Estimating Water Content in Water–Oil Mixtures and Porous MEDIA They Saturate: Joint Interpretation of NMR Relaxometry and Dielectric Spectroscopy
Abstract
:1. Introduction
2. Research Methods and Sample Preparation
3. NMR Investigations
3.1. NMR Studies of Water–Oil Mixtures
3.2. NMR Studies of Drill Cuttings at Mixed Saturation
4. Dielectric Studies of Drill Cuttings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulmishek, G.F. Petroleum Geology and Resources of the West Siberian Basin, Russia; 2201-G; US Geological Bulletin: Reston, VA, USA, 2003; p. 53.
- Komgort, M.V. The problem of Siberian oil in scientific polemics during the period from 1920 to 1930. Bull. Tyumen State Univ. 2010, 1, 90–95. [Google Scholar]
- Rajinder, P. Techniques for measuring the composition (oil and water content) of emulsions—A state of the art review. Colloids Surf. A Physicochem. Eng. Asp. 1994, 84, 141–193. [Google Scholar] [CrossRef]
- Coates, G.; Xiao, L.; Prammer, M. NMR Logging. Principles and Application; Halliburton energy Services: Houston, TX, USA, 2001; p. 342. [Google Scholar]
- Flaum, M.; Hirasaki, G.J.; Flaum, C.; Straley, C. Measuring pore connectivity by pulsed field gradient diffusion editing with hydrocarbons gases. Magn. Resonan. Imaging 2005, 23, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Mirotchnik, K.; Kantzas, A.; Starosud, A.; Aikman, M. A New method for group analysis of petroleum fractions in unconsolidated porous media. J. Can. Petrol. Technol. 2001, 40, 38–44. [Google Scholar] [CrossRef]
- Howard, J.J. Quantitative estimates of porous media wettability from proton NMR measurements. Magn. Resonan. Imaging 1998, 16, 529–533. [Google Scholar] [CrossRef]
- Hürlimann, M.D.; Freed, D.E.; Zielinski, L.J.; Song, Y.Q.; Leu, G.; Straley, C.; Cao Minh, C.; Boyd, A. Hydrocarbon Composition from NMR Diffusion and Relaxation Data. Petrophysics 2009, 50, 116–129. [Google Scholar]
- Korb, J.P.; Vorapalawut, N.; Nicot, B.; Bryant, R.G. Relation and Correlation between NMR Relaxation Times, Diffusion Coefficients, and Viscosity of Heavy Crude Oils. J. Phys. Chem. 2015, 119, 24439–24446. [Google Scholar] [CrossRef]
- Freedman, R.; Heaton, N. Fluid characterization using nuclear magnetic resonance logging. Petrophysics 2004, 45, 241–250. [Google Scholar]
- Shkalikov, N.V.; Skirda, V.D.; Archipov, R.V. Solid-like component in the spin-spin NMR-relaxation of heavy oils. Magn. Resonan. Solids Electron. J. 2006, 8, 38–42. [Google Scholar]
- Bryan, J.; Kantzas, A.; Bellehumeur, C. Oil-viscosity predictions from low-field NMR measurements. SPE Reserv. Eval. Eng. 2005, 8, 44–53. [Google Scholar] [CrossRef]
- Birdwell, J.E.; Washburn, K.E. Multivariate Analysis Relating Oil Shale Geochemical Properties to NMR Relaxometry. Energy Fuels 2015, 29, 2234–2243. [Google Scholar] [CrossRef]
- Kashaev, R.S. Viscosity Correlations with Nuclear (Proton) Magnetic Resonance Relaxation in Oil Disperse Systems. Appl. Magn. Resonan. 2018, 49, 1–7. [Google Scholar] [CrossRef]
- Liu, J.; Feng, X.; Wang, D. Determination of water content in crude oil emulsion by LF-NMR CPMG sequence. Petrol. Sci. Technol. 2019, 37, 1123–1135. [Google Scholar] [CrossRef]
- Zhand, R.; Huo, J.; Peng, Z.; Feng, Q.; Wang, J.; Zhang, J. Research on Oil-Based Drilling Fluids Emulsion Droplet by Low-Field NMR. Appl. Magn. Resonan. 2016, 47, 1339–1352. [Google Scholar] [CrossRef]
- Rinaldi, V.A.; Francisca, F.M. Impedance analysis of soil dielectric dispersion (1 MHz–1 GHz). J. Geotech. Geoenviron. Eng. 1999, 125, 111–121. [Google Scholar] [CrossRef]
- Bobrov, P.P.; Belyaeva, T.A.; Kroshka, E.S.; Rodionova, O.V. Relationship of low-frequency dielectric permittivity with the conductivity of low-salted sand samples. Radio Commun. Technol. 2020, 3, 85–94. [Google Scholar] [CrossRef]
- Akselrod, S.M. New trends in dielectric logging (based on foreign press materials). Karotazhnik 2012, 4, 78–112. (In Russian) [Google Scholar]
- Dzhafarov, I.S.; Syngaevsky, P.E.; Khafizov, S.F. Application of the Method of Nuclear Magnetic Resonance to Characterize the Composition and Distribution of Reservoir Fluids; Chemistry: Moscow, Russia, 2002; p. 439. [Google Scholar]
- Abragam, A. The Principles of Nuclear Magnetism; Clarendon Press: Oxford, UK, 1962; p. 599. [Google Scholar]
- Axelrod, S.M. Nuclear Magnetic Resonance in Oil and Gas Geology and Geophysics; Nedra: Moscow, Russia, 1990; p. 192. [Google Scholar]
- Dunn, K.J.; Bergman, D.J.; LaTorracca, G.A. Nuclear Magnetic Resonance. Petrophysical and Logging Application; PERGAMON: London, UK, 2002; p. 294. [Google Scholar]
- Tikhonov, A.N.; Goncharsky, A.V.; Stepanov, V.V.; Yagola, A.G. Numerical Methods for Solving Ill-Posed Problems; Nedra: Moscow, Russia, 1992; p. 232. [Google Scholar]
- Turakhanov, A.H.; Shumskayte, M.Y.; Ildyakov, A.V.; Manakov, A.Y.; Smirnov, V.G.; Glinskikh, V.N.; Duchkov, A.D. Formation of methane hydrate from water sorbed by anthracite: An investgation by low-field NMR relaxation. Fuel 2020, 262, 1–6. [Google Scholar] [CrossRef]
- Brandt, A.A. Investigation of Dielectrics at Ultrahigh Frequencies; State Publishing House of Physical and Mathematical Literature: Moscow, Russia, 1963; p. 404. [Google Scholar]
- Lapina, A.S.; Bobrov, P.P.; Golikov, N.A.; Repin, A.V.; Shumskayte, M.Y. Hysteresis of the NMR response and the complex relative permittivity of the quartz granules powders and solid sandstones during the water imbibition and drainage. Meas. Sci. Technol. 2016, 28, 7. [Google Scholar] [CrossRef]
- ASTM D5002-19; Standard Test Method for Density, Relative Density, and API Gravity of Crude Oils by Digital Density Analyzer. ASTM International: West Conshohocken, PA, USA, 2019. Available online: www.astm.org (accessed on 7 October 2021).
- ASTM D445-17; Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). ASTM International: West Conshohocken, PA, USA, 2017. Available online: www.astm.org (accessed on 6 April 2022).
- Fleury, M.; Deflandre, F. Quantitative evaluation of porous media wettability using NMR relaxometry. Magn. Resonan. Imaging 2003, 21, 385–387. [Google Scholar] [CrossRef]
- Al-Garadi, K.; El-Husseiny, A.; Elsayed, M.; Connolly, P.; Mahmoud, M. A rock core wettability index using NMR T2 measurements. J. Petrol. Sci. Eng. 2022, 208, 109386. [Google Scholar] [CrossRef]
- Mohammed, I.; Mahmoud, M.; El-Husseiny, A.; Al Shehri, D.; Al-Garadi, K.; Kamal, M.S.; Alade, O.S. Impact of Asphaltene Precipitation and Deposition on Wettability and Permeability. ACS Omega 2021, 6, 20091–20102. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, M.; Glatz, G.; El-Husseiny, A.; Alqubalee, A.; Adebayo, A.; Al-Garadi, K.; Mahmoud, M. The Effect of Clay Content on the Spin–Spin NMR Relaxation Time Measured in Porous Media. ASC Omega 2020, 5, 6545–6555. [Google Scholar] [CrossRef] [PubMed]
- Vasilyeva, M.A.; Gusev, Y.A.; Shtyrlin, V.G.; Greenbaum (Gutina), A.; Puzenko, A.; Ishai, P.B.; Feldman, Y. Dielectric relaxation of water in clay minerals. Clays Clay Miner. 2014, 62, 62–73. [Google Scholar] [CrossRef]
Sample | Field | Density, g/cm3 | Dynamic Viscosity, MPa∙s | Group Composition (Mass %) | |
---|---|---|---|---|---|
Content of Saturated and Aromatic Hydrocarbons | Content of Resins and Asphaltenes | ||||
A | Salmanovskoye | 0.7751 | 0.92 | 99.8 | 0.2 |
B | Salymskoye | 0.8153 | 3.11 | 97.1 | 2.9 |
C | Pravdinskoe | 0.8331 | 5.03 | 98.7 | 1.3 |
D | Pravdinskoe | 0.8632 | 6.51 | 86.9 | 13.1 |
E | Russkoye | 0.9365 | 34.53 | 83.7 | 16.3 |
Sample Name | Sample Composition | Sample Name | Sample Composition |
---|---|---|---|
Water | Distilled water | D1 | 90% oil D + 10% water |
A1 | 90% oil A + 10% water | D2 | 80% oil D + 20% water |
A2 | 80% oil A + 20% water | D3 | 70% oil D + 30% water |
A3 | 70% oil A + 30% water | D4 | 60% oil D + 40% water |
A4 | 60% oil A + 40% water | D5 | 50% oil D + 50% water |
A5 | 50% oil A + 50% water | E1 | 90% oil E + 10% water |
B1 | 90% oil B + 10% water | E2 | 80% oil E + 20% water |
B2 | 80% oil B + 20% water | E3 | 70% oil E + 30% water |
B3 | 70% oil B + 30% water | E4 | 60% oil E + 40% water |
B4 | 60% oil B + 40% water | E5 | 50% oil E + 50% water |
B5 | 50% oil B + 50% water | ||
C1 | 90% oil C + 10% water | ||
C2 | 80% oil C + 20% water | ||
C3 | 70% oil C + 30% water | ||
C4 | 60% oil C + 40% water | ||
C5 | 50% oil C + 50% water |
Sample Number | Sampling Depth, m | ϕ (NMR), % | Lithological Description |
---|---|---|---|
1 | 960 | 13.21 | argillaceous siltstone with interbedded mudstone, carbonatized, with HC smell |
2 | 970 | 18.71 | argillaceous siltstone with interbedded mudstone, carbonatized, with HC smell |
3 | 1000 | 15.11 | argillaceous siltstone with interbedded mudstone, carbonatized, with HC smell |
4 | 1010 | 17.36 | argillaceous siltstone with interbedded mudstone, carbonatized, with HC smell |
5 | 1020 | 14.57 | argillaceous siltstone with interbedded mudstone, carbonatized, with HC smell |
6 | 1030 | 13.99 | argillaceous siltstone with interbedded mudstone, carbonatized, with HC smell |
7 | 1040 | 19.52 | medium-grained sand admixed with carbonates |
Sample Number | Actual Water Content in the Sample, % | Water Content Calculated from NMR Data, % | Sample Number | Actual Water Content in the Sample, % | Water Content Calculated from NMR Data, % |
---|---|---|---|---|---|
A1 | 10 | 17 | C4 | 40 | 27 |
A2 | 20 | 32 | C5 | 50 | 26 |
A3 | 30 | 42 | D1 | 10 | 6 |
A4 | 40 | 44 | D2 | 20 | 19 |
A5 | 50 | 55 | D3 | 30 | 28 |
B1 | 10 | 8 | D4 | 40 | 38 |
B2 | 20 | 16 | D5 | 50 | 50 |
B3 | 30 | 27 | E1 | 10 | 15 |
B4 | 40 | 35 | E2 | 20 | 22 |
B5 | 50 | 37 | E3 | 30 | 36 |
C1 | 10 | 6 | E4 | 40 | 49 |
C2 | 20 | 11 | E5 | 50 | 62 |
C3 | 30 | 24 |
Sampling Depth, m | Oil Saturation from NMR Data, % | Oil Saturation Calculated by Mass, % | ||||
---|---|---|---|---|---|---|
50/50 | 70/30 | 90/10 | 50/50 | 70/30 | 90/10 | |
960 | 40.5 | 64.5 | 72.1 | 19.3 | 40.1 | 47.5 |
970 | 37.0 | 51.1 | 64.4 | 22.3 | 40.1 | 54.8 |
1000 | 34.9 | 45.8 | 60.1 | 35.8 | 45.5 | 64.4 |
1010 | 29.1 | 53.4 | 56.8 | 28.0 | 46.4 | 46.3 |
1020 | 29.2 | 47.1 | 62.2 | 16.9 | 49.0 | 45.9 |
1030 | 32.7 | 55.2 | 63.2 | 28.9 | 47.6 | 51.6 |
1040 | 6.9 | 30.8 | 31.8 | 19.2 | 46.8 | 33.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shumskayte, M.; Mezin, A.; Chernova, E.; Burukhina, A.; Golikov, N.; Melkozerova, S. Estimating Water Content in Water–Oil Mixtures and Porous MEDIA They Saturate: Joint Interpretation of NMR Relaxometry and Dielectric Spectroscopy. Geosciences 2022, 12, 179. https://doi.org/10.3390/geosciences12040179
Shumskayte M, Mezin A, Chernova E, Burukhina A, Golikov N, Melkozerova S. Estimating Water Content in Water–Oil Mixtures and Porous MEDIA They Saturate: Joint Interpretation of NMR Relaxometry and Dielectric Spectroscopy. Geosciences. 2022; 12(4):179. https://doi.org/10.3390/geosciences12040179
Chicago/Turabian StyleShumskayte, Mariya, Andrey Mezin, Elena Chernova, Aleksandra Burukhina, Nikita Golikov, and Svetlana Melkozerova. 2022. "Estimating Water Content in Water–Oil Mixtures and Porous MEDIA They Saturate: Joint Interpretation of NMR Relaxometry and Dielectric Spectroscopy" Geosciences 12, no. 4: 179. https://doi.org/10.3390/geosciences12040179
APA StyleShumskayte, M., Mezin, A., Chernova, E., Burukhina, A., Golikov, N., & Melkozerova, S. (2022). Estimating Water Content in Water–Oil Mixtures and Porous MEDIA They Saturate: Joint Interpretation of NMR Relaxometry and Dielectric Spectroscopy. Geosciences, 12(4), 179. https://doi.org/10.3390/geosciences12040179