Finite-Element Modeling of Spontaneous Potential in an Axisymmetric Reservoir Model with Account of Its Shale Content
Abstract
:1. Introduction
2. SP Problem Statement
2.1. The Description of the Physical Model
2.2. Accounting for Shale Content
3. Forward SP Modeling
3.1. Finite Element Method Computation
3.2. Determining Source Current Density
4. Results and Discussion
4.1. Testing the Computational Algorithm
4.2. Numerical Modeling
4.3. Comparative Analysis of Synthetic and Practical Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doll, H.G. The S.P. Log: Theoretical Analysis and Principles of Interpretation. Trans. AIME 1949, 179, 146–185. [Google Scholar] [CrossRef]
- Dakhnov, V.N. Prospective Geophysics; Pershina, V.G., Fedotova, I.G., Eds.; State Scientific and Technical Publishing House of Oil and Mining and Fuel Literature: Moscow, Russia, 1959. (In Russian) [Google Scholar]
- Ellis, D.V.; Singer, J.M. Well Logging for Earth Scientists; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Hunt, C.W.; Worthington, M.H. Borehole electrokinetic responses in fracture dominated hydraulically conductive zones. Geophys. Res. Lett. 2000, 27, 1315–1318. [Google Scholar]
- Minsley, B.J.; Sogade, J.; Morgan, F.D. Three-dimensional source inversion of self-potential data. J. Geophys. Res. Solid Earth 2007, 112, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Revil, A.; Linde, N.; Cerepi, A.; Jougnot, D.; Matthäi, S.; Finsterle, S. Electrokinetic coupling in unsaturated porous media. J. Colloid Interface Sci. 2007, 313, 315–327. [Google Scholar] [CrossRef] [Green Version]
- Stoll, J.; Bigalke, J.; Grabner, E.W. Electrochemical modelling of self-potential anomalies. Surv. Geophys. 1995, 16, 107–120. [Google Scholar] [CrossRef]
- MacAllister, D.J.; Graham, M.T.; Vinogradov, J.; Butler, A.P.; Jackson, M.D. Characterizing the Self-Potential Response to Concentration Gradients in Heterogeneous Subsurface Environments. J. Geophys. Res. Solid Earth 2019, 124, 7918–7933. [Google Scholar] [CrossRef] [Green Version]
- Arora, T.; Linde, N.; Revil, A.; Castermant, J. Non-intrusive characterization of the redox potential of landfill leachate plumes from self-potential data. J. Contam. Hydrol. 2007, 92, 274–292. [Google Scholar] [CrossRef] [PubMed]
- Maineult, A.; Bernabé, Y.; Ackerer, P. Detection of advected, reacting redox fronts from self-potential measurements. J. Contam. Hydrol. 2006, 86, 32–52. [Google Scholar] [CrossRef] [PubMed]
- Wyllie, M.R.J. A quantitative analysis of the electrochemical component of the S. P. curve. Pet. Trans. AIME 1949, 1, 17–26. [Google Scholar] [CrossRef]
- Salazar, J.M.; Wang, G.L.; Torres-verdín, C.; Lee, H.J. Combined simulation and inversion of SP and resistivity logs for the estimation of connate-water resistivity and Archie’s cementation exponent. Geophysics 2008, 73, E107–E114. [Google Scholar] [CrossRef] [Green Version]
- Singha, D.K.; Rai, N.; Madhvi Maurya, M.; Shankar, U.; Chatterjee, R. Interpretation of Self-Potential (SP) Log and Depositional Environment in the Upper Assam Basin, India; Biswas, A., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 279–301. [Google Scholar] [CrossRef]
- Miah, M.I. Porosity assessment of gas reservoir using wireline log data: A case study of bokabil formation, Bangladesh. Procedia Eng. 2014, 90, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Worthington, A.E.; Meldau, R.F. Departure Curves for the Self-Potential Log. Pet. Trans. AIME 1958, 213, 11–16. [Google Scholar] [CrossRef]
- Segesman, F. New SP correction charts. Geophysics 1962, 27, 815–828. [Google Scholar] [CrossRef]
- Revil, A. Ionic Diffusivity, Electrical Conductivity, Membrane and Thermoelectric Potentials in Colloids and Granular Porous Media: A Unified Model. J. Colloid Interface Sci. 1999, 212, 503–522. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Anguiano, J.; Torres-Verdín, C.; Strobel, J. Mechanistic 3D finite-difference simulation of borehole spontaneous potential measurements. Geophysics 2020, 85, D105–D119. [Google Scholar] [CrossRef]
- Sill, W.R. Self-potential modeling from primary flows. Geophysics 1983, 48, 76–86. [Google Scholar] [CrossRef]
- Tatsien, L.; Yongji, T.; Yuejun, P. Mathematical model and method for spontaneous potential well-logging. Eur. J. Appl. Math. 1994, 5, 123–139. [Google Scholar] [CrossRef]
- Pan, K.J.; Tan, Y.J.; Hu, H.L. Mathematical model and numerical method for spontaneous potential log in heterogeneous formations. Appl. Math. Mech. 2009, 30, 209–219. [Google Scholar] [CrossRef]
- Dobroka, M.; Szabo, P.N. The inversion of well log data using simulated annealing method. Publ. Univ. Miskolc Ser. A Min. Geotechnol. 2001, 59, 115–138. [Google Scholar]
- Akimova, E.; Belousov, D. Parallel Algorithms for Solving Linear Systems with Block-Fivediagonal Matrices on Multi-Core CPU. CEUR Workshop Proc. 2016, 1729, 38–48. [Google Scholar]
- Akimova, E.N.; Belousov, D.V.; Misilov, V.E. Algorithms for solving inverse geophysical problems on parallel computing systems. Numer. Anal. Appl. 2013, 6, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Hristenko, L.A.S. Transformation of SP observations for solving engineering-geological problems. Min. Inform. Analyt. Bull. 2012, 5, 169–173. [Google Scholar]
- Biswas, A. Inversion of Amplitude from the 2-D Analytic Signal of Self-Potential Anomalies. In Minerals; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Eppelbaum, L.V. Review of processing and interpretation of self-potential anomalies: Transfer of methodologies developed in magnetic prospecting. Geosciences 2021, 11, 194. [Google Scholar] [CrossRef]
- Akgün, M. Estimation of some bodies parameters from the self potential method using Hilbert transform. J. Balk. Geophys. Soc. 2001, 4, 29–44. [Google Scholar]
- Zhang, G.J.; Wang, G.L. A new approach to sp computation—vector potential approach. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2092–2098. [Google Scholar] [CrossRef]
- Jardani, A.; Revil, A.; Santos, F.; Fauchard, C.; Dupont, J.P. Detection of preferential infiltration pathways in sinkholes using joint inversion of self-potential and EM-34 conductivity data. Geophys. Prospect. 2007, 55, 749–760. [Google Scholar] [CrossRef]
- Woodruff, W.F.; Revil, A.; Jardani, A.; Nummedal, D.; Cumella, S. Stochastic Bayesian inversion of borehole self-potential measurements. Geophys. J. Int. 2010, 183, 748–764. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, C.K.; Klotz, J.A. Filtration from Mud during Drilling. J. Pet. Technol. 1954, 6, 30–43. [Google Scholar] [CrossRef]
- Li, H.; Fan, Y.R.; Hu, Y.Y.; Deng, S.G.; Sun, Q.T. Joint inversion of HDIL and SP with a five-parameter model for estimation of connate water resistivity. Acta Geophys. Sin. 2013, 56, 688–695. [Google Scholar] [CrossRef]
- Dakhnov, V.N. Interpretation of Logging Diagrams; Gosgeoltekhizdat: Moscow, Russia, 1941. (In Russian) [Google Scholar]
- Archie, G.E. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Pet. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Waxman, M.H.; Smits, L.J.M. Electrical conductivities in oil-bearing shaly sands. Soc. Pet. Eng. J. 1968, 8, 107–122. [Google Scholar] [CrossRef]
- Nechaev, O.V.; Glinskikh, V.N. Three-dimensional simulation and inversion of lateral logging sounding and lateral logging data in media with tilt of the main axes of the dielectric anisotropy tensor. Vestnik NSU 2018, 16, 127–139. [Google Scholar] [CrossRef]
- Schlumberger. Log Interpretation Principles/Application; Schlumberger Educational Services: Houston, TX, USA, 1989. [Google Scholar]
, °C | ||||
---|---|---|---|---|
0.108 | 2 | −11.6 | 58 | 20 |
, m | , °C | ||||||||
---|---|---|---|---|---|---|---|---|---|
0.108 | 2 | 0.25 | 1 | 8700 | 26,500 | 144,000 | 2900 | 2.16 | 25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Epov, M.; Glinskikh, A.; Nechaev, O. Finite-Element Modeling of Spontaneous Potential in an Axisymmetric Reservoir Model with Account of Its Shale Content. Geosciences 2022, 12, 30. https://doi.org/10.3390/geosciences12010030
Epov M, Glinskikh A, Nechaev O. Finite-Element Modeling of Spontaneous Potential in an Axisymmetric Reservoir Model with Account of Its Shale Content. Geosciences. 2022; 12(1):30. https://doi.org/10.3390/geosciences12010030
Chicago/Turabian StyleEpov, Mikhail, Anastasia Glinskikh, and Oleg Nechaev. 2022. "Finite-Element Modeling of Spontaneous Potential in an Axisymmetric Reservoir Model with Account of Its Shale Content" Geosciences 12, no. 1: 30. https://doi.org/10.3390/geosciences12010030
APA StyleEpov, M., Glinskikh, A., & Nechaev, O. (2022). Finite-Element Modeling of Spontaneous Potential in an Axisymmetric Reservoir Model with Account of Its Shale Content. Geosciences, 12(1), 30. https://doi.org/10.3390/geosciences12010030