Mobility and Bioavailability of Metal(loid)s in a Fluvial System Affected by the Mining and Industrial Processing of Pb
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Geochemical Analysis
2.3. Mineralogical Analysis
2.4. Hydrochemical Analysis
3. Results and Discussion
3.1. Characterisation of the Smelter Wastes
3.2. Geochemical Speciation
3.3. Hydrochemistry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, F.X.; Su, Y.; Monts, D.L.; Plodinec, M.J.; Banin, A.; Triplett, G.E. Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften 2003, 90, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Olías, M.; Cánovas, C.R.; Macías, F.; Basallote, M.D.; Nieto, J.M. The Evolution of Pollutant Concentrations in a River Severely Affected by Acid Mine Drainage: Río Tinto (SW Spain). Minerals 2020, 10, 598. [Google Scholar] [CrossRef]
- Mayes, W.M.; Potter, H.A.B.; Jarvis, A.P. Inventory of aquatic contaminant flux arising from historical metal mining in England and Wales. Sci. Total Environ. 2010, 408, 3576–3583. [Google Scholar] [CrossRef] [PubMed]
- Bundschuh, J.; Litter, M.I.; Parvez, F.; Román-Hoss, G.; Nicolli, H.B.; Jean, J.S.; Liu, C.W.; López, D.; Armienta, M.A.; Guilherme, L.R.G.; et al. One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Sci. Total Environ. 2012, 429, 2–35. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Al Mamum, M.H.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Piatak, N.M.; Seal, R.R.; Hammarstrom, J.M. Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine sites. Appl. Geochem. 2004, 19, 1039–1064. [Google Scholar] [CrossRef]
- Navarro, A.; Cardellach, E.; Mendoza, J.L.; Corbella, M.; Domenech, L.M. Metal mobilization from base-metal smelting slag dumps in Sierra Almagrera (Almería, Spain). Appl. Geochem. 2008, 23, 895–913. [Google Scholar] [CrossRef]
- Andrade-Lima, L.R.P.; Bernardez, L.A. Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil. J. Hazard. Mater. 2011, 189, 692–699. [Google Scholar] [CrossRef]
- Cortada, U.; Martínez, J.; Rey, J.; Hidalgo, M.C. Assessment of tailings pond seals using geophysical and hydrochemical techniques. Eng. Geol. 2017, 223, 59–70. [Google Scholar] [CrossRef]
- Nriagu, J.O.; Pacyna, J.M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1998, 333, 134–139. [Google Scholar] [CrossRef]
- El Adnani, M.; Plante, P.; Benzaazoua, M.; Hakkou, H.; Bouzahzah, H. Tailings Weathering and Arsenic Mobility at the Abandoned Zgounder Silver Mine, Morocco. Mine Water Environ. 2016, 35, 508–524. [Google Scholar] [CrossRef]
- Kříbek, B.; Majer, V.; Knésl, I.; Keder, J.; Mapani, V.; Kamona, F.; Mihaljevic, M.; Ettler, V.; Penizek, V.; Vanek, A.; et al. Contamination of soil and grass in the Tsumeb smelter area, Namibia: Modeling of contaminants dispersion and ground geochemical verification. Appl. Geochem. 2015, 64, 1–17. [Google Scholar] [CrossRef]
- Costagliola, P.; Benvenuti, M.; Chiarantini, L.; Bianchi, S.; Di Benedetto, F.; Paolieri, M.; Rossato, L. Impact of ancient metal smelting on arsenic pollution in the Pecora River Valley, Southern Tuscany, Italy. Appl. Geochem. 2008, 23, 1241–1259. [Google Scholar] [CrossRef]
- Ettler, V.; Johan, Z.; Kříbek, B.; Sebek, O.; Mihaljevic, M. Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia. Appl. Geochem. 2009, 24, 1–15. [Google Scholar] [CrossRef]
- Domínguez, M.T.; Alegre, J.M.; Madejón, P.; Madejón, E.; Burgos, P.; Cabrera, F.; Marañón, T.; Murillo, J.M. River banks and channels as hotspots of soil pollution after large-scale remediation of a river basin. Geoderma 2016, 261, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Sindern, S.; Tremöhlen, M.; Dsikowitzky, L.; Gronen, L.; Schwarzbauer, J.; Siregar, T.; Ariyani, F.; Irianto, H.E. Heavy metals in river and coast sediments of the Jakarta Bay region (Indonesia)—Geogenic versus anthropogenic sources. Mar. Pollut. Bull. 2016, 110, 624–633. [Google Scholar] [CrossRef]
- Veado, M.V.; Arantes, I.A.; Oliveira, A.H.; Almeida, M.R.M.G.; Miguel, R.A.; Severo, M.I.; Cabaleiro, H.L. Metal Pollution in the Environment of Minas Gerais State—Brazil. Environ. Monit. Assess. 2006, 117, 157–172. [Google Scholar] [CrossRef]
- Ettler, V.; Legendre, O.; Bodénan, F.; Touray, J.C. Primary phases and natural weathering of old lead-zinc pyrometallurgical slag from Pacibram, Czech Republic. Can. Mineral. 2001, 39, 873–888. [Google Scholar] [CrossRef] [Green Version]
- Ettler, V.; Johan, Z.; Baronnet, A.; Jankovsky, F.; Gilles, C.; Mihaljevic, M.; Sebet, O.; Strnad, L.; Bezdicka, P. Mineralogy of air-pollution-control residues from a secondary lead smelter: Environmental implications. Environ. Sci. Technol. 2005, 39, 9309–9316. [Google Scholar] [CrossRef]
- Ettler, V.; Johan, Z.; Bezdička, P.; Draek, M.; Sebek, O. Crystallization sequences in matte and speiss from primary lead metallurgy. Eur. J. Mineral. 2009, 21, 837–854. [Google Scholar] [CrossRef]
- Piatak, N.M.; Parsons, M.B.; Seal, R.R. Characteristics and environmental aspects of slag: A review. Appl. Geochem. 2015, 57, 236–266. [Google Scholar] [CrossRef]
- Kovács, E.; Tamás, J.; Frančišković-Bilinski, S.; Bilinski, H. Geochemical study of surface water and sediment at the abandoned Pb-Zn mining site at Gyöngyösoroszi, Hungary. Fresenius Environ. Bull. 2012, 21, 1212–1217. [Google Scholar]
- Omanović, D.; Pižeta, I.; Vukosav, P.; Kovács, E.; Frančišković-Bilinski, S.; Tamas, J. Assessing element distribution and speciation in a stream at abandoned Pb–Zn mining site by combining classical, in-situ DGT and modelling approaches. Sci. Total Environ. 2015, 511, 423–434. [Google Scholar] [CrossRef]
- Haffert, L.; Craw, D.; Pope, J. Climatic and compositional controls on secondary arsenic mineral formation in high-arsenic mine wastes, South Island, New Zealand. N. Zeal. J. Geol. Geophys. 2010, 53, 91–101. [Google Scholar] [CrossRef]
- Grosbois, C.; Meybeck, M.; Lestel, L.; Lefèvre, I.; Moatar, F. Severe and contrasted polymetallic contamination patterns (1900-2009) in the Loire River sediments (France). Sci. Total Environ. 2012, 435–436, 290–305. [Google Scholar] [CrossRef]
- Petta, R.A.; Sindern, S.; Souza, R.F.; Campos, T.F.C. Influence of mining activity on the downstream sediments of scheelite mines in Currais Novos (NE Brazil). Environ. Earth Sci. 2014, 72, 1843–1852. [Google Scholar] [CrossRef]
- Martínez, J. Caracterización Geoquímica y Ambiental de los Suelos en el Sector Minero de Linares. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2002. [Google Scholar]
- Martínez, J.; Rey, J.; Hidalgo, M.C.; Luque, J.A. El georrádar como técnica de diagnóstico de presas mineras abandonadas. El distrito de Linares (Jaén, España). Geogaceta 2014, 55, 63–66. [Google Scholar]
- Cortada, U.; Hidalgo, M.C.; Martínez, J.; Rey, J. Impact in soils caused by metal(loid)s in lead metallurgy. The case of La Cruz Smelter (Southern Spain). J. Geochemical. Explor. 2018, 190, 302–313. [Google Scholar] [CrossRef]
- Sierra, C.; Martínez, J.; Menéndez-Aguado, J.M.; Afif, E.; Gallego, J.R. High intensity magnetic separation for the clean-up of a site polluted by lead metallurgy. J. Hazard. Mater. 2013, 248–249, 194–201. [Google Scholar] [CrossRef]
- Lillo, F. Geology and Geochemistry of Linares-La Carolina Pb-ore Field (Southeastern Border of the Hesperian Massif). Ph.D. Thesis, University of Leeds, Leeds, UK, 1992. [Google Scholar]
- Gutiérrez-Guzmán, F. Las Minas de Linares. Apuntes Históricos; Colegio Oficial de Ingenieros Técnicos de Minas de Linares: Linares, Spain, 1999. [Google Scholar]
- Hidalgo, M.C.; Rojas, D.; Benavente, J.; Rey, J.; Martínez, J.; De la Torre, M.J. Contaminación de aguas y suelos en el entorno de una escombrera de fundición (Distrito Minero de Linares, Jaén). In Proceedings of the II Congreso Ibérico de las Aguas Subterráneas, Valencia, Spain, 8–10 September 2014. [Google Scholar]
- Cortada, U.; Hidalgo, M.C.; Martínez, J.; Rey, J. Dispersion of metal(loid)s in fluvial sediments: An example from the Linares mining district (southern Spain). Int. J. Environ. Sci. Technol. 2019, 16, 469–484. [Google Scholar] [CrossRef]
- De la Torre, M.J.; Campos, M.J.; Hidalgo, M.C. Estudio Mineralógico de las Escombreras en el Distrito Minero de La Carolina (Jaén, España). Macla 2010, 13, 213–214. [Google Scholar]
- De la Torre, M.J.; Hidalgo, M.C.; Rey, J.; Martínez, J. Mineralogical characterization of tailing dams: Incidence of abandoned mining works on soil pollution (Linares, Jaén). Geophys. Res. Abstr. 2012, 14, 133357. [Google Scholar]
- Rojas, D.; Benavente, J.; Hidalgo, M.C.; Rey, J.; Martínez, J. Contenido total y fraccionamiento de metales y semimetales en las escombreras del distrito minero de Linares-La Carolina (Jaén). GeoTemas 2012, 13, 1495–1498. [Google Scholar]
- Rice, S. Super Trace 4-Acid Digestion &. ICP-MS/AES Analysis, ALS Global. Yilgarn Geochem. Semin. 2017, 1, 1–20. [Google Scholar]
- Morrison, A.L.; Swierczek, Z.; Gulson, B.L. Visualisation and quantification of heavy metal accessibility in smelter slags: The influence of morphology on availability. Environ. Pollut. 2016, 210, 271–281. [Google Scholar] [CrossRef]
- Drahota, P.; Filippi, M. Secondary arsenic minerals in the environment: A review. Environ. Int. 2009, 35, 1243–1255. [Google Scholar] [CrossRef]
- Romero, F.M.; Villalobos, M.; Aguirre, R.; Gutiérrez, M.E. Solid-Phase Control on Lead Bioaccessibility in Smelter-Impacted Soils. Arch. Environ. Contam. Toxicol. 2008, 55, 566–575. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, R.; Lu, X.; Liu, H.; Li, J.; Ouyang, B.; Lu, J. Secondary minerals of weathered orpiment-realgar-bearing tailings in Shimen carbonate-type realgar mine, Changde, Central China. Mineral. Petrol. 2015, 109, 1–15. [Google Scholar] [CrossRef]
- Nordstrom, D.; Zhu, X.; McCleskey, R.; Königsberger, L.C.; Königsberger, E. Geochemical modeling and thermodynamic properties of arsenic species. In Arsenic Research and Global Sustainability: Proceedings of the Sixth International Congress on Arsenic in the Environment (As2016), Stockholm, Sweden, 19–23 June 2016; CRC Press: Stockholm, Sweden, 2016; p. 135. [Google Scholar]
- Farges, F.; Benzerara, K.; Brown, G.E. Chrysocolla redefined as spertiniite. AIP Conf. Proc. 2007, 882, 223–225. [Google Scholar] [CrossRef] [Green Version]
- Gade, B.; Pöllmann, H.; Heindl, A.; Westermann, H. Long-term behaviour and mineralogical reactions in hazardous waste landfills: A comparison of observation and geochemical modelling. Environ. Geol. 2001, 40, 248–256. [Google Scholar] [CrossRef]
- Roper, A.J.; Leverett, P.; Murphy, T.D.; Williams, P.A. The stability of the rare sodium antimonate, brizziite, and it’s role in Sb mobility. Mineral. Mag. 2018, 82, 89–93. [Google Scholar] [CrossRef]
- Ibáñez-Insa, J.; Elvira, J.J.; Llovet, X.; Pérez-Cano, J.; Oriols, N.; Busquets, M.; Hernández, S. Abellaite, NaPb2(CO3)2(OH), a new supergene mineral from the Eureka mine, Lleida province, Catalonia, Spain. Eur. J. Mineral. 2017, 29, 915–922. [Google Scholar] [CrossRef] [Green Version]
- Siidra, O.; Nekrasova, D.; Depmeier, W.; Chukanov, N.V.; Zaitsev, A.; Turner, R.W. Hydrocerussite-related minerals and materials: Structural principles, chemical variations and infrared spectroscopy. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2018, 74, 182–195. [Google Scholar] [CrossRef]
- Taylor, P.; Lopata, V.J. Stability and solubility relationships between some solids in the system PbO–CO2–H2O. Can. J. Chem. 1984, 62, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Catlett, K.M.; Heil, D.M.; Lindsay, W.L.; Ebinger, M.H. Soil Chemical Properties Controlling Zinc Activity in 18 Colorado Soils. Soil Sci. Soc. Am. J. 2002, 66, 1182. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, X.; Li, X. Zinc recovery from franklinite by sulphation roasting. Hydrometallurgy 2011, 109, 211–214. [Google Scholar] [CrossRef]
- Lindsay, W.L. Chemical Equilibria in Soils. Clays Clay Miner. 1980, 28, 319. [Google Scholar] [CrossRef]
- Martínez, J.; Llamas, J.; De Miguel, E.; Rey, J.; Hidalgo, M.C. Determination of the geochemical background in a metal mining site: Example of the mining district of Linares (South Spain). J. Geochem. Explor. 2007, 94, 19–29. [Google Scholar] [CrossRef]
- Martínez, J.; Llamas, J.; De Miguel, E.; Rey, J.; Hidalgo, M.C. Soil contamination from urban and industrial activity: Example of the mining district of Linares (southern Spain). Environ. Geol. 2008, 54, 669–677. [Google Scholar] [CrossRef]
- Ma, X.; Zuo, H.; Tian, M.; Zhang, L.; Meng, J.; Zhou, X.; Min, N.; Chang, X.; Liu, Y. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere 2016, 144, 264–272. [Google Scholar] [CrossRef]
- Wilson, N.J.; Craw, D.; Hunter, K. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand. Environ. Pollut. 2004, 129, 257–266. [Google Scholar] [CrossRef]
- Hidalgo, M.C.; Rey, J.; Benavente, J.; Martínez, J. Hydrogeochemistry of abandoned Pb sulphide mines: The mining district of La Carolina (southern Spain). Environ. Earth Sci. 2010, 61, 37–46. [Google Scholar] [CrossRef]
- Hidalgo, M.C.; Rey, J.; Martinez, J.; Benavente, J. Impact of abandoned mining works on surface water. Int. Multidiscip. Sci. Geoconf. SGEM 2012, 2, 903. [Google Scholar]
- Jain, C.K.; Ram, D. Adsorption of lead and zinc on bed sediments of the river Kali. Water Res. 1997, 31, 154–162. [Google Scholar] [CrossRef]
- Palmer, S.C.J.; van Hinsberg, V.J.; McKenzie, J.M.; Yee, S. Characterization of acid river dilution and associated trace element behavior through hydrogeochemical modeling: A case study of the Banyu Pahit River in East Java, Indonesia. Appl. Geochem. 2011, 26, 1802–1810. [Google Scholar] [CrossRef]
Heading | SM-1 | SM-2 | SM-3 | SM-4 | SM-5 | SM-6 | SM-7 | SM-8 | SM-9 | SM-10 | SM-WAS |
---|---|---|---|---|---|---|---|---|---|---|---|
pH | 7 | 7 | 8 | 7 | 11 | 11 | 8 | 11 | 9 | 3 | 11 |
Silt (g kg−1) | 17 | 0 | 10 | 15 | 55 | 40 | 10 | 25 | 35 | 25 | 40 |
Clay (g kg−1) | 94 | 89 | 89 | 99 | 184 | 149 | 114 | 149 | 213 | 149 | 154 |
Elements (mg kg−1) | |||||||||||
Ag | 18 | 6 | 22 | 37 | 248 | 58 | 46 | 46 | 9 | 149 | 107 |
Al | 36,800 | 39,000 | 35,600 | 65,300 | 28,700 | 40,100 | 35,600 | 29,700 | 84,800 | 4300 | 29,100 |
As | 790 | 380 | 480 | 370 | 20,900 | 3070 | 680 | 7850 | 497 | 3410 | 29,700 |
Ba | 275 | 400 | 290 | 3500 | 3060 | 3020 | 1390 | 1440 | 700 | 230 | 1600 |
Ca | 109,800 | 122,500 | 117,500 | 70,700 | 31,700 | 47,100 | 72,600 | 47,400 | 31,000 | 1900 | 29,400 |
Cd | 31 | 5 | 60 | 14 | 118 | 96 | 51 | 64 | 14 | 5 | 246 |
Co | 115 | 65 | 103 | 59 | 66 | 51 | 57 | 43 | 32 | 131 | 493 |
Cr | 50 | 35 | 48 | 938 | 105 | 116 | 30 | 129 | 65 | 36 | 65 |
Cu | 3365 | 1800 | 3540 | 2140 | 7310 | 5730 | 2990 | 7440 | 402 | 13,550 | 46,900 |
Fe | 204,250 | 236,000 | 236,000 | 113,500 | 42,700 | 65,800 | 52,100 | 55,900 | 20,500 | 389,000 | 124,500 |
K | 11,150 | 11,700 | 9400 | 14,400 | 1100 | 2000 | 14,700 | 2900 | 2300 | 5200 | 2600 |
Mg | 10,100 | 10,700 | 10,900 | 9500 | 4700 | 6100 | 11,900 | 7000 | 179,500 | 400 | 3700 |
Mn | 2760 | 8300 | 4940 | 2090 | 751 | 925 | 3860 | 866 | 575 | 1380 | 10,150 |
Na | 7300 | 4600 | 7500 | 2200 | 97,100 | 77,700 | 3000 | 86,100 | 800 | 2000 | 45,300 |
Ni | 56 | 33 | 56 | 134 | 126 | 77 | 53 | 73 | 65 | 219 | 450 |
P | 905 | 2190 | 1190 | 1030 | 230 | 180 | 650 | 300 | 280 | 120 | 1680 |
Pb | 35,550 | 15,300 | 35,200 | 50,600 | 51,400 | 55,000 | 52,600 | 58,500 | 7010 | 50,800 | 71,200 |
S | 16,800 | 9900 | 21,100 | 5100 | 7100 | 8800 | 9100 | 18,100 | 1300 | 64,100 | 8400 |
Sb | 299 | 134 | 362 | 299 | 99,300 | 59,700 | 1405 | 69,500 | 515 | 786 | 41,600 |
Sn | 525 | 170 | 270 | 80 | 1720 | 6760 | 230 | 9190 | 70 | 940 | 10,950 |
Ti | 1750 | 1900 | 1600 | 2200 | 2500 | 1900 | 1200 | 1300 | 4500 | 400 | 1230 |
Tl | 15 | 5 | 20 | 10 | 10 | 10 | 5 | 10 | 5 | 10 | 16 |
V | 105 | 118 | 93 | 122 | 58 | 49 | 40 | 44 | 56 | 37 | 76 |
Zn | 36,850 | 27,100 | 41,600 | 4120 | 17,700 | 52,400 | 5380 | 63,900 | 823 | 6960 | 59,400 |
Stream Sediments | Facility | Natural | Slag | Tailings | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Median | Max | Min | Std. Dev. | Waste | Soil | Pond | ||||||||||||
mg kg−1 | % | mg kg−1 | % | mg kg−1 | % | mg kg−1 | % | mg kg−1 | % | mg kg−1 | % | mg kg−1 | % | mg kg−1 | % | mg kg−1 | % | ||
F1 | 107 | 27 | 0.3 | 0.5 | 1035 | 41 | 0.06 | 0.4 | 280 | 40 | 7250 | 24 | 0.3 | 2 | <0.002 | - | 0.01 | 0.02 | |
F2 | 61 | 15 | 3 | 4 | 288 | 11 | 1.4 | 9 | 98 | 14 | 4320 | 15 | 0.5 | 4 | 51 | 17 | 1.2 | 3 | |
As | F3 | 102 | 26 | 19 | 32 | 533 | 21 | 4 | 28 | 149 | 21 | 9370 | 32 | 1.3 | 10 | 40 | 13 | 32 | 74 |
F4 | 17 | 4 | 4 | 7 | 105 | 4 | 0.5 | 3 | 27 | 4 | 550 | 1.9 | 0.7 | 6 | 7 | 2 | 2 | 4 | |
F5 | 107 | 27 | 33 | 56 | 555 | 22 | 9 | 59 | 146 | 21 | 8210 | 28 | 10 | 78 | 204 | 67 | 8 | 19 | |
F1 | 0.07 | 1.2 | 0.006 | 0.5 | 0.5 | 1.2 | <0.002 | - | 0.1 | 1.1 | 0.6 | 0.2 | <0.002 | - | 0.03 | 0.02 | <0.002 | - | |
F2 | 3 | 52 | 0.5 | 50 | 20 | 49 | 0.07 | 45 | 6 | 49 | 106 | 43 | 0.01 | 23 | 0.9 | 3 | 0.4 | 21 | |
Cd | F3 | 2 | 26 | 0.2 | 24 | 11 | 27 | 0.02 | 14 | 3 | 28 | 73 | 30 | 0.01 | 19 | 0.6 | 74 | 0.06 | 35 |
F4 | 0.02 | 0.3 | 0.01 | 0.6 | 0.1 | 0.3 | <0.002 | - | 0.03 | 0.3 | 1.1 | 0.4 | <0.002 | - | 0.5 | 4 | 0.09 | 27 | |
F5 | 1 | 20 | 0.3 | 26 | 9 | 22 | 0.06 | 41 | 2 | 21 | 65 | 26 | 0.03 | 58 | 29 | 19 | 1.2 | 70 | |
F1 | 4 | 0.8 | 3 | 0.7 | 14 | 0.9 | 0.74 | 1.9 | 4 | 0.9 | 90 | 0.2 | 0.08 | 0.5 | 1.4 | 0.03 | 0.4 | 0.1 | |
F2 | 56 | 11 | 46 | 11 | 167 | 11 | 0.60 | 1.5 | 44 | 10 | 18,350 | 39 | 0.7 | 5 | 3 | 0.1 | 52 | 13 | |
Cu | F3 | 158 | 31 | 136 | 34 | 401 | 26 | 20 | 52 | 115 | 27 | 12,100 | 26 | 2 | 13 | 60 | 1.4 | 253 | 60 |
F4 | 11 | 2 | 9 | 2 | 39 | 3 | 2 | 4 | 10 | 2 | 447 | 1.0 | 1 | 7 | 93 | 2 | 10 | 2 | |
F5 | 284 | 55 | 211 | 52 | 914 | 60 | 16 | 40 | 256 | 60 | 15,913 | 34 | 11 | 75 | 4077 | 96 | 103 | 25 | |
F1 | 73 | 0.5 | 39 | 0.3 | 305 | 0.7 | 13 | 0.7 | 86 | 0.8 | 162 | 0.2 | 0.3 | 1.1 | 12 | 0.1 | 3 | 0.01 | |
F2 | 8961 | 61 | 7550 | 63 | 29 | 63 | 1195 | 63 | 7614 | 67 | 12,950 | 18 | 10 | 37 | 1188 | 5 | 5869 | 29 | |
Pb | F3 | 2918 | 20 | 2295 | 19 | 8110 | 18 | 290 | 15 | 1796 | 16 | 27,500 | 39 | 13 | 51 | 314 | 1.4 | 522 | 3 |
F4 | 72 | 0.5 | 59 | 0.6 | 208 | 0.5 | 9 | 0.5 | 44 | 0.4 | 3990 | 6 | 0.7 | 3 | 1549 | 7 | <0.002 | - | |
F5 | 2598 | 18 | 2098 | 17 | 8181 | 18 | 394 | 21 | 1799 | 16 | 26,598 | 37 | 2 | 8 | 19,827 | 87 | 13520 | 68 | |
F1 | 4 | 6 | 0.5 | 1.4 | 45 | 21 | 0.08 | 0.7 | 11 | 19 | 2370 | 6 | 0.007 | 0.6 | - | - | - | - | |
F2 | 3 | 4 | 1.8 | 5 | 8 | 4 | 0.3 | 2 | 2 | 4 | 1325 | 3 | 0.004 | 0.4 | - | - | - | - | |
Sb | F3 | 5 | 7 | 4 | 11 | 10 | 5 | 0.7 | 6 | 3 | 5 | 1715 | 4 | 0.04 | 4 | - | - | - | - |
F4 | 9 | 13 | 5 | 14 | 25 | 12 | 2 | 20 | 8 | 13 | 734 | 1.8 | 0.2 | 18 | - | - | - | - | |
F5 | 45 | 69 | 26 | 69 | 126 | 59 | 8 | 71 | 36 | 60 | 35,456 | 85 | 0.9 | 78 | - | - | - | - | |
F1 | 6 | 0.6 | 0.7 | 0.3 | 30 | 0.5 | 0.1 | 0.2 | 10 | 0.6 | 160 | 0.3 | 0.1 | 0.3 | 12 | 0.02 | 0.1 | 0.05 | |
F2 | 208 | 20 | 34 | 13 | 2090 | 33 | 2 | 3 | 511 | 29 | 23,700 | 40 | 0.7 | 1.3 | 6369 | 12 | 12 | 6 | |
Zn | F3 | 475 | 45 | 120 | 47 | 2080 | 33 | 17 | 29 | 687 | 39 | 14,350 | 24 | 2 | 4 | 724 | 1.4 | 70 | 37 |
F4 | 13 | 1.2 | 6 | 2 | 68 | 1.1 | 3 | 5 | 17 | 1 | 107 | 0.2 | 3 | 6 | 171 | 0.3 | 1.2 | 0.6 | |
F5 | 350 | 33 | 96 | 37 | 1998 | 32 | 38 | 63 | 537 | 30 | 21,083 | 35 | 47 | 89 | 44,005 | 86 | 107 | 56 |
SM-WAS | L-1 | L-2 | L-3 | L-4 | Ch-1 | Pl-1 | Ch-2 | Pl-2 | Ch-3 | Pl-3 | Ch-4 | Pl-4 | Ch-5 | Pl-5 | Ch-6 | Pl-6 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 11.5 | 10.2 | 7.2 | 5.7 | 9.4 | 10.1 | 5.9 | 5.4 | 5.6 | 5.6 | 5.6 | 5.6 | 5.6 | 5.5 | 5.3 | 5.5 | 5.5 | |
Silt and clay (g kg−1) | 184 | 590 | 361 | 814 | 193 | 466 | 660 | 236 | 123 | 412 | 433 | 108 | 638 | 29 | 510 | 18 | 403 | |
F-1 (%) | 24 | 54 | 29 | 0.5 | 12 | 13 | 2 | 0.3 | 0.5 | 0.4 | 0.4 | 0.4 | 0.4 | 2 | 0.4 | 1.0 | 0.3 | |
F-2 (%) | 15 | 15 | 10 | 22 | 35 | 18 | 13 | 4 | 5 | 5 | 3 | 5 | 4 | 10 | 5 | 8 | 7 | |
As | F-3 (%) | 32 | 11 | 29 | 34 | 26 | 26 | 48 | 29 | 33 | 38 | 28 | 38 | 52 | 34 | 31 | 31 | 21 |
F-4 (%) | 2 | 5 | 2 | 3 | 2 | 10 | 5 | 5 | 3 | 7 | 17 | 11 | 5 | 3 | 9 | 2 | 12 | |
F-5 (%) | 28 | 15 | 30 | 39 | 24 | 33 | 32 | 61 | 58 | 50 | 53 | 46 | 39 | 52 | 54 | 58 | 60 | |
Total Conc. (mg kg−1) | 29,700 | 1921 | 1824 | 319 | 774 | 345 | 683 | 55 | 56 | 53 | 59 | 34 | 93 | 17 | 47 | 23 | 20 | |
F-1 (%) | 0.2 | 7 | 1.3 | 0.4 | 2 | 4 | 0.7 | 0.6 | 0.6 | 0.6 | 0.4 | 0.3 | 0.4 | 0 | 0.4 | 1.1 | 0.0 | |
F-2 (%) | 43 | 67 | 52 | 47 | 62 | 53 | 59 | 62 | 46 | 49 | 46 | 47 | 47 | 41 | 43 | 39 | 36 | |
Cd | F-3 (%) | 30 | 7 | 23 | 35 | 17 | 23 | 26 | 16 | 23 | 26 | 30 | 27 | 28 | 19 | 30 | 12 | 28 |
F-4 (%) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 3 | |
F-5 (%) | 26 | 19 | 23 | 17 | 19 | 19 | 14 | 21 | 31 | 23 | 22 | 25 | 24 | 39 | 24 | 48 | 33 | |
Total Conc. (mg kg−1) | 246 | 4 | 39 | 32 | 7 | 2 | 7 | 1.4 | 1.2 | 0.7 | 0.7 | 0.4 | 1.0 | 0.2 | 0.7 | 0.2 | 0.2 | |
F-1 (%) | 0.2 | 24 | 0.7 | 0.4 | 2 | 6 | 0.9 | 0.4 | 0.4 | 0.2 | 0.4 | 0.4 | 0.3 | 0.3 | 0.6 | 0.5 | 0.7 | |
F-2 (%) | 39 | 10 | 0 | 6 | 12 | 10 | 10 | 13 | 7 | 8 | 15 | 16 | 18 | 18 | 16 | 24 | 14 | |
Cu | F-3 (%) | 26 | 34 | 17 | 51 | 34 | 41 | 40 | 16 | 21 | 17 | 42 | 24 | 44 | 26 | 47 | 30 | 44 |
F-4 (%) | 1.0 | 6 | 0.5 | 5 | 2 | 6 | 3 | 1.0 | 0.9 | 0.9 | 3 | 1.3 | 2 | 0.7 | 4 | 0.9 | 8 | |
F-5 (%) | 34 | 27 | 82 | 38 | 50 | 36 | 46 | 70 | 71 | 74 | 40 | 58 | 35 | 55 | 32 | 45 | 34 | |
Total Conc. (mg kg−1) | 46,900 | 59 | 829 | 754 | 149 | 194 | 354 | 831 | 683 | 1236 | 609 | 440 | 917 | 242 | 557 | 183 | 185 | |
F-1 (%) | 0.2 | 12 | 1.1 | 0.3 | 1.2 | 3 | 0.4 | 0.1 | 0.3 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.3 | 0.4 | |
F-2 (%) | 18 | 56 | 29 | 34 | 43 | 43 | 63 | 64 | 71 | 77 | 79 | 70 | 78 | 22 | 69 | 39 | 48 | |
Pb | F-3 (%) | 39 | 13 | 32 | 32 | 26 | 31 | 27 | 11 | 15 | 13 | 14 | 19 | 13 | 26 | 18 | 31 | 27 |
F-4 (%) | 6 | 0.4 | 1.0 | 0.8 | 0.6 | 0.6 | 0.4 | 0.3 | 0.3 | 0.3 | 0.4 | 0.5 | 0.3 | 0.8 | 0.5 | 0.9 | 0.8 | |
F-5 (%) | 37 | 18 | 37 | 33 | 29 | 22 | 9 | 24 | 14 | 10 | 6 | 10 | 9 | 51 | 12 | 28 | 24 | |
Total Conc. (mg kg−1) | 71,200 | 2149 | 8761 | 25,013 | 7545 | 9027 | 16,785 | 17,090 | 15,376 | 18,365 | 23,879 | 9473 | 37,355 | 7077 | 22,446 | 5516 | 8080 | |
F-1 (%) | 6 | 33 | 8 | 0.9 | 6 | 7 | 2 | 1.1 | 0.8 | 0.7 | 0.6 | 0.6 | 0.6 | 0.8 | 0.8 | 0.7 | 0.7 | |
F-2 (%) | 3 | 4 | 4 | 6 | 6 | 4 | 8 | 6 | 6 | 4 | 3 | 3 | 4 | 3 | 3 | 4 | 2 | |
Sb | F-3 (%) | 4 | 3 | 7 | 3 | 9 | 7 | 10 | 11 | 9 | 14 | 8 | 9 | 23 | 6 | 7 | 5 | 6 |
F-4 (%) | 2 | 18 | 18 | 5 | 12 | 21 | 10 | 10 | 16 | 9 | 13 | 10 | 8 | 13 | 11 | 16 | 20 | |
F-5 (%) | 85 | 42 | 63 | 86 | 67 | 62 | 71 | 72 | 68 | 73 | 76 | 77 | 65 | 77 | 79 | 74 | 71 | |
Total Conc. (mg kg−1) | 41,600 | 139 | 131 | 147 | 73 | 24 | 63 | 22 | 34 | 28 | 30 | 24 | 42 | 130 | 32 | 115 | 11 | |
F-1 (%) | 0.3 | 18 | 0.4 | 0.4 | 2 | 4 | 0.5 | 0.3 | 0.3 | 0.3 | 0.2 | 0.2 | 0.2 | 0 | 0.2 | 0 | 0.2 | |
F-2 (%) | 40 | 16 | 33 | 10 | 21 | 8 | 27 | 18 | 13 | 8 | 5 | 9 | 5 | 8 | 5 | 11 | 3 | |
Zn | F-3 (%) | 24 | 40 | 33 | 61 | 51 | 32 | 45 | 53 | 50 | 44 | 38 | 30 | 44 | 50 | 37 | 54 | 28 |
F-4 (%) | 0.2 | 4 | 1.1 | 0.9 | 0.7 | 4 | 0.9 | 1.4 | 0.9 | 2 | 4 | 3 | 2 | 1.3 | 4 | 1.4 | 8 | |
F-5 (%) | 35 | 22 | 32 | 28 | 26 | 51 | 26 | 28 | 36 | 45 | 52 | 58 | 49 | 41 | 54 | 33 | 61 | |
Total Conc. (mg kg−1) | 59,400 | 171 | 6263 | 3195 | 770 | 148 | 822 | 302 | 308 | 149 | 146 | 97 | 196 | 2514 | 178 | 1529 | 62 |
L-1 | L-4 | Ch-1 | Ch-3 | Ch-6 | |
---|---|---|---|---|---|
T (°C) | 12 | 12 | 12 | 12 | 12 |
EC (µS cm−1) | 8864 | 2219 | 415 | 200 | 184 |
pH | 10.4 | 9.3 | 8.1 | 7.8 | 7.6 |
ORP (mV) | 50 | 160 | 170 | 170 | 170 |
Dissolved O2 (mg L−1) | 10 | 8.7 | 9.5 | 9.5 | 9.5 |
mg L−1 | |||||
Na+ | 1864 | 505 | 65 | 5 | 2 |
K+ | 41 | 19 | 7 | 5 | 4 |
Ca2+ | 6 | 15 | 14 | 29 | 29 |
Mg2+ | 2 | 7 | 3 | 3 | 3 |
Cl− | 31 | 19 | 9 | 3 | 2 |
SO42− | 1621 | 438 | 44 | 30 | 19 |
HCO3− | 1696 | 751 | 152 | 75 | 80 |
CO32− | 862 | 104 | 0 | 0 | 0 |
μg L−1 | |||||
As (50 μg L−1 AA) | 22,0676 | 31,890 | 530 | 5 | 6 |
Cd (0.1 μg L−1 AA) | 3 | 5 | 2 | 0.1 | 0.04 |
Cu (40 μg L−1 AA) | 313 | 434 | 64 | 47 | 55 |
Pb (7.2 μg L−1 AA) | 5029 | 787 | 337 | 132 | 125 |
Sb | 841 | 487 | 28 | 1 | 2 |
Zn (300 μg L−1 AA) | 525 | 132 | 58 | 36 | 44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortada, U.; Hidalgo, M.C.; Martínez, J.; de la Torre, M.J. Mobility and Bioavailability of Metal(loid)s in a Fluvial System Affected by the Mining and Industrial Processing of Pb. Geosciences 2021, 11, 167. https://doi.org/10.3390/geosciences11040167
Cortada U, Hidalgo MC, Martínez J, de la Torre MJ. Mobility and Bioavailability of Metal(loid)s in a Fluvial System Affected by the Mining and Industrial Processing of Pb. Geosciences. 2021; 11(4):167. https://doi.org/10.3390/geosciences11040167
Chicago/Turabian StyleCortada, Unai, María Carmen Hidalgo, Julián Martínez, and María José de la Torre. 2021. "Mobility and Bioavailability of Metal(loid)s in a Fluvial System Affected by the Mining and Industrial Processing of Pb" Geosciences 11, no. 4: 167. https://doi.org/10.3390/geosciences11040167
APA StyleCortada, U., Hidalgo, M. C., Martínez, J., & de la Torre, M. J. (2021). Mobility and Bioavailability of Metal(loid)s in a Fluvial System Affected by the Mining and Industrial Processing of Pb. Geosciences, 11(4), 167. https://doi.org/10.3390/geosciences11040167