Fault-Related Fluid Flow Implications for Unconventional Hydrocarbon Development, Beetaloo Sub-Basin (Northern Territory, Australia)
Abstract
:1. Introduction
2. Beetaloo Region (Beetaloo Sub-Basin): Prospectivity, Regional Structural Framework, and Groundwater Systems
3. Methods
3.1. Geophysical Imaging: Magnetic Signal Transformations
3.2. Geophysical Imaging: Seismic Reflection 2D Profiles
3.3. Helium Measurements
3.4. Fault and Surface Drainage Network Delineation (Tectonic Geomorphology)
4. Results
4.1. Aeromagnetic Imaging of Potential Structural Pathways
4.2. Seismic Imaging of Potential Structural Pathways
4.3. Helium Concentrations and Isotopic Composition Measured in Groundwater
4.4. Trend Analysis of Geological Structures and Surface Water Drainage
5. Discussion
5.1. Episodicity of Opening and Closure of Structural Pathways for Fluid and Gas through the Beetaloo Sub-Basin Tectonic History
5.1.1. OT Downs Fault Zone
5.1.2. Mataranka and Birdum Creek Fault
5.1.3. Western Beetaloo Sub-Basin
5.1.4. Southern Part of the Eastern Beetaloo Sub-Basin
5.1.5. Central Part of the Eastern Beetaloo Sub-Basin
5.2. Significance of Possible Circulation Episodes in the Context of Unconventional Petroleum Exploration
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sibson, R.H. Crustal Stress, Faulting and Fluid Flow. Geol. Soc. Lond. Spec. Publ. 1994, 78, 69–84. [Google Scholar] [CrossRef]
- Brixel, B.; Klepikova, M.; Lei, Q.; Roques, C.; Jalali, M.R.; Krietsch, H.; Loew, S. Tracking fluid flow in shallow crustal fault zones: 2. Insights from cross-hole forced flow experiments in damage zones. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019108. [Google Scholar] [CrossRef]
- Gratier, J.P.; Gueydan, F. Effect of fracturing and fluid–rock interaction on seismic cycles. Tecton. Faults Agents Chang. Dyn. Earth 2007, 95, 319e356. [Google Scholar]
- Frery, E.; Gratier, J.-P.; Ellouz-Zimmerman, N.; Loiselet, C.; Braun, J.; Deschamps, P.; Blamart, D.; Hamelin, B.; Swennen, R.J.T. Evolution of fault permeability during episodic fluid circulation: Evidence for the effects of fluid–rock interactions from travertine studies (Utah–USA). Tectonophysics 2015, 651, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Solum, J.; Huisman, B. Toward the creation of models to predict static and dynamic fault-seal potential in carbonates. Pet. Geosci. 2017, 23, 70–91. [Google Scholar] [CrossRef]
- Williams, R.T.; Mozley, P.S.; Sharp, W.D.; Goodwin, L.B. U-Th Dating of Syntectonic Calcite Veins Reveals the Dynamic Nature of Fracture Cementation and Healing in Faults. Geophys. Res. Lett. 2019, 46, 12900–12908. [Google Scholar] [CrossRef]
- Kettermann, M.; Smeraglia, L.; Morley, C.K.; von Hagke, C.; Tanner, D.C. Fault sealing. In Understanding Faults; Elsevier: Amsterdam, The Netherlands, 2020; pp. 283–350. [Google Scholar]
- Jackson, R.B.; Vengosh, A.; Carey, J.W.; Davies, R.J.; Darrah, T.H.; O’sullivan, F.; Pétron, G. The environmental costs and benefits of fracking. Annu. Rev. Environ. Resour. 2014, 39, 327–362. [Google Scholar] [CrossRef] [Green Version]
- Vengosh, A.; Jackson, R.B.; Warner, N.; Darrah, T.H.; Kondash, A. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environ. Sci. Technol. 2014, 48, 8334–8348. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, M.; Brudzinski, M.R.; Friberg, P.; Skoumal, R.J.; Baxter, N.D.; Currie, B.S. Maturity of nearby faults influences seismic hazard from hydraulic fracturing. Proc. Natl. Acad. Sci. USA 2018, 115, E1720–E1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turnadge, C.; Crosbie, R.S.; Evans, T.; Frery, E.; Raiber, M.; Martinez, J.L. Prediction-specific methods of simulating potential hydraulic impacts of unconventional hydrocarbon development on groundwater resources. In Ground Water; National Ground Water Association: Adelaide, Australia, 2021. [Google Scholar]
- Huddlestone-Holmes, C.R.; Frery, E.; Wilkes, P.; Bailey, A.H.E.; Bernadel, G.; Brandon, C.; Buchanan, S.; Cook, S.B.; Crosbie, R.S.; Evans, T.; et al. Geological and environmental baseline assessment for the Beetaloo GBA region. In Geological and Bioregional Assessment Program: Stage 2; Department of the Environment and Energy: Canberra, Australia; Bureau of Meteorology: Docklands, Australia; CSIRO: Canberra, Australia; Geoscience Australia: Symonston, Australia, 2020. [Google Scholar]
- Lei, X.; Huang, D.; Su, J.; Jiang, G.; Wang, X.; Wang, H.; Guo, X.; Fu, H. Fault reactivation and earthquakes with magnitudes of up to Mw4. 7 induced by shale-gas hydraulic fracturing in Sichuan Basin, China. Sci. Rep. 2017, 7, 7971. [Google Scholar] [CrossRef] [PubMed]
- Lele, S.; Tyrrell, T.; Dasari, G. Geomechanical analysis of fault reactivation due to hydraulic fracturing. In 51st US Rock Mechanics/Geomechanics Symposium; American Rock Mechanics Association: San Francisco, CA, USA, 2017. [Google Scholar]
- Moeck, I.; Kwiatek, G.; Zimmermann, G. Slip tendency analysis, fault reactivation potential and induced seismicity in a deep geothermal reservoir. J. Struct. Geol. 2009, 31, 1174–1182. [Google Scholar] [CrossRef] [Green Version]
- Clarke, H.; Eisner, L.; Styles, P.; Turner, P. Felt seismicity associated with shale gas hydraulic fracturing: The first documented example in Europe. Geophys. Res. Lett. 2014, 41, 8308–8314. [Google Scholar] [CrossRef]
- Loesch, E.; Sagan, V. SBAS analysis of induced ground surface deformation from wastewater injection in East Central Oklahoma, USA. Remote Sens. 2018, 10, 283. [Google Scholar] [CrossRef] [Green Version]
- McNamara, D.E.; Benz, H.; Herrmann, R.B.; Bergman, E.A.; McMahon, N.D.; Aster, R.C. Constraints on recent earthquake source parameters, fault geometry and aftershock characteristics in Oklahoma. In AGU Fall Meeting Abstracts; AGU: San Francisco, CA, USA, 2014; p. S51A-4440. Available online: https://agu.confex.com/agu/fm14/webprogram/Paper13144.html (accessed on 18 October 2021).
- Zhang, F.; Yin, Z.; Chen, Z.; Maxwell, S.; Zhang, L.; Wu, Y. Fault Reactivation and Induced Seismicity During Multistage Hydraulic Fracturing: Microseismic Analysis and Geomechanical Modeling. SPE J. 2020, 25, 692–711. [Google Scholar] [CrossRef]
- Rutqvist, J.; Rinaldi, A.P.; Cappa, F.; Moridis, G. Modeling of fault activation and seismicity by injection directly into a fault zone associated with hydraulic fracturing of shale-gas reservoirs. J. Pet. Sci. Eng. 2015, 127, 377–386. [Google Scholar] [CrossRef] [Green Version]
- Rutqvist, J.; Rinaldi, A.P.; Cappa, F.; Moridis, G. Modeling of fault reactivation and induced seismicity during hydraulic fracturing of shale-gas reservoirs. J. Pet. Sci. Eng. 2013, 107, 31–44. [Google Scholar] [CrossRef]
- Drummond, V.; Grubert, E. Fault lines: Seismicity and the fracturing of energy narratives in Oklahoma. Energy Res. Soc. Sci. 2017, 31, 128–136. [Google Scholar] [CrossRef]
- Revie, D. Structure of Roper group. In Unconventional Petroleum Resources of the Roper Group, McArthur Basin; Northern Territory Geological Survey: Darwin, Australia, 2017; pp. 2–3. [Google Scholar]
- Revie, D. Depositional environment of Roper group. In Unconventional Petroleum Resources of the Roper Group, McArthur Basin; Department of Primary Industries and Resources: Darwin, Australia, 2017; pp. 4–5. [Google Scholar]
- Revie, D.; Normington, V.J. Shale Resource Data from the Greater McArthur Basin. Northern Territory Geological Survey, Digital Information Package DIP 014. 2018. Available online: https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/82595 (accessed on 18 October 2021).
- Hall, L.S.; Bailey, A.H.E.; Orr, M.L.; Owens, R.; Jarrett, A.J.M.; Lech, M.E.; Skeers, N.; Reese, B.; Woods, M. Petroleum prospectivity of the Beetaloo Sub-basin. In Technical Appendix for the Geological and Bioregional Assessment Program: Stage 2; Department of the Environment and Energy: Canberra, Australia; Bureau of Meteorology: Docklands, Australia; CSIRO: Canberra, Australia; Geoscience Australia: Symonston, Australia, 2020. [Google Scholar]
- Orr, M.L.; Bernardel, G.; Owens, R.; Hall, L.S.; Skeers, N.; Reese, B.; Woods, M. Geology of the Beetaloo GBA region. In Technical Appendix for the Geological and Bioregional Assessment: Stage 20; Department of the Environment and Energy: Canberra, Australia; Bureau of Meteorology: Docklands, Australia; CSIRO: Canberra, Australia; Geoscience Australia: Symonston, Australia, 2020. [Google Scholar]
- Origin Energy. Beetaloo Extended Production Test Successfully Completed. 2016. Available online: https://www.originenergy.com.au/content/origin-ui/en/about/investors-media/media-centre/beetaloo-extended-production-test-successfully-completed.html (accessed on 18 October 2021).
- Origin Energy. Beetaloo Basin Drilling Results Indicate Material Gas Resources. 2017. Available online: https://www.originenergy.com.au/about/investors-media/media-centre/beetaloo-basin-drilling-results-indicate-material-gas-resource.html (accessed on 18 October 2021).
- Origin Energy. Beetaloo Basin Kyalla Drilling Hydraulic Fracture Stimulation and Well Testing Program EP117 N2. NT-2050-15-MP-025. 2019. Available online: https://depws.nt.gov.au/__data/assets/pdf_file/0008/720566/Drill-and-Stim-EMP-Main-Document-Kyalla-117_Final-Main-body.PDF (accessed on 18 October 2021).
- Oil & Gas Today. Santos, Tamboran Step Closer to Third Beetaloo Well. 2021. Available online: https://www.oilandgastoday.com.au/santos-tamboran-step-closer-to-third-beetaloo-well/ (accessed on 18 October 2021).
- ENB. Flow Tests Back from Beetaloo Well. 2021. Available online: https://www.energynewsbulletin.net/development/news/1416541/flow-tests-back-from-beetaloo-well (accessed on 18 October 2021).
- Plumb, K.A.; Wellman, P. McArthur Basin, Northern Territory: Mapping of deep troughs using gravity and magnetic anomalies. BMR J. Aust. Geol. Geophys. 1987, 10, 243–251. [Google Scholar]
- Silverman, M.R.; Landon, S.M.; Leaver, J.S.; Mather, T.J.; Berg, E. No fuel like an old fuel: Proterozoic oil and gas potential in the Beetaloo Basin, Northern Territory, Australia. In Proceedings of the Central Australian Basins Symposium (CABS), Alice Springs, Australia, 16–18 August 2005. [Google Scholar]
- Hoffman, T.W. Recent drilling results provide new insights into the western Palaeoproterozoic to Mesoproterozoic McArthur Basin. In Annual Geoscience Exploration Seminar (AGES) 2015 Proceedings; Northern Territory Geological Survey: Darwin, Australia, 2015; pp. 50–55. [Google Scholar]
- Munson, T.J.; Revie, D. Stratigraphic Subdivision of the Velkerri Formation, Roper Group, McArthur Basin, Northern Territory. NTGS Record 2018-006. 2018. Available online: https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/87322 (accessed on 18 October 2021).
- Munson, T.J. Detrital zircon geochronology investigations of the Glyde and Favenc packages: Implications for the geological framework of the greater McArthur Basin, Northern Territory. In Proceedings of the Annual Geoscience Exploration Seminar (AGES) Proceedings, Alice Springs, Australia, 19–20 March 2019; Northern Territory Geological Survey: Darwin, Australia, 2019. [Google Scholar]
- De Vries, S.T.; Pryer, L.L.; Fry, N. Evolution of Neoarchaean and Proterozoic basins of Australia. Precambrian Res. 2008, 166, 39–53. [Google Scholar] [CrossRef]
- Betts, P.; Armit, R.; Ailleres, L. Potential-Field Interpretation Mapping of the Greater McArthur Basin. PGN Geoscience Report 15/2014. 2015. Available online: https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/81754 (accessed on 18 October 2021).
- Evans, T.J.; Radke, B.M.; Martinez, J.; Buchanan, S.; Cook, S.B.; Raiber, M.; Ransley, T.R.; Lai, É.C.S.; Skeers, N.; Woods, M.; et al. Hydrogeology of the Beetaloo GBA region. In Technical Appendix for Geological and Bioregional Assessment Program: Stage 2; Department of the Environment and Energy: Canberra, Australia; Bureau of Meteorology: Docklands, Australia; CSIRO: Canberra, Australia; Geoscience Australia: Symonston, Australia, 2020. [Google Scholar]
- Dhu, T. Magnetic Map of the Northern Territory, 1:2,500,000 Scale; Northern Territory Geological Survey: Darwin, Australia, 2020.
- Nabighian, M.N. The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation. Geophysics 1972, 37, 507–517. [Google Scholar] [CrossRef]
- Blakely, R.J. Potential Theory in Gravity and Magnetic Applications; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Dentith, M.; Mudge, S.T. Geophysics for the Mineral Exploration Geoscientist; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Nabighian, M.N. Additional comments on the analytic signal of two-dimensional magnetic bodies with polygonal cross-section. Geophysics 1974, 39, 85–92. [Google Scholar] [CrossRef]
- Roest, W.R.; Verhoef, J.; Pilkington, M. Magnetic interpretation using the 3-D analytic signal. Geophysics 1992, 57, 116–125. [Google Scholar] [CrossRef]
- Li, X. Understanding 3D analytic signal amplitude. Geophysics 2006, 71, L13–L16. [Google Scholar] [CrossRef]
- Williams, B. Definition of the Beetaloo Sub-basin. In Northern Territory Geological Survey (NTGS) Record 2019-015; Northern Territory Geological Survey: Darwin, Australia, 2019. [Google Scholar]
- Deslandes, A.; Gerber, C.; Lamontagne, S.; Wilske, C.; Suckow, A. Environmental Tracers in the Beetaloo Basin. Aquifer and Groundwater Characterization. CSIRO, Australia. 2019. Available online: https://gisera.csiro.au/wp-content/uploads/2020/06/CSIRO-GISERA-W16-Task-5-environmental-tracer-study-NT-Beetaloo-final.pdf (accessed on 18 October 2021).
- Suckow, A.; Deslandes, A.; Gerber, C.; Lamontagne, S. Environmental Tracers in the Beetaloo Sub-Basin. In Historical Data and a First Reconnaissance Study of Eight Samples; CSIRO: Adelaide, Australia, 2018. [Google Scholar]
- DPIR. Methodology for the Sampling of Groundwater. 2016. Available online: https://nt.gov.au/__data/assets/pdf_file/0014/203360/aa7-024-methodology-for-the-sampling-of-groundwater-advisory-note.pdf (accessed on 18 October 2021).
- Weiss, R.F. Piggyback samplers for dissolved gas studies on sealed water samples. Deep Sea Res. 1968, 15, 659–699. [Google Scholar] [CrossRef]
- Suckow, A.; Deslandes, A.; Gerber, C.; Mallants, D.; Smith, S.D. Commissioning of the CSIRO Noble Gas Facilities at Waite; CSIRO Land and Water: Adelaide, Australia, 2019.
- Suckow, A.; Dumke, I. A database system for geochemical, isotope hydrological, and geochronological laboratories. Radiocarbon 2001, 43, 325–337. [Google Scholar] [CrossRef] [Green Version]
- Zernitz, E.R. Drainage patterns and their significance. J. Geol. 1932, 40, 498–521. [Google Scholar] [CrossRef]
- Twidale, C. River patterns and their meaning. Earth-Sci. Rev. 2004, 67, 159–218. [Google Scholar] [CrossRef]
- Hodgkinson, J.H.; McLoughlin, S.; Cox, M.E. Drainage patterns in southeast Queensland: The key to concealed geological structures? Aust. J. Earth Sci. 2007, 54, 1137–1150. [Google Scholar] [CrossRef]
- Gleeson, T.; Novakowski, K. Identifying watershed-scale barriers to groundwater flow: Lineaments in the Canadian Shield. J Geol. Soc. Am. Bull. 2009, 121, 333–347. [Google Scholar] [CrossRef]
- Sandiford, M.; Lawrie, K.; Brodie, R.S. Hydrogeological implications of active tectonics in the Great Artesian Basin, Australia. Hydrogeol. J. 2020, 28, 57–73. [Google Scholar] [CrossRef]
- Frogtech Geoscience. SEEBASE® Study and GIS for Greater McArthur Basin: Supplementary Data. 2018. Available online: https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/87062 (accessed on 18 October 2021).
- Frogtech Geoscience. SEEBASE Study and GIS for Greater McArthur Basin. 2018. Available online: https://geoscience.nt.gov.au/gemis/ntgsjspui/handle/1/87064 (accessed on 18 October 2021).
- Yang, B.; Smith, T.M.; Collins, A.S.; Munson, T.J.; Schoemaker, B.; Nicholls, D.; Cox, G.; Farkas, J.; Glorie, S. Spatial and temporal variation in detrital zircon age provenance of the hydrocarbon-bearing upper Roper group, Beetaloo sub-basin, Northern Territory, Australia. Precambrian Res. 2018, 304, 140–155. [Google Scholar] [CrossRef]
- Goldberg, A. Dyke swarms as indicators of major extensional events in the 1.9–1.2 Ga Columbia supercontinent. J. Geodyn. 2010, 50, 176–190. [Google Scholar] [CrossRef]
- Betts, P.G.; Giles, D. The 1800–1100 Ma tectonic evolution of Australia. Precambrian Res. 2006, 144, 92–125. [Google Scholar] [CrossRef]
- Zhang, S.-H.; Zhao, Y.; Li, X.-H.; Ernst, R.E.; Yang, Z.-Y. The 1.33–1.30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton. Earth Planet. Sci. Lett. 2017, 465, 112–125. [Google Scholar] [CrossRef]
- Bodorkos, S.; Yang, B.; Collins, A.S.; Crowley, J.L.; Denyszyn, S.W.; Claoué-Long, J.C.; Anderson, J.R.; Magee, C.W. Precise U-Pb Baddeleyite Dating of the Derim Derim Dolerite: Evidence for Episodic Mafic Magmatism in the Greater MacArthur Basin; Geoscience Australia: Canberra, Australia, 2020.
- Yang, B.; Collins, A.; Blades, M.; Capogreco, N.; Payne, J.; Munson, T.; Cox, G.; Glorie, S. Middle-late Mesoproterozoic tectonic geography of the North Australia Craton: U–Pb and Hf isotopes of detrital zircon grains in the Beetaloo Sub-basin, Northern Territory, Australia. J. Geol. Soc. 2019, 176, 771–784. [Google Scholar] [CrossRef]
- Rawlings, D. Stratigraphic resolution of a multiphase intracratonic basin system: The McArthur Basin, northern Australia. Aust. J. Earth Sci. 1999, 46, 703–723. [Google Scholar] [CrossRef]
- Howard, H.; Smithies, R.; Kirkland, C.; Kelsey, D.; Aitken, A.; Wingate, M.; De Gromard, R.Q.; Spaggiari, C.; Maier, W.D. The burning heart—The Proterozoic geology and geological evolution of the west Musgrave Region, central Australia. Gondwana Res. 2015, 27, 64–94. [Google Scholar] [CrossRef]
- Smithies, R.; Kirkland, C.; Korhonen, F.; Aitken, A.; Howard, H.; Maier, W.D.; Wingate, M.; De Gromard, R.Q.; Gessner, K. The Mesoproterozoic thermal evolution of the Musgrave Province in central Australia—Plume vs. the geological record. Gondwana Res. 2015, 27, 1419–1429. [Google Scholar] [CrossRef]
- De Gromard, R.Q.; Howard, H.; Kirkland, C.; Smithies, R.; Wingate, M.; Jourdan, F. Post-Giles Event evolution of the Musgrave province constrained by (multi-method) thermochronology. In GSWA 2017 Extended Abstracts: Promoting the Prospectivity of Western Australia: Geological Survey of Western Australia, Perth, Australia, Record 2017/2; Geological Survey of Western Australia: Perth, Australia, 2017; Volume 2, pp. 42–47. [Google Scholar]
- Gorczyk, W.; Smithies, H.; Korhonen, F.; Howard, H.; De Gromard, R.Q. Ultra-hot Mesoproterozoic evolution of intracontinental central Australia. Geosci. Front. 2015, 6, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Dutkiewicz, A.; Volk, H.; Ridley, J.; George, S. Precambrian oil in the Roper Superbasin: A fluid inclusion perspective. In Central Australian Basins Symposium; NT Dep. of Mines: Alice Springs, Australia, 2005. [Google Scholar]
- Delle Piane, C.D.; Uysal, T.; Pan, Z.; Bourdet, J.; Li, Z.; Raven, M.; Dewhurst, D. Multidisciplinary Evaluation of the Velkerri Formation in the Beetaloo Sub-Basin: Implications for Geological History and Reservoir Quality. Annual Geoscience Exploration Seminar (AGES) 2019. Available online: https://dpir.nt.gov.au/__data/assets/pdf_file/0004/669379/940_DellePiane.pdf (accessed on 18 October 2021).
- Munson, T.; Kruse, P.; Ahmad, M. Chapter 22: Centralian Superbasin. In Geology and Mineral Resources of the Northern Territory; Ahmad, M., Munson, T.J., Eds.; Northern Territory Geological Survey: Darwin, Australia, 2013; Volume 5, pp. 639–657. [Google Scholar]
- Faiz, M.; Altmann, C.; Dunne, M.; Baruch, E.; Close, D.; Cote, A.; Richards, B.; Ranasinghe, P. Precambrian Organic Matter and Thermal Maturity of the Beetaloo Basin, Northern Territory, Australia. In Proceeding of Australian Earth Sciences Convention, Adelaide, Australia, 27–30 June 2016. [Google Scholar]
- Duddy, I.R.; Green, P.F.; Gibson, H.J.; Hegarty, K.A.; Ellis, G. Regional palaeo-thermal episodes in northern Australia. In Timor Sea Petroleum Geoscience: Proceedings of the Timor Sea Symposium; Northern Territory Geological Survey: Darwin, Australia, 2003. [Google Scholar]
- Blaikie, T.N.; Kunzmann, M. Geophysical interpretation and tectonic synthesis of the Proterozoic southern McArthur Basin, northern Australia. Precambrian Res. 2020, 343, 105728. [Google Scholar] [CrossRef]
- Barth, J.A.; Chafetz, H.S.J.S. Cool water geyser travertine: Crystal Geyser, Utah, USA. Sedimentology 2015, 62, 607–620. [Google Scholar] [CrossRef]
- Frery, E.; Gratier, J.-P.; Ellouz-Zimmerman, N.; Deschamps, P.; Blamart, D.; Hamelin, B.; Swennen, R. Geochemical transect through a travertine mount: A detailed record of CO2-enriched fluid leakage from Late Pleistocene to present-day–Little Grand Wash fault (Utah, USA). Quat. Int. 2017, 437, 98–106. [Google Scholar] [CrossRef]
- Lamontagne, S.; Suckow, A.; Gerber, C.; Deslandes, A.; Wilske, C.; Tickell, S. Groundwater sources for the Mataranka Springs (Northern Territory, Australia). Sci. Rep. 2021, 11, 24288. [Google Scholar] [CrossRef] [PubMed]
- Foss, C.; Dhu, T. The bark without a dog: Magnetic anomalies over holes in a volcanic sheet in the greater McArthur Basin. In ASEG-PESA-AIG 2016, Proceedings of the 25th Geophysical Conference and Exhibition—Interpreting the Past, Discovering the Future, Adelaide, Australia, 21–24 August 2016; CSIRO Publishing for the Australian Society of Exploration Geophysicists: Victoria, Australia, 2016. [Google Scholar]
- Edwards, D.; Rock, N.; Taylor, W.; Griffin, B.; Ramsay, R.R. Mineralogy and petrology of the Aries diamondiferous kimberlite pipe, Central Kimberley Block, Western Australia. J. Petrol. 1992, 33, 1157–1191. [Google Scholar] [CrossRef]
- Kumar, S.; Pal, S.K.; Guha, A.; Sahoo, S.D.; Mukherjee, A. New insights on Kimberlite emplacement around the Bundelkhand Craton using integrated satellite-based remote sensing, gravity and magnetic data. Geocarto Int. 2020, 1–23. [Google Scholar] [CrossRef]
- Ko, K.; Choi, J.-H.; Kim, Y.-S.; Han, J. Characteristics of bleaching around major structures in a reservoir-cap rock system, SE Utah, USA. Arab. J. Geosci. 2020, 13, 113. [Google Scholar] [CrossRef]
- Wigley, M.; Kampman, N.; Dubacq, B.; Bickle, M. Fluid-mineral reactions and trace metal mobilization in an exhumed natural CO2 reservoir, Green River, Utah. Geophysics 2012, 40, 555–558. [Google Scholar] [CrossRef]
- Chan, M.; Ormö, J.; Park, A.; Stich, M.; Souza-Egipsy, V.; Komatsu, G. Models of iron oxide concretion formation: Field, numerical, and laboratory comparisons. Geofluids 2007, 7, 356–368. [Google Scholar] [CrossRef]
- Li, J.; Chan, L.; Li, Y. The blueberry (iron nodule) from the Shark Bay area, Western Australia and its implication to the genetic environments of iron nodules on Mars. Sci. China Earth Sci. 2016, 59, 640–650. [Google Scholar] [CrossRef]
- Bergman, S.C.; Huntington, K.W.; Crider, J.G. Tracing paleofluid sources using clumped isotope thermometry of diagenetic cements along the Moab Fault, Utah. Am. J. Sci. 2013, 313, 490–515. [Google Scholar] [CrossRef]
- Buschkuehle, B.E.; Machel, H.G.; Geology, P. Diagenesis and paleofluid flow in the Devonian Southesk-Cairn carbonate complex in Alberta, Canada. Mar. Pet. Geol. 2002, 19, 219–227. [Google Scholar] [CrossRef]
- Waghorn, K.A.; Pecher, I.; Strachan, L.J.; Crutchley, G.; Bialas, J.; Coffin, R.; Davy, B.; Koch, S.; Kroeger, K.F.; Papenberg, C. Paleo-fluid expulsion and contouritic drift formation on the Chatham Rise, New Zealand. Basin Res. 2018, 30, 5–19. [Google Scholar] [CrossRef]
- Gratier, J.-P.; Frery, E.; Deschamps, P.; Røyne, A.; Renard, F.; Dysthe, D.; Ellouz-Zimmerman, N.; Hamelin, B. How travertine veins grow from top to bottom and lift the rocks above them: The effect of crystallization force. Geophysics 2012, 40, 1015–1018. [Google Scholar] [CrossRef]
- Burnside, N.M.; Shipton, Z.K.; Dockrill, B.; Ellam, R.M. Man-made versus natural CO2 leakage: A 400 ky history of an analogue for engineered geological storage of CO2. Geology 2013, 41, 471–474. [Google Scholar] [CrossRef]
- Billi, A.; Berardi, G.; Gratier, J.-P.; Rossetti, F.; Vignaroli, G.; Baykara, M.O.; Bernasconi, S.M.; Kele, S.; Soligo, M.; De Filippis, L.J.T. First records of syn-diagenetic non-tectonic folding in quaternary thermogene travertines caused by hydrothermal incremental veining. Tectonophysics 2017, 700, 60–79. [Google Scholar] [CrossRef]
- Braun, J.; MMunroe, S.; Cox, S.F. Transient fluid flow in and around a fault. Geofluids 2003, 3, 81–87. [Google Scholar] [CrossRef]
- Kampman, N.; Maskell, A.; Bickle, M.J.; Evans, J.P.; Schaller, M.; Purser, G.; Zhou, Z.; Gattacceca, J.; Peitre, E.S.; Rochelle, C.A.; et al. Scientific drilling and downhole fluid sampling of a natural CO 2 reservoir, Green River, Utah. Sci. Drill. 2013, 16, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Geoscience Australia. Beetaloo Sub-Basin Seismic Monitoring Project Website. 2020. Available online: https://www.ga.gov.au/about/projects/safety/beetaloo-sub-basin-seismic-monitoring-project (accessed on 18 October 2021).
- Northern Territory Government. SREBA Framework Consultation Draft. A Guide to Undertaking a Strategic Regional Environmental and Baseline Assessment in the Northern Territory. 2019. Available online: https://denr.nt.gov.au/__data/assets/pdf_file/0011/765812/sreba-framework-draft-consultation.pdf (accessed on 18 October 2021).
- CSIRO. GESIRA. 2021. Available online: https://gisera.csiro.au/ (accessed on 18 October 2021).
Transformation | Description | Purpose | Disadvantage | Reference |
---|---|---|---|---|
Reduction to pole (RTP) | Removes asymmetrical influence of the ambient magnetic field and reproduces magnetic anomalies assuming vertical field | In the vertical ambient field magnetic anomalies are easier to understand. Magnetic bodies with positive susceptibility contrast appear under the positive magnetic anomalies | Transformation fails if there is presence of remanent magnetisation which is not accounted for | [42,43] |
First Vertical Derivative (1VD) | Produces maximum rate of change of the magnetic field in the vertical direction | Used to emphasise high frequency, usually shallow magnetic sources | Can highlight noise or survey artefacts | [44] |
Low Pass Filter (LPF) | Reduces contribution from the high frequency part of the spectrum | Used to emphasise low frequency magnetic features | Can introduce edge effects and other processing artefacts to the data | [44] |
Analytic Signal Amplitude (ASA) | Produces function maxima over magnetic bodies dependent on the magnetisation intensity | Highlights magnetic anomalies of the highest magnetisation independent of the magnetisation direction | If the remanent component of the field is large, the ASA can be affected | [42,45,46,47] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frery, E.; Byrne, C.; Crosbie, R.; Deslandes, A.; Evans, T.; Gerber, C.; Huddlestone-Holmes, C.; Markov, J.; Martinez, J.; Raiber, M.; et al. Fault-Related Fluid Flow Implications for Unconventional Hydrocarbon Development, Beetaloo Sub-Basin (Northern Territory, Australia). Geosciences 2022, 12, 37. https://doi.org/10.3390/geosciences12010037
Frery E, Byrne C, Crosbie R, Deslandes A, Evans T, Gerber C, Huddlestone-Holmes C, Markov J, Martinez J, Raiber M, et al. Fault-Related Fluid Flow Implications for Unconventional Hydrocarbon Development, Beetaloo Sub-Basin (Northern Territory, Australia). Geosciences. 2022; 12(1):37. https://doi.org/10.3390/geosciences12010037
Chicago/Turabian StyleFrery, Emanuelle, Conor Byrne, Russell Crosbie, Alec Deslandes, Tim Evans, Christoph Gerber, Cameron Huddlestone-Holmes, Jelena Markov, Jorge Martinez, Matthias Raiber, and et al. 2022. "Fault-Related Fluid Flow Implications for Unconventional Hydrocarbon Development, Beetaloo Sub-Basin (Northern Territory, Australia)" Geosciences 12, no. 1: 37. https://doi.org/10.3390/geosciences12010037
APA StyleFrery, E., Byrne, C., Crosbie, R., Deslandes, A., Evans, T., Gerber, C., Huddlestone-Holmes, C., Markov, J., Martinez, J., Raiber, M., Turnadge, C., Suckow, A., & Wilske, C. (2022). Fault-Related Fluid Flow Implications for Unconventional Hydrocarbon Development, Beetaloo Sub-Basin (Northern Territory, Australia). Geosciences, 12(1), 37. https://doi.org/10.3390/geosciences12010037