Seismic and Geodetic Imaging (DInSAR) Investigation of the March 2021 Strong Earthquake Sequence in Thessaly, Central Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Εarthquake Magnitudes
2.2. Hypocenter Relocation
2.3. Earthquake Focal Mechanisms
2.4. Rupture Process from the Inversion of Teleseismic P-Waveforms
2.5. Rupture Process from InSAR
3. Results
3.1. Hypocentral Relocation
3.2. Earthquake Focal Mechanisms
3.3. Seismic Slip Distribution
3.4. Ground Deformation from INSAR
3.4.1. The First Shock of 3 March 2021
3.4.2. The Earthquake of 4 March 2021
3.4.3. The Earthquakes of 3 and 4 March 2021 Combined
3.4.4. The Earthquake of 12 March 2021
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lekkas, E.; Agorastos, K.; Mavroulis, S.; Kranis, H.; Skourtsos, E.; Carydis, P.; Gogou, Μ.; Katsetsiadou, K.N.; Papadopoulos, G.; Triantafyllou, I.; et al. The early March 2021 Thessaly (Greece) earthquake sequence. Newsl. Environ. Disaster Crises Manag. Strateg. 2021, 22, 1–195. [Google Scholar] [CrossRef]
- Caputo, R. Geological and structural study of the recent and active brittle deformation of the Neogene-Quaternary Basins of Thessaly (Central Greece). Aristotle Univ. Thessalon. Sci. Ann. 1990, 2, 252. [Google Scholar]
- Caputo, R. Morphotectonics and kinematics along the Tirnavos Fault, northern Larissa Plain, mainland Greece. Zeit. Für Geomorph. 1993, 94, 167–185. [Google Scholar]
- Caputo, R.; Pavlides, S. Late Cainozoic geodynamical evolution of Thessaly and surroundings (central-northern Greece). Tectonophysics 1993, 223, 339–362. [Google Scholar] [CrossRef]
- Caputo, R.; Helly, B.; Pavlides, S.; Papadopoulos, G. Palaeoseismological investigation of the Tyrnavos Fault (Thessaly, Central Greece). Tectonophysics 2004, 394, 1–20. [Google Scholar] [CrossRef]
- Caputo, R.; Helly, B.; Pavlides, S.; Papadopoulos, G.A. Archaeo-and palaeoseismological investigations in Northern Thessaly (Greece): Insights for the seismic potential of the region. Nat. Hazards 2006, 39, 195–212. [Google Scholar] [CrossRef]
- Tsodoulos, I.; Stamoulis, K.; Caputo, R.; Koukouvelas, I.; Chatzipetros, A.; Pavlides, S.; Gallousi, C.; Papachristodoulou, C.; Ioannides, K. Middle-Late Holocene earthquake history of the Gyrtoni Fault, Central Greece: Insight from optically stimulated luminescence (OSL) dating and paleoseismology. Tectonophysics 2016, 687, 14–27. [Google Scholar] [CrossRef]
- Caputo, R.; Chatzipetros, A.; Pavlides, S.; Sboras, S. The Greek Database of Seismogenic Sources (GreDaSS): State-of-the-art for northern Greece. Ann. Geophys. 2013, 55, 859–894. [Google Scholar] [CrossRef]
- Papadopoulos, G.A. Rupture zones of strong earthquakes in the Thessalia region, Central Greece. In Proceedings of the XXIII General Assembly, European Seismological Commission, Prague, Czech Republic, 7–12 September 1992; Geophysical Institute, Czechoslovak Academy of Science: Prague, Czech Republic, 1993; pp. 337–340. [Google Scholar]
- Papadopoulos, G.A. Tectonic and seismic processes of various space and time scales in the Greek area. In Recent Evolution and Seismicity of the Mediterranean Region; Boschi, E., Mantovani, E., Morelli, A., Eds.; Kluwer: Dordrecht, The Netherlands, 1993; pp. 239–249. [Google Scholar]
- Caputo, R. A possible seismic gap of Northern Thessaly, Greece, as inferred from geological data. Bull. Geol. Soc. Greece 1994, 30, 263–272. [Google Scholar]
- Caputo, R. Inference of a Seismic Gap from Geological Data: Thessaly (Central Greece) as a Case Study. Ann. Geophys. 1995, 38, 1–19. Available online: https://www.annalsofgeophysics.eu/index.php/annals/article/view/4127 (accessed on 29 May 2021). [CrossRef]
- Papadimitriou, E.; Karakostas, V. Episodic occurrence of strong (Mw≥6.2) earthquakes in Thessalia area (central Greece). Earth Planet Sci. Lett. 2003, 215, 395–409. [Google Scholar] [CrossRef]
- Caputo, R. Comment on “Episodic occurrence of strong (Mw≥6.2) earthquakes in Thessalia area (central Greece)” by EE Papadimitriou and VG Karakostas [Earth Planet. Sci. Lett. 215 (2003) 395–409]. Earth Planet Sci. Lett. 2004, 231, 347–352. [Google Scholar] [CrossRef]
- Papadimitriou, E.; Karakostas, V. Occurrence patterns of strong earthquakes in Thessalia area (Greece) determined by the stress evolutionary model. Earth Planet Sci. Lett. 2005, 235, 766–770. [Google Scholar] [CrossRef]
- Tolomei, C.; Caputo, R.; Polcari, M.; Famiglietti, N.A.; Maggini, M.; Stramondo, S. The Use of Interferometric Synthetic Aperture Radar for Isolating the Contribution of Major Shocks: The Case of the March 2021 Thessaly, Greece, Seismic Sequence. Geosciences 2021, 11, 191. [Google Scholar] [CrossRef]
- Pavlides, S.; Chatzipetros, A.; Sboras, S.; Kremastas, E.; Chatziioannou, A. The Northern Thessaly Strong Earthquakes of March 3 and 4 and Their Neotectonic Setting; Earthquake Geology Team, Aristotle University Thessaloniky: Thessaloniky, Greece, 2021; p. 10. Available online: http://eqgeogr.weebly.com/ (accessed on 7 June 2021).
- Papadopoulos, G.A.; Lefkopoulos, A. Magnitude-distance relations for liquefaction in soil from earthquakes. Bull. Seism. Soc. Am. 1993, 83, 925–938. [Google Scholar]
- Lomax, A.; Virieux, J.; Volant, P.; Berge-Thierry, C. Probabilistic earthquake location in 3D and layered models. In Advances in Seismic Event Location, 1st ed.; Thurber, C.H., Rabinowitz, N., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 101–134. [Google Scholar] [CrossRef]
- Lomax, A.A.; Michelini, A.; Curtis, A. Earthquake Location, Direct, Global-Search Methods. In Encyclopedia of Complexity and System Science, 2nd ed.; Meyers, R.A., Ed.; Springer: New York, NY, USA, 2014; pp. 1–33. [Google Scholar] [CrossRef]
- Tarantola, A.; Valette, B. Generalized nonlinear inverse problems solved using the least squares criterion. Rev. Geophys. 1982, 20, 219–232. [Google Scholar] [CrossRef]
- Karastathis, V.K.; Papoulia, J.; Di Fiore, B.; Makris, J.; Tsambas, A.; Stampolidis, A.; Papadopoulos, G.A. Deep structure investigations of the geothermal field of the North Euboean Gulf, Greece, using 3-D local earthquake tomography and Curie Point Depth analysis. J. Volcanol. Geotherm. Res. 2011, 206, 106–120. [Google Scholar] [CrossRef]
- Karastathis, V.K.; Mouzakiotis, E.; Ganas, A.; Papadopoulos, G.A. High-precision relocation of seismic sequences above a dipping Moho: The case of the January-February 2014 seismic sequence on Cephalonia island (Greece). Solid Earth 2015, 6, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Hartzell, S.H.; Heaton, T.H. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bull. Seismol. Soc. Am. 1983, 73, 1553–1583. [Google Scholar] [CrossRef]
- Hartzell, S.H.; Liu, P.; Mendoza, C. The 1994 Northridge, California earthquake: Investigation of rupture velocity, rise time and high-frequency radiation. J. Geophys. Res. 1996, 101, 20091–20108. [Google Scholar] [CrossRef]
- Mendoza, C.; Hartzell, S.H. Finite-Fault Source Inversion Using Teleseismic P Waves: Simple Parameterization and Rapid Analysis. Bull. Seism. Soc. Am. 2013, 103, 834–844. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Agalos, A.; Charalampakis, M.; Kontoes, C.; Papoutsis, I.; Atzori, S.; Svigkas, S.; Triantafyllou, I. Fault models for the Bodrum-Kos tsunamigenic earthquake (Mw6.6) of 20 July 2017 in the east Aegean Sea. J. Geodyn. 2019, 131. [Google Scholar] [CrossRef]
- Langston, C.A.; Helmberger, D.V. A procedure for modeling shallow dislocation sources. Geophys. J. Royal. Astron. Soc. 1975, 42, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Heaton, T. The 1971 San Fernando earth quake: A double event? Bull. Seism. Soc. Am. 1982, 72, 2037–2062. [Google Scholar] [CrossRef]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. In Inverse Problems; IOP Publishing Limited: Bristol, UK, 1998. [Google Scholar]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Zebker, H.A.; Rosen, P.A.; Goldstein, R.M.; Gabriel, A.; Werner, C.L. On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake. J. Geophys. Res. 1994, 99, 19617–19634. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Bally, P. Satellite Earth Observation for Geohazard Risk Management—The Santorini Conference, Santorini, Greece, 21–23 May 2012; ESA Publ. STM-282; European Space Agency: Paris, France, 2014. [Google Scholar] [CrossRef]
- Wright, T.J.; Parsons, B.E.; Lu Toward, Z. Mapping surface deformation in three dimensions using InSAR. Geophys. Res. Lett. 2004, 31, L01607. [Google Scholar] [CrossRef] [Green Version]
- Raucoules, D.; De Michele, M.; Malet, J.-P.; Ulrich, P. Time-variable 3D ground displacements from high-resolution synthetic aperture radar (SAR). Application to La Valette landslide (South French Alps). Remote Sens. Environ. 2013, 139, 198–204. [Google Scholar] [CrossRef] [Green Version]
- SARmapModeling Tutorial 2020, Version 5.5.3. p. 24. Available online: https://www.sarmap.ch/tutorials/ModelingTutorial_v553.pdf (accessed on 27 March 2021).
- Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seism. Soc. Am. 1992, 82, 1018–1040. [Google Scholar]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- International Seismological Centre. ISC-GEM Earthquake Catalogue; ISC: Berkshire, UK, 2021. [Google Scholar] [CrossRef]
- Jackson, J.A.; Gagnepain, J.; Houseman, G.; King, G.C.P.; Papadimitriou, P.; Soufleris, C.; Virieux, J. Seismicity, normal faulting and the geomorphological development of the Gulf of Corinth (Greece): The Corinth earthquakes of February and March 1981. Earth Planet. Sci. Lett. 1982, 57, 377–397. [Google Scholar] [CrossRef]
- Hubert, A.; King, G.C.P.; Mayer, B.; Papanastasiou, D. Fault re-activation, stress interaction and rupture propagation of the 1981 Corinth earthquake sequence. Earth Planet Sci. Lett. 1996, 142, 573–585. [Google Scholar] [CrossRef] [Green Version]
- Resor, P.G.; Pollard, D.D.; Wright, T.J.; Beroza, G.C. Integrating high-precision aftershock locations and geodetic observations to model coseismic deformation associated with the 1995 Kozani-Grevena earthquake, Greece. J. Geophys. Res. 2005, 110, B09402. [Google Scholar] [CrossRef] [Green Version]
- Parcharidis, I.; Zare, M.; Foumelis, M.; Lagios, E. Seismotectonic investigation on the Bam earthquake prone area (Iran) based on ASAR interferometry. In Proceedings of the 2nd International Conference Recent Advances Space Technologies, Istanbul, Turkey, 9–11 June 2005; pp. 673–677. [Google Scholar] [CrossRef]
- Cheloni, D.; De Novellis, V.; Albano, M.; Antonioli, A.; Anzidei, M.; Atzori, S.; Avallone, A.; Bignami, C.; Bonano, M.; Calcaterra, S. Geodetic model of the 2016 Central Italy earthquake sequence inferred from InSAR and GPS data. Geophys. Res. Lett. 2017, 44, 6778–6787. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seism. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
- Papadopoulos, G.A.; Agalos, A.; Minadakis, G.; Triantafyllou, I.; Krassakis, P. Short-Term Foreshocks as Key Information for Mainshock Timing and Rupture: The Mw6.8 25 October 2018 Zakynthos Earthquake, Hellenic Subduction Zone. Sensors 2020, 20, 5681. [Google Scholar] [CrossRef] [PubMed]
- Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.; Wobbe, F. Generic Mapping Tools: Improved Version Released. EOS Trans. AGU 2013, 94, 409–410. [Google Scholar] [CrossRef] [Green Version]
Vp (km/s) | Vs (km/s) | D (km) |
---|---|---|
2.9 | 1.68 | 0.00 |
4.5 | 2.60 | 1.50 |
5.8 | 3.35 | 4.00 |
6.1 | 3.52 | 7.00 |
6.3 | 3.64 | 12.00 |
6.8 | 3.93 | 18.00 |
Strike | Dip | Rake | L (km) | H (km) | v (km/s) | h (km) | Mo | Mw |
---|---|---|---|---|---|---|---|---|
312° | 45° | −95° | 32.5 | 16 | 2.7 | 12 | 3.5 × 1018 | 6.3 |
Date | Time (UTC) | Lat (φοΝ) | Long (λοΕ) | Depth (km) | Mw | Gap° | Erz (km) | Erh (km) |
---|---|---|---|---|---|---|---|---|
DD.MM.YYYY | HH:MM:SS | |||||||
3.3.2021 | 10:16:08 | 39.7417 | 22.1854 | 10.5 | 6.3 | 59 | 1.0 | 0.68 |
4.3.2021 | 18:38:19 | 39.7869 | 22.1168 | 4.0 | 6.2 | 56 | 0.67 | 0.76 |
12.3.2021 | 12:57:50 | 39.8374 | 22.0114 | 4.5 | 5.7 | 41 | 0.5 | 0.54 |
Date | Time | NP | Av Strike (°) | Av Dip (°) | Av Rake (°) |
---|---|---|---|---|---|
DD.MM.YYYY | HH:MM:SS | ||||
3.3.2021 | 10:16:08 | 1 | 130 ± 9 | 49 ± 7 | −93 ± 11 |
2 | 314 ± 7 | 48 ± 8 | −88 ± 12 | ||
4.3.2021 | 18:38:19 | 1 | 125 ± 13 | 46 ± 10 | −91 ± 2 |
2 | 303 ± 16 | 44 ± 10 | −90 ± 2 | ||
12.3.2021 | 12:57:50 | 1 | 106 ± 9 | 39 ± 7 | −105 ± 16 |
2 | 304 ± 11 | 54 ± 8 | −80 ± 11 |
Date | Time | Strike (°) | Dip (°) | Rake (°) | Moment (×1018 N*m) | Mw | Maximum Slip (m) |
---|---|---|---|---|---|---|---|
DD.MM.YYYY | HH:MM:SS | ||||||
3.3.2021 | 10:16:08 | 317 | 30 | −110 | 3.02 | 6.3 | 1.5 |
4.3.2021 | 18:38:19 | 116 | 40 | −101 | 2.08 | 6.2 | 1.2 |
12.3.2021 | 12:57:50 | 117 | 45 | −95 | 0.37 | 5.7 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulos, G.A.; Agalos, A.; Karavias, A.; Triantafyllou, I.; Parcharidis, I.; Lekkas, E. Seismic and Geodetic Imaging (DInSAR) Investigation of the March 2021 Strong Earthquake Sequence in Thessaly, Central Greece. Geosciences 2021, 11, 311. https://doi.org/10.3390/geosciences11080311
Papadopoulos GA, Agalos A, Karavias A, Triantafyllou I, Parcharidis I, Lekkas E. Seismic and Geodetic Imaging (DInSAR) Investigation of the March 2021 Strong Earthquake Sequence in Thessaly, Central Greece. Geosciences. 2021; 11(8):311. https://doi.org/10.3390/geosciences11080311
Chicago/Turabian StylePapadopoulos, Gerassimos A., Apostolos Agalos, Andreas Karavias, Ioanna Triantafyllou, Issaak Parcharidis, and Efthymios Lekkas. 2021. "Seismic and Geodetic Imaging (DInSAR) Investigation of the March 2021 Strong Earthquake Sequence in Thessaly, Central Greece" Geosciences 11, no. 8: 311. https://doi.org/10.3390/geosciences11080311
APA StylePapadopoulos, G. A., Agalos, A., Karavias, A., Triantafyllou, I., Parcharidis, I., & Lekkas, E. (2021). Seismic and Geodetic Imaging (DInSAR) Investigation of the March 2021 Strong Earthquake Sequence in Thessaly, Central Greece. Geosciences, 11(8), 311. https://doi.org/10.3390/geosciences11080311