3. Complexing–Reducing Medium
3.4.4. EDTA
3.4.5. DTPA
3.5. Assessment of Potential Environmental Risk
4. Application to Metallic Mine Reclamation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sainz, A.; Grande, J.A.; de la Torre, M.L. Characterization of heavy metal discharge into the Ria of Huelva. Environ. Int. 2004, 30, 557–566. [Google Scholar] [CrossRef]
- Sánchez-España, J.; López Pamo, E.; Santofima, E.; Aduvire, O.; Reyes, J.; Barettino, D. Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Appl. Geochem. 2005, 20, 1320–1356. [Google Scholar] [CrossRef]
- Fernández-Caliani, J.C.; Barba-Brioso, C.; González, I.; Galán, E. Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Soutwest Spain). Water Air Soil Pollut. 2009, 200, 211–226. [Google Scholar] [CrossRef]
- García-Lorenzo, M.L.; Pérez-Sirvent, C.; Martínez-Sánchez, M.J.; Molina-Ruiz, J. Trace elements contamination in an abandoned mining site in a semiarid zone. J. Geochem. Explor. 2012, 113, 23–35. [Google Scholar] [CrossRef] [Green Version]
- García-Lorenzo, M.L.; Pérez-Sirvent, C.; Molina-Ruiz, J.; Martínez-Sánchez, M.J. Mobility índices for the assessment of metal contamination in soils affected by old mining activities. J. Geochem. Explor. 2014, 147, 117–129. [Google Scholar] [CrossRef]
- Valente, T.; Leal Gomes, C. Ocurrence, properties and pollution potential of environmental minerals in acid mine drainage. Sci. Total Environ. 2009, 407, 1135–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valente, T.; Grande, J.A.; de la Torre, M.L.; Santisteban, M.; Cerón, J.C. Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines, Iberian Pyrite Belt (SW Spain). Appl. Geochem. 2013, 39, 11–25. [Google Scholar] [CrossRef]
- Chopin, E.I.B.; Alloway, B.J. Trace element partitioning and soil particle characterization around mining and smelting areas at Tharsis, Ríotinto and Huelva, SW Spain. Sci. Total Environ. 2007, 373, 488–500. [Google Scholar] [CrossRef] [PubMed]
- Galan, E.; Gómez-Ariza, J.L.; González, I.; Fernández-Caliani, J.C.; Morales, E.; Giráldez, I. Heavy metal pertitioning in river sediments severely polluted by acid mine drainage in the iBerian Pyrite Belt. Appl. Geochem. 2003, 18, 409–421. [Google Scholar] [CrossRef]
- López, M.; González, I.; Romero, A. Trace elements contamination of agricultural soils affected by sulphide exploitation (Iberian Pyrite Belt, SW Spain). Environ. Geol. 2008, 54, 805–818. [Google Scholar] [CrossRef]
- Perkins, W.; Bird, G.; Jacobs, S.; Devoy, C. Field-scale study of the influence of differing remediation strategies on trace metal geochemistry in metal mine tailings from the Irish Midlands. Environ. Sci. Pollut. Res. 2015, 23, 5592–5608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Crespo, T.; Martín-Velázquez, S.; Gómez-Ortiz, D.; De Ignacio-San José, C.; Lillo, J. A geochemical and geophysical characterization of sulfide mine ponds at the Iberian Pyrite Belt (Spain). Water Air Soil. Pollut. 2010, 217, 387–405. [Google Scholar] [CrossRef] [Green Version]
- Abreu, M.M.; Tavares, M.T.; Batista, M.J. Potential use of Erica andevalensis and Erica australis in phytoremediation of sulphide mine environments: São Domingos, Portugal. J. Geochem. Explor. 2008, 96, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Abreu, M.M.; Santos, E.S.; Ferreira, M.; Magalhães, M.C.F. Cistus salviifolius a promising species for mine wastes remediation. J. Geochem. Explor. 2012, 113, 86–93. [Google Scholar] [CrossRef]
- Santos, E.S.; Abreu, M.M.; Saraiva, J.A. Multielemental concentration and physiological responses of Lavandula pedunculata growing in soils developed on different mine wastes. Environ. Pollut. 2016, 213, 43–52. [Google Scholar] [CrossRef]
- Pérez-López, R.; Márquez-García, B.; Abreu, M.M.; Nieto, J.M.; Córdoba, F. Erica andevalensis and Erica australis growing in the same extreme environments: Phytostabilization potential of mining areas. Geoderma 2014, 230–231, 194–203. [Google Scholar] [CrossRef]
- Rodríguez, L.; Ruiz, E.; Alonso-Azcárate, J.; Rincón, J. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. J. Environ. Manag. 2009, 90, 1106–1116. [Google Scholar] [CrossRef]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martínez-Pagán, P.; De Ignacio-San José, C.; Martín-Velázquez, S.; Lillo, J.; Faz, A. Geoenvironmental characterization of riverbeds affected by mine tailings in the Mazarrón district (Spain). J. Geochem. Explor. 2012, 119–120, 6–16. [Google Scholar] [CrossRef]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martín-Velázquez, S.; Martínez-Pagán, P.; De Ignacio-San José, C.; Lillo, J.; Faz, A. Geoenvironmental characterization of unstable abandoned mine tailings combining geophysical and geochemical methods (Cartagena-La Union district, Spain). Eng. Geol. 2018, 232, 135–146. [Google Scholar] [CrossRef]
- Oyarzun, R.; Lillo, J.; López-García, J.A.; Esbrí, J.M.; Cubas, P.; Llanos, W.; Higueras, P. The Mazarrón Pb-(Ag)-Zn mining district (SE Spain) as a source of heavy metal contamination in a semiarid realm: Geochemical data from mine wastes, soils and stream sediments. J. Geochem. Explor. 2011, 109, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Donoso, R.; Martín-Duque, J.F.; Crespo, E.; Higueras, P.L. Tailing’s geomorphology of the San Quintín mining site (Spain): Landform catalogue, aeolian erosion and environmental implications. Environ. Earth Sci. 2019, 78, 166–182. [Google Scholar] [CrossRef]
- Brümmer, G.W. Heavy metal species, mobility and availability in soils. In The Importance of Chemical “Speciation” in Environmental Processes; Bernhard, M., Brinckman, F.E., Sadler, P.J., Eds.; Springer: Berlin, Germany, 1986; pp. 169–192. [Google Scholar]
- Favas, P.J.C.; Pratas, J.; Gomes, M.E.P.; Cala, V. Selective chemical extraction of heavy metals in tailings and soils contaminated by mining activity: Environmental implications. J. Geochem. Explor. 2011, 111, 160–171. [Google Scholar] [CrossRef]
- Arenas-Lago, F.; Andrade, M.L.; Lago-Vila, M.; Rodríguez-Seijo, A.; Vega, F.A. Sequential extraction of heavy metals in soils from a copper mine: Distribution in geochemical fractions. Geoderma 2014, 230–231, 108–118. [Google Scholar] [CrossRef]
- Ma, L.Q.; Rao, G.N. Heavy metals in the environment. Chemical Fractionation of cadmium, copper, nickel and zinc in contaminated soils. J. Environ. Qual. 1997, 26, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Adamo, P.; Denaix, L.; Terribile, F.; Zampella, M. Characterization of heavy metals in contaminated volcanic soils of the Solofrana river valley (southern Italy). Geoderma 2003, 117, 347–366. [Google Scholar] [CrossRef]
- Martínez-Sánchez, M.J.; Navarro, M.C.; Pérez-Sirvent, C.; Marimón, J.; Vidal, J.; García-Lorenzo, M.L.; Bech, J. Assessment of the mobility of metals in a mining-impacted coastal area (Spain, Western Mediterranean). J. Geochem. Explor. 2008, 96, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, M.B.; Domini, C.E.; Garrido, M.; Lista, A.G.; Fernández-Band, B.S. Single-step chemical extraction procedures and chemometrics for assessment of heavy metal behavior in sediment samples from the Bahía Blanca estuary, Argentina. J. Soils Sediments 2011, 11, 657–666. [Google Scholar] [CrossRef]
- Sutherland, R.A. BCR-701: A review of 10-years of sequential extraction analyses. Anal. Chim. Acta 2010, 680, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Yesares, L.; Sáez, R.; Nieto, J.M.; Ruiz de Almodóvar, G.; Gómez, C.; Escobar, J.M. The Las Cruces deposit, Iberian Pyrite Belt, Spain. Ore Geol. Rev. 2015, 66, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Olías, M.; Nieto, J.M.; Pérez-López, R.; Cánovas, C.R.; Macías, F.; Sarmiento, A.M.; Galván, L. Control son acid mine wáter composition from the Iberian Pyrite Belt (SW Spain). Catena 2016, 137, 12–23. [Google Scholar] [CrossRef]
- Sánchez de la Campa, A.M.; de la Rosa, J.D.; Fernández-Caliani, J.C.; González-Castanedo, Y. Impact of abanoned mine waste on atmospheric respirable particulate matter in the historic mining district of Rio Tinto (Iberian Pyrite Belts). Environ. Res. 2011, 111, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Van Green, A.; Adkins, J.F.; Boyke, E.A.; Palanques, A. A 120 year record of widespread contamination from mining of the Iberian Pyrite Belt. Geology 1997, 25, 291–294. [Google Scholar] [CrossRef]
- Nocete, F.; Alex, E.; Nieto, J.M.; Saéz, R.; Bayona, M.R. An archaeological approach to regional environmental pollution in th South-western Iberian Peninsula related to Third Millenium B.C mining and metallurgy. J. Archaeol. Sci. 2005, 32, 1566–1576. [Google Scholar] [CrossRef]
- Ruiz, F.; González-Regalado, M.L.; Borrego, J.; Morales, J.A.; Pendón, J.G.; Muñoz, J.M. Stratigrraphic sequence, elemental concentrations and heavy metal pollution in Holocene sediments from the Tinto-Odiel Estuary, Southwestern Spain. Environ. Geol. 1998, 34, 270–278. [Google Scholar] [CrossRef]
- Luís, A.T.; Teixeira, P.; Fernandes Pinheiro Almeida, S.; Matos, J.X.; Ferreira da Silva, E. Environmental impact of mining activities in the Lousal area (Portugal): Chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream. Sci. Total Environ. 2011, 409, 4312–4325. [Google Scholar] [CrossRef] [PubMed]
- Matzke, K. Mina do Lousal. In Proceedings of the Principais Jazigos Minerales do Sul de Portugal, Livro Guia nº4; Proceeding of the I Cong. Hispano-Luso-Americano de Geologia Económica e Aplicada, Madrid, Spain, 19–23 September 1971; pp. 25–32. [Google Scholar]
- Oliveira, V.; Matos, J.; Bengala, M.; Silva, N.; Sousa, P.; Torres, L. Geology and geophysics as successful tools in discovery of the Lagoa Salgada orebody (Sado tertiary basin-Iberian Pyrite Belt), Grândola, Portugal. Miner. Depos 1998, 33, 170–187. [Google Scholar] [CrossRef]
- Oliveira, V.; Matos, J.; Rosa, C. The NNW sector of the Iberian Pyrite Belt–new exploration perspectives for the next decade. In Proceedings of the Geode Workshop–Massive sulphide deposits in the Iberian Pyrite Belt: New advances and comparison with equivalent systems, Aracena, Spain; 2001; pp. 34–37. [Google Scholar]
- Matos, J.; Oliveira, V. Mina do Lousal (faixa Piritosa Ibñerica)–Percurso geológico e mineiro pelas cortas e galerías da antiga mina. IGME Pub. Museo Geominero 2003, 2, 117–128. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015: International Soil Classification System for Naming sOils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Ferrera da Silva, E.; Patinha, C.; Cardoso Fonseca, E.; Matos, J.X.; Barrosinho, J.; Santos Oliveira, J.M. Interaction of acid mine drainage with waters and sediments at the Corona stream, Lousal mine (Iberian Pyrite Belt, Southern Portugal). Environ. Geol. 2006, 50, 1001–1013. [Google Scholar] [CrossRef]
- Reis, A.P.; Ferreira da Silva, E.; Sousa, A.J.; Matos, J.; Patinha, C.; Abenta, J.; Cardoso Fonseca, E. Combining GIS ans stochastic simulation to estimate spatial patterns of variation for lead at the Lousal mine, Portugal. Land Degrad. Develop. 2005, 16, 229–242. [Google Scholar] [CrossRef]
- Ferreira da Silva, E.; Bobos, I.; Matos, J.X.; Patinha, C.; Reis, A.P.; Cardoso Fonseca, E. Mineralogy and geochemistry of trace metals and REE in volcanic massive sulfide host rocks, stream sediments, stream waters and acid mine drainage from the Lousal mine area (Iberian Pyrite Belt, Portugal). Appl. Geochem. 2009, 24, 383–401. [Google Scholar] [CrossRef]
- Tornos, F. Environment of formation and styles of volcanogenic massive sulphides: The Iberian Pyrite Belt. Ore Geol. Rev. 2006, 28, 259–307. [Google Scholar] [CrossRef]
- Strauss, G. Sobre la geología de la provincial piritífera del SW de la Península Ibérica y de sus yacimientos, en especial sobe la mina de pirita de Lousal (Portugal). Mem. Inst. Tecnológico Geomin. España 1970, 77, 266. [Google Scholar]
- Ferreira da Silva, E.; Cardoso Fonseca, E.; Matos, J.X.; Pathina, C.; Reis, P.; Santos Oliveira, J.M. The effect of unconfined mine tailings on the geeochemistry of soils, sediments and Surface waters of the Lousal area (Iberian Pyrite belt, southern Portugal). Land Degrad. Develop. 2005, 16, 213–228. [Google Scholar] [CrossRef]
- Oliveira, M.; Ferreira, T.; Relvas, J.M.R.S.; Pinto, A.M.M.; Pereira, Z.; Matos, J.; Fernandes, C. Lousal, Portugal: Geologic and mining heritage of an ancient mine from Iberian Pyrite Belt. In Proceedings of the XIV Congreso Sobre Patrimonio Geológico y minero, Castrillón, Spain, 12–15 September 2013. [Google Scholar]
- Bugosh, N. Fluvial geomorphic principles applied to mined land reclamation. In Proceedings of the January OSM Alternatives to Gradient Terraces Workshop; Office of Surface mining: Farmington, NM, USA, January 2000. [Google Scholar]
- Bugosh, N. Innovative Reclamation Techniques at San Juan Coal Company (or why we are doing our reclamation differently). In July Rocky Mountain Coal Mining Institute National Meeting, Copper Mountain, Colorado, 3–7 November, 2003; Rocky Mountain Coal Mining Institute: Lakewood, CO, USA, 2003. [Google Scholar]
- Bugosh, N.; Eckels, R. Restoring erosional features in the desert. Coal Age 2006, 111, 30–32. [Google Scholar]
- US EPA. Clean Water Act. Section 503. U.S.; Environmental protection Agency: Washington, DC, USA, 1993; Volume 58.
- Rao, C.R.M.; Sahuquillo, A.; Lopez-Sanchez, J.F. Comparison of single and sequential extraction procedures for the study of rare earth elemnts remobilisation in different types of soils. Anal. Chim. Acta 2010, 662, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Sahito, O.M.; Afridi, H.I.; Kazi, T.G.; Baig, J.A. Evaluatoin of heavy metal bioavailability in soil amended with poultry manure using single and BCR sequential extractions. Intern. J. Environ. Anal. Chem. 2015, 95, 1066–1079. [Google Scholar]
- García-Lorenzo, M.L. Evaluación de la Contaminación por vía Hídrica de Elementos traza en áreas con Influencia de Actividades Minero-Metalúrgicas. Aplicación a la Sierra Minera de Cartagena-La Unión (Murcia). Ph.D. Thesis, Universidad de Murcia, Murcia, Spain, 2009. [Google Scholar]
- Vidal, J. Evaluación de los Principales Procesos de Degradación en Fluvisoles Calcáricos de la Huerta de Murcia. Ph.D. Thesis, Universidad de Murcia, Murcia, Spain, 2002. [Google Scholar]
- Mehra, O.P.; Jackson, M.L. iron oxide removalfrom soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. Clay Miner. Bull. 1960, 7, 317–327. [Google Scholar] [CrossRef]
- Alvarez, J.M.; Lopez-Valdivia, L.M.; Novillo, J.; Obrador, A.; Rico, M.I. Comparison of EDTA and sequential extraction tests for phytoavailability prediction of manganese and zinc in agricultural alkaline soils. Geoderma 2006, 132, 450–463. [Google Scholar] [CrossRef]
- Leleyter, L.; Rousseau, C.; Biree, L.; Baraud, F. Comparison of ETDA, HCl and sequential extraction procedures, for selected metals (Cu, Mn, Pb, Zn), in soils, riverine and marine sediments. J. Geochem. Explor. 2012, 116–117, 51–59. [Google Scholar] [CrossRef]
- Haynes, R.J.; Swift, R.S. An evaluation of the use of DTPA and EDTA as extractants for micronutrients in moderately acid soils. Plant. Soil 1983, 74, 111–122. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA test for zinc, iron, manganese and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Chung, F.H. Quantitative interpretation of X-ray diffraction patterns. I.Matrix-flushing method of quantitative multicomponent analysis. J. Appl. Cryst. 1974, 7, 519–525. [Google Scholar] [CrossRef]
- Chung, F.H. Quantitative interpretation of X-ray diffraction patterns. II.Adiabatic principle of X-ray diffraction analysis of mixtures. J. Appl. Cryst. 1974, 7, 526–531. [Google Scholar] [CrossRef]
- Chung, F.H. Quantitative interpretation of X-ray diffraction patterns. III.Simultaneous determination of a set of reference intensities. J. Appl. Cryst. 1975, 8, 17–19. [Google Scholar] [CrossRef]
- X-Powder Software. Available online: http://www.xpowder.com/ (accessed on 22 April 2021).
- Statgraphics 19 Software. Available online: https://www.statgraphics.com/ (accessed on 19 May 2021).
- Pérez-Sirvent, C.; Martínez-Sánchez, M.J.; García-Lorenzo, M.L.; Molina, J.; Tudela, M.L. Geochemical background levels of zinc, cadmium and mercury in anthropically influenced soils located in a semi-arid zone (SE, Spain). Geoderma 2009, 148, 307–317. [Google Scholar] [CrossRef]
- Albanese, S.; Madejón, E.; Pérez-de-Mora, A.; Cabrera, F. Spatial variability of the chemical characteristics of a trace-element-contaminated soil before and after remediation. Geoderma 2006, 130, 157–175. [Google Scholar]
- Guillén, M.T.; Delgado, J.; Albanesa, S.; Nieto, J.M.; Lima, A.; De Vivo, B. Heavy metals fractionation and multivariate statistical techniques to evaluate the environmental risk in soils of Huelva Township (SW Iberian Peninsula). J. Geochem. Explor. 2012, 119–120, 32–43. [Google Scholar] [CrossRef]
- Kalender, L.; Uçar, S.C. Assessment of metal contamination in seidments in the tributaries of the Euphrates River, using pollution indices and the determination of the pollution source, Turkey. J. Geochem. Explor. 2013, 134, 73–84. [Google Scholar] [CrossRef]
- Varol, M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011, 195, 355–364. [Google Scholar] [CrossRef]
- Ferreira, M.M.S.I. Dados Geoquímicos de base de solos de Portugal Continental, Utilizando Amostragem de Baixa Densidade. Ph.D. Thesis, Universidade de Aveiro, Aveiro, Portugal, 2004. [Google Scholar]
- Hakanson, L. Ecological risk indez for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Valente, T.; Gomes, P.; Sequeira Braga, M.A.; Dionísio, A.; Pamplona, J.; Grande, J.A. Iron and arsenic-rich nanoprecipitates associated with clay minerals in sulfide-rich waste dumps. Catena 2015, 131, 1–13. [Google Scholar] [CrossRef]
- Valente, T.; Grande, J.A.; de la Torre, M.L.; Gomes, P.; Santisteban, M.; Borrego, J.; Sequeira Braga, M.A. Mineralogy and geochemistry of a clogged mining reservoir affected by historical acid mine drainage in an abandoned mining area. J. Geochem. Explor. 2015, 157, 66–76. [Google Scholar] [CrossRef]
- Skousen, J. Overview of passive systems for treating acid mine drainage. In Reclamation of Drastically Disturbed Lands; Barnishel, R.I., Ed.; American Society of Agronomy: Madison, WI, USA, 1998. [Google Scholar]
- Martín-Crespo, T.; Gómez-Ortiz, D.; Martín-Velázquez, S.; Esbrí, J.M.; De Ignacio-San José, C.; Sánchez-García, M.J.; Montoya-Montes, I.; Martín-González, F. Abandoned mine tailings in cultural itineraries: Don Quixote Route (Spain). Eng. Geol. 2015, 197, 82–93. [Google Scholar] [CrossRef]
Fe2O3 (%) | SiO2 (%) | SO3 (%) | Pb (mg·kg−1) | Zn (mg·kg−1) | Cd (mg·kg−1) | As (mg·kg−1) | Cu (mg·kg−1) | |
---|---|---|---|---|---|---|---|---|
Surficial Samples | ||||||||
LOS 1 | 14.12 | 56.04 | 5.70 | 136 | 154 | 2.6 | 645 | 180 |
LOS 2 | 12.97 | 59.64 | 5.01 | 215 | 201 | 2.3 | 842 | 228 |
LOS 3 | 13.04 | 58.37 | 3.90 | 302 | 212 | 0.6 | 690 | 228 |
LOS 4 | 15.62 | 51.91 | 1.30 | 76 | 245 | 0.9 | 294 | 436 |
LOS 5 | 10.64 | 62.15 | 3.00 | 184 | 138 | 1.9 | 301 | 219 |
LOS 6 | 13.21 | 53.80 | 3.28 | 591 | 546 | 1.2 | 530 | 1.320 |
LOS 7 | 8.66 | 63.40 | 3.08 | 61 | 163 | 2.4 | 421 | 365 |
LOS 8 | 13.30 | 53.50 | 3.77 | 296 | 545 | 1.7 | 515 | 536 |
LOS 9 | 12.17 | 54.13 | 1.43 | 105 | 308 | 0.2 | 312 | 318 |
LOS 10 | 13.16 | 54.17 | 2.18 | 140 | 367 | <DL | 430 | 512 |
LOS 11 | 9.45 | 61.80 | 2.68 | 206 | 177 | 0.7 | 278 | 254 |
LOS 12 | 13.89 | 55.89 | 1.99 | 238 | 134 | 1.5 | 460 | 310 |
LOS 13 | 10.00 | 51.16 | 6.00 | 167 | 539 | 1.8 | 254 | 432 |
LOS 14 | 7.29 | 63.52 | 0.72 | 80 | 190 | 0.3 | 195 | 289 |
LOS 15 | 9.62 | 52.52 | 0.09 | 42 | 87 | 1.6 | 335 | 357 |
LOS 16 | 11.70 | 51.36 | 1.30 | 320 | 371 | <DL | 399 | 343 |
LOS 17 | 57.86 | 14.10 | 18.59 | 1.900 | 205 | <DL | 1.230 | <DL |
Fe2O3 (%) | SiO2 (%) | SO3 (%) | Pb (mg·kg−1) | Zn (mg·kg−1) | Cd (mg·kg−1) | As (mg·kg−1) | Cu (mg·kg−1) | |
---|---|---|---|---|---|---|---|---|
Transect W | ||||||||
LO1.1-01 | 10.07 | 51.78 | 0.18 | 25 | 94 | <DL | 227 | 236 |
LO1.1-02 | 11.89 | 51.57 | 0.25 | 29 | 122 | <DL | 235 | 348 |
LO1.1-03 | 13.70 | 53.65 | 0.28 | 48 | 117 | <DL | 255 | 495 |
LO1.1-04 | 15.88 | 54.91 | 0.46 | 147 | 120 | <DL | 348 | 719 |
LO1.1-05 | 10.47 | 56.68 | 0.57 | 134 | 161 | <DL | 234 | 373 |
LO1.2-01 | 17.03 | 45.93 | 0.02 | 41 | 56 | <DL | 243 | 440 |
LO1.2-02 | 16.33 | 47.58 | 0.04 | 49 | 66 | <DL | 234 | 467 |
LO1.2-03 | 12.42 | 53.82 | 0.06 | 46 | 52 | <DL | 188 | 328 |
LO1.2-04 | 12.60 | 54.35 | 2.49 | 65 | 78 | <DL | 222 | 423 |
LO1.3-01 | 20.88 | 46.57 | 0.09 | 91 | 108 | <DL | 66 | 325 |
LO1.3-02 | 16.88 | 50.43 | 0.11 | 67 | 123 | <DL | 103 | 361 |
LO1.3-03 | 10.82 | 57.69 | 0.14 | 37 | 107 | <DL | 88 | 302 |
LO1.3-04 | 12.95 | 55.15 | 0.14 | 49 | 130 | <DL | 128 | 341 |
LO1.3-05 | 14.00 | 53.29 | 0.28 | 45 | 179 | <DL | 132 | 307 |
LO1.4-01 | 31.32 | 41.25 | 1.29 | 436 | 283 | <DL | 359 | 621 |
LO1.4-02 | 31.90 | 41.76 | 1.60 | 290 | 352 | <DL | 367 | 722 |
LO1.4-03 | 13.38 | 51.26 | 2.06 | 142 | 316 | <DL | 434 | 341 |
LO1.4-04 | 13.00 | 56.96 | 2.87 | 305 | 180 | <DL | 474 | 329 |
LO1.4-05 | 9.89 | 65.02 | 1.42 | 118 | 99 | <DL | 337 | 218 |
Transect E | ||||||||
LO2.1-01 | 19.66 | 49.27 | 2.88 | 1010 | 184 | <DL | 1230 | 300 |
LO2.1-02 | 14.23 | 53.08 | 5.99 | 5730 | 135 | <DL | 531 | 323 |
LO2.1-03 | 11.05 | 55.19 | 2.58 | 275 | 177 | <DL | 276 | 292 |
LO2.2-01 | 12.44 | 52.51 | 0.23 | 67 | 214 | <DL | 34 | 93 |
LO2.2-02 | 10.91 | 59.13 | 0.31 | 101 | 243 | <DL | 73 | 196 |
LO2.2-03 | 10.93 | 56.92 | 0.76 | 117 | 299 | <DL | 104 | 226 |
LO2.2-04 | 9.98 | 56.66 | 0.90 | 94 | 265 | <DL | 195 | 206 |
LO2.3-01 | 8.91 | 57.89 | 0.06 | 77 | 125 | <DL | 18 | 56 |
LO2.3-02 | 8.73 | 62.58 | 0.24 | 91 | 152 | <DL | 51 | 86 |
Qtz | Phy 10 Å | Phy 14/7.5 Å | Fps | Goe | Jar/PbJar | Alu | Gyp | |
---|---|---|---|---|---|---|---|---|
LOS 1 | 36 | 32 | 10 | 12 | 1 | 5 | 4 | |
LOS 2 | 58 | 23 | 6 | 7 | 2 | 4 | ||
LOS 3 | 50 | 26 | 7 | 9 | 2 | 3 | 3 | |
LOS 4 | 31 | 55 | 6 | 6 | 2 | |||
LOS 5 | 64 | 27 | 4 | 3 | 2 | |||
LOS 6 | 49 | 35 | 5 | 9 | 1 | 1 | ||
LOS 7 | 60 | 30 | 8 | 2 | ||||
LOS 8 | 50 | 28 | 7 | 9 | 2 | 2 | 2 | |
LOS 9 | 38 | 32 | 13 | 14 | 2 | 1 | ||
LOS 10 | 26 | 47 | 11 | 11 | 4 | 1 | ||
LOS 11 | 38 | 30 | 10 | 15 | 2 | 3 | 2 | |
LOS 12 | 62 | 23 | 4 | 8 | 2 | 1 | ||
LOS 13 | 30 | 32 | 8 | 10 | 1 | 2 | 5 | 12 |
LOS 14 | 45 | 36 | 7 | 11 | 1 | |||
LOS 15 | 31 | 41 | 13 | 12 | 3 | |||
LOS 16 | 30 | 40 | 10 | 10 | 7 | 1 | 2 | |
LOS 17 | 25 | 30 | 6 | 5 | 2 | 32 |
F1 | F2 | F3 | F4 | Communality | |
---|---|---|---|---|---|
Fe2O3 | 0.933 | 0.194 | −0.220 | −0.145 | 0.978 |
SiO2 | −0.628 | −0.174 | −0.375 | 0.273 | 0.640 |
SO3 | 0.938 | 0.006 | 0.233 | −0.075 | 0.939 |
Pb | 0.961 | 0.108 | −0.067 | 0.090 | 0.948 |
Zn | 0.006 | 0.156 | 0.283 | 0.890 | 0.897 |
Cd | −0.170 | −0.754 | 0.183 | −0.077 | 0.639 |
As | 0.885 | −0.095 | −0.083 | −0.124 | 0.815 |
Cu | −0.239 | 0.024 | −0.134 | 0.836 | 0.775 |
Qtz | −0.221 | −0.848 | −0.423 | −0.01 | 0.945 |
Phy 10 Å | −0.224 | 0.742 | −0.110 | 0.183 | 0.646 |
Phy 14 Å | 0.120 | 0.761 | 0.358 | −0.264 | 0.792 |
Fsp | −0.690 | 0.297 | −0.386 | −0.094 | 0.721 |
Goe | −0.035 | 0.636 | −0.215 | 0.053 | 0.455 |
Jar/PbJar | 0.971 | 0.086 | 0.040 | −0.155 | 0.977 |
Alu | −0.068 | −0.046 | 0.902 | −0.089 | 0.828 |
Gyp | −0.061 | −0.149 | 0.792 | 0.382 | 0.799 |
Water | Acidic Medium (HNO3) | Complexing-reducing Medium | EDTA | DTPA | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pb | As | Zn | Cu | Cd | Pb | As | Zn | Cu | Cd | Pb | As | Zn | Cu | Cd | Pb | As | Zn | Cu | Cd | Pb | As | Zn | Cu | Cd | |||
LOS 1 | <DL | 0.0452 | 35.0 | 14.1 | <DL | <DL | 0.574 | 35.5 | 25.7 | <DL | LOS 1 | 73.3 | 111.95 | 48.6 | 25.4 | <DL | <DL | 0.041 | 18.3 | 17.5 | <DL | LOS 1 | 0.7 | 0.411 | 26.8 | 20.0 | <DL |
LOS 2 | <DL | 0.0113 | 46.9 | 12.1 | <DL | <DL | 2.956 | 48.7 | 20.1 | <DL | LOS 2 | <DL | 18.09 | 57.2 | <DL | <DL | <DL | 1.271 | 23.0 | 19.1 | <DL | LOS 2 | 8.2 | 0.987 | 39.6 | 20.0 | <DL |
LOS 3 | <DL | 0.0084 | 47.2 | 13.5 | <DL | <DL | 3.032 | 41.2 | 22.3 | <DL | LOS 3 | <DL | 234.53 | 58.0 | <DL | <DL | <DL | 1.308 | 28.7 | 20.6 | <DL | LOS 3 | 4.2 | 1.009 | 40.6 | 22.6 | <DL |
LOS 4 | <DL | 0.0020 | 100.3 | 18.8 | <DL | <DL | 0.078 | 115.6 | 43.4 | <DL | LOS 4 | <DL | 103.34 | 121.1 | 9.5 | <DL | <DL | 0.034 | 86.7 | 41.0 | <DL | LOS 4 | 0.7 | 0.043 | 98.0 | 40.2 | <DL |
LOS 5 | <DL | 0.0010 | 8.6 | 3.4 | <DL | <DL | 0.340 | 6.8 | 15.1 | <DL | LOS 5 | <DL | 65.10 | 19.0 | <DL | <DL | <DL | 0.173 | <DL | 11.8 | <DL | LOS 5 | 0.9 | 0.078 | 5.9 | 12.8 | <DL |
LOS 6 | <DL | 0.0111 | 152.2 | 99.6 | <DL | <DL | 1.853 | 142.9 | 104.3 | <DL | LOS 6 | 80.8 | 119.88 | 161.3 | 57.1 | <DL | <DL | 0.490 | 142.9 | 98.6 | <DL | LOS 6 | 1.6 | 0.361 | 139.8 | 92.3 | <DL |
LOS 7 | <DL | 0.0058 | 16.2 | 0.1 | <DL | <DL | 1.261 | 26.2 | 21.1 | <DL | LOS 7 | <DL | 91.08 | 39.9 | 29.6 | <DL | <DL | 0.164 | 9.3 | 18.9 | <DL | LOS 7 | 2.1 | 0.132 | 27.8 | 20.1 | <DL |
LOS 8 | <DL | 0.0062 | 133.4 | 44.5 | <DL | <DL | 1.121 | 122.8 | 61.1 | <DL | LOS 8 | 75.3 | 36.24 | 150.6 | 14.3 | <DL | <DL | 0.337 | 110.6 | 62.3 | <DL | LOS 8 | 9.1 | 0.342 | 134.8 | 63.3 | <DL |
LOS 9 | <DL | 0.0036 | 80.4 | 22.6 | <DL | <DL | 1.206 | 71.2 | 35.5 | <DL | LOS 9 | <DL | 37.42 | 93.0 | <DL | <DL | <DL | 0.471 | 62.8 | 34.7 | <DL | LOS 9 | 4.2 | 0.380 | 80.9 | 33.1 | <DL |
LOS 10 | <DL | 0.0033 | 113.3 | 31.3 | <DL | <DL | 0.598 | 126.6 | 71.4 | <DL | LOS 10 | <DL | 78.67 | 152.6 | 22.9 | <DL | <DL | 0.038 | 98.1 | 55.4 | <DL | LOS 10 | 0.6 | 0.171 | 118.0 | 67.6 | <DL |
LOS 11 | <DL | 0.0034 | 46.0 | 9.9 | <DL | <DL | 0.629 | 54.8 | 42.8 | <DL | LOS 11 | 101.9 | 73.82 | 79.9 | 39.6 | <DL | <DL | 0.132 | 32.2 | 42.8 | <DL | LOS 11 | 0.7 | 0.131 | 47.9 | 44.6 | <DL |
LOS 12 | <DL | 0.0022 | 8.8 | 2.9 | <DL | <DL | 0.164 | 6.5 | 10.4 | <DL | LOS 12 | <DL | 42.28 | 15.0 | <DL | <DL | <DL | 0.074 | <DL | 9.3 | <DL | LOS 12 | 7.3 | 0.048 | 3.0 | 9.4 | <DL |
LOS 13 | <DL | 0.0120 | 144.3 | 27.7 | <DL | <DL | 4.048 | 149.0 | 74.6 | <DL | LOS 13 | 69.7 | 16.25 | 155.6 | 7.9 | <DL | <DL | 0.867 | 139.0 | 69.7 | <DL | LOS 13 | 2.5 | 0.467 | 149.8 | 67.2 | <DL |
LOS 14 | <DL | 0.0025 | 38.9 | 10.2 | <DL | <DL | 0.328 | 43.3 | 62.8 | <DL | LOS 14 | 76.4 | 112.25 | 50.1 | 36.2 | <DL | <DL | 0.058 | 36.7 | 61.2 | <DL | LOS 14 | 1.7 | 0.088 | 41.6 | 60.6 | <DL |
LOS 15 | <DL | 0.0005 | 7.6 | <DL | <DL | <DL | 0.150 | 7.3 | 10.5 | <DL | LOS 15 | <DL | 85.57 | 14.8 | <DL | <DL | <DL | 0.038 | <DL | 9.1 | <DL | LOS 15 | 2.2 | 0.059 | 7.3 | 8.2 | <DL |
LOS 16 | <DL | 0.0122 | 120.2 | 38.4 | <DL | <DL | 0.846 | 142.3 | 79.1 | <DL | LOS 16 | <DL | 98.33 | 139.5 | <DL | <DL | - | - | - | - | - | LOS 16 | - | - | - | - | - |
LOS 17 | <DL | 0.5647 | 87.9 | 24.8 | <DL | <DL | 3.038 | 93.0 | 27.8 | <DL | LOS 17 | 133.7 | 563.95 | 156.6 | 16.2 | <DL | <DL | 0.528 | 64.3 | 23.5 | <DL | LOS 17 | 0.56 | 3.611 | 79.8 | 17.3 | <DL |
Maximum | <DL | 0.5647 | 152.2 | 99.6 | <DL | <DL | 4.048 | 149.0 | 104.3 | <DL | Maximum | 101.9 | 563.95 | 161.3 | 57.1 | <DL | <DL | 1.308 | 142.9 | 69.7 | <DL | Maximum | 9.1 | 3.611 | 149.8 | 92.3 | <DL |
Minimum | <DL | 0.0005 | 7.6 | <DL | <DL | <DL | 0.078 | 6.5 | 10.4 | <DL | Minimum | <DL | 16.25 | 14.8 | <DL | <DL | <DL | 0.034 | <DL | 9.1 | <DL | Minimum | 0.56 | 0.043 | 3.0 | 8.2 | <DL |
Mean | <DL | 0.04 | 69.8 | 23.4 | <DL | <DL | 1.3 | 72.6 | 42.8 | <DL | Mean | 55.8 | 111.1 | 89.0 | 16.6 | <DL | <DL | 0.4 | 53.7 | 37.2 | <DL | Mean | 3.0 | 0.5 | 65.1 | 37.5 | <DL |
Extraction Percentage | Extraction Percentage | Extraction Percentage | |||||||||||||||||||||||||
Water | Acidic medium (HNO3) | Complexing-reducing Medium | EDTA | DTPA | |||||||||||||||||||||||
Pb | As | Zn | Cu | Cd | Pb | As | Zn | Cu | Cd | Pb | As | Zn | Cu | Cd | Pb | As | Zn | Cu | Cd | Pb | As | Zn | Cu | Cd | |||
Maximum | - | 0.0459 | 42.92 | 11.22 | - | - | 1.5920 | 47.24 | 23.08 | - | Maximum | 95.27 | 57.53 | 76.49 | 15.58 | - | - | 0.341 | 35.45 | 21.15 | - | Maximum | 5.16 | 0.294 | 40.06 | 20.95 | - |
Minimum | - | 0.0002 | 6.26 | 0.003 | - | - | 0.0018 | 4.84 | 2.95 | - | Minimum | 7.04 | 2.15 | 11.21 | 0.19 | - | - | 0.006 | 1.64 | 2.56 | - | Minimum | 0.03 | 0.010 | 2.26 | 2.31 | - |
Mean | - | 0.0044 | 23.45 | 4.70 | - | - | 0.2905 | 24.68 | 10.89 | - | Mean | 34.87 | 22.80 | 32.15 | 4.37 | - | - | 0.074 | 17.01 | 8.68 | - | Mean | 1.92 | 0.076 | 20.75 | 8.95 | - |
Contamination Factor (CF) | PLI | |||||
---|---|---|---|---|---|---|
Pb | Zn | Cd | As | Cu | ||
LOS 1 | 4 | 2 | 4 | 29 | 5 | 8 |
LOS 2 | 6 | 2 | 4 | 38 | 7 | 9 |
LOS 3 | 9 | 2 | 1 | 31 | 7 | 8 |
LOS 4 | 2 | 3 | 2 | 13 | 12 | 7 |
LOS 5 | 5 | 2 | 3 | 14 | 6 | 7 |
LOS 6 | 17 | 6 | 2 | 24 | 38 | 14 |
LOS 7 | 2 | 2 | 4 | 19 | 10 | 7 |
LOS 8 | 9 | 6 | 3 | 23 | 15 | 12 |
LOS 9 | 3 | 4 | <1 | 14 | 9 | 5 |
LOS 10 | 4 | 4 | - | 20 | 15 | 12 |
LOS 11 | 6 | 2 | 1 | 13 | 7 | 6 |
LOS 12 | 7 | 2 | 3 | 21 | 9 | 8 |
LOS 13 | 5 | 6 | 3 | 12 | 12 | 9 |
LOS 14 | 2 | 2 | <1 | 9 | 8 | 4 |
LOS 15 | 1 | 1 | 3 | 15 | 10 | 5 |
LOS 16 | 9 | 4 | - | 18 | 10 | 12 |
LOS 17 | 56 | 2 | - | 56 | - | 33 |
Contamination Factor (CF) | PLI | |||||
---|---|---|---|---|---|---|
Pb | Zn | Cd | As | Cu | ||
Transect W | ||||||
LO1.1-01 | <1 | 1 | - | 10 | 7 | 5 |
LO1.1-02 | <1 | 1 | - | 11 | 10 | 6 |
LO1.1-03 | 1 | 1 | - | 12 | 14 | 7 |
LO1.1-04 | 4 | 1 | - | 16 | 21 | 10 |
LO1.1-05 | 4 | 2 | - | 11 | 11 | 8 |
LO1.2-01 | 1 | <1 | - | 11 | 13 | 6 |
LO1.2-02 | 1 | <1 | - | 11 | 13 | 6 |
LO1.2-03 | 1 | <1 | - | 9 | 9 | 5 |
LO1.2-04 | 2 | <1 | - | 10 | 12 | 6 |
LO1.3-01 | 3 | 1 | - | 3 | 9 | 6 |
LO1.3-02 | 2 | 1 | - | 5 | 10 | 6 |
LO1.3-03 | 1 | 1 | - | 4 | 9 | 4 |
LO1.3-04 | 1 | 2 | - | 6 | 10 | 6 |
LO1.3-05 | 1 | 2 | - | 6 | 9 | 6 |
LO1.4-01 | 13 | 3 | - | 16 | 18 | 16 |
LO1.4-02 | 9 | 4 | - | 17 | 21 | 16 |
LO1.4-03 | 4 | 4 | - | 20 | 10 | 10 |
LO1.4-04 | 9 | 2 | - | 22 | 9 | 11 |
LO1.4-05 | 3 | 1 | - | 15 | 6 | 7 |
Transect E | ||||||
LO2.1-01 | 30 | 2 | - | 56 | 9 | 18 |
LO2.1-02 | 169 | 2 | - | 24 | 9 | 19 |
LO2.1-03 | 8 | 2 | - | 13 | 8 | 9 |
LO2.2-01 | 2 | 3 | - | 2 | 3 | 4 |
LO2.2-02 | 3 | 3 | - | 3 | 6 | 6 |
LO2.2-03 | 3 | 4 | - | 5 | 6 | 7 |
LO2.2-04 | 3 | 3 | - | 9 | 6 | 7 |
LO2.3-01 | 2 | 1 | - | <1 | 2 | 3 |
LO2.3-02 | 3 | 2 | - | 2 | 2 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Donoso, R.; García Lorenzo, M.L.; Esbrí, J.M.; García-Noguero, E.M.; Higueras, P.; Crespo, E. Geochemical Characterization and Trace-Element Mobility Assessment for Metallic Mine Reclamation in Soils Affected by Mine Activities in the Iberian Pyrite Belt. Geosciences 2021, 11, 233. https://doi.org/10.3390/geosciences11060233
Sánchez-Donoso R, García Lorenzo ML, Esbrí JM, García-Noguero EM, Higueras P, Crespo E. Geochemical Characterization and Trace-Element Mobility Assessment for Metallic Mine Reclamation in Soils Affected by Mine Activities in the Iberian Pyrite Belt. Geosciences. 2021; 11(6):233. https://doi.org/10.3390/geosciences11060233
Chicago/Turabian StyleSánchez-Donoso, Ramón, Mari Luz García Lorenzo, José María Esbrí, Eva María García-Noguero, Pablo Higueras, and Elena Crespo. 2021. "Geochemical Characterization and Trace-Element Mobility Assessment for Metallic Mine Reclamation in Soils Affected by Mine Activities in the Iberian Pyrite Belt" Geosciences 11, no. 6: 233. https://doi.org/10.3390/geosciences11060233
APA StyleSánchez-Donoso, R., García Lorenzo, M. L., Esbrí, J. M., García-Noguero, E. M., Higueras, P., & Crespo, E. (2021). Geochemical Characterization and Trace-Element Mobility Assessment for Metallic Mine Reclamation in Soils Affected by Mine Activities in the Iberian Pyrite Belt. Geosciences, 11(6), 233. https://doi.org/10.3390/geosciences11060233