Mountain Permafrost Hydrology—A Practical Review Following Studies from the Andes
Abstract
:1. Introduction
2. Permafrost Hydrology
3. Mountain Permafrost Hydrology
- The surface energy balance, largely driven by atmospheric conditions, which controls heat inputs to and outputs from the Earth’s surface;
- The heat derived from the Earth’s interior, which is generally defined by the geothermal gradient at depth; and
- The presence of surface (lakes or rivers) or subsurface (taliks) bodies of water that do not freeze completely during the winter.
4. Rock Glacier Hydrology
4.1. Rock Glacier Volume Change
4.2. Glacier vs. Rock Glacier
4.3. Hydrological Characteristics of Rock Glaciers
4.4. Ground Thermal Regime
4.5. Water Quality and Isotopes
4.6. Hydrological Role
5. Impact of Climate Change
6. Conclusions and Outlook
- Temporary storage of water in the form of seasonal ground ice (frost) within the active layer during the winter months. This water is released during the summer months as the thaw front penetrates the active layer.
- Water flows laterally at the bottom of the thaw front, as it develops, and ultimately at the top of the permafrost table, i.e., the lower boundary of the active layer, unless high porosity zones or taliks allow infiltration and may result in deeper groundwater recharge or ice segregation within the permafrost.
- There is little melting of ground ice from the permafrost body itself, because of the thermal insulation from the active layer and the latent heat stored within the ground ice. Ground ice melt from permafrost only contributes after layers subjected to seasonal freeze–thaw have thawed.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hock, R.; Rasul, G.; Adler, C.; Cáceres, B.; Gruber, S.; Hirabayashi, Y.; Jackson, M.; Kääb, A.; Kang, S.; Kutuzov, S.; et al. High Mountain Areas. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; IPCC: Geneva, Switzerland, 2019; pp. 131–202. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., et al., Eds.; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Ferri, L.; Dussaillant, I.; Zalazar, L.; Masiokas, M.H.; Ruiz, L.; Pitte, P.; Gargantini, H.; Castro, M.; Berthier, E.; Villalba, R. Ice mass loss in the Central Andes of Argentina between 2000 and 2018 derived from a new glacier inventory and satellite stereo-imagery. Front. Earth Sci. 2020, 8, 530997. [Google Scholar] [CrossRef]
- Dussaillant, I.; Berthier, E.; Brun, F.; Masiokas, M.; Hugonnet, R.; Favier, V.; Rabatel, A.; Pitte, P.; Ruiz, L. Two decades of glacier mass loss along the Andes. Nat. Geosci. 2019, 12, 802–808. [Google Scholar] [CrossRef]
- World Glacier Monitoring Service (WGMS). Fluctuations of Glaciers (FoG) Database; World Glacier Monitoring Service: Zurich, Switzerland, 2021. [Google Scholar] [CrossRef]
- Haeberli, W.; Schaub, Y.; Huggel, C. Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. Geomorphology 2017, 293, 405–417. [Google Scholar] [CrossRef]
- Lachenbruch, A.H.; Marshall, B.V. Changing climate: Geothermal evidence from permafrost in the alaskan arctic. Science 1986, 234, 689–696. [Google Scholar] [CrossRef] [PubMed]
- Jakob, M. Landslides in a changing climate. In Landslide Hazards, Risks, and Disasters; Shroder, J.F., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Arenson, L.U.; Jakob, M. Periglacial geohazard risks and ground temperature increases. In Engineering Geology for Society and Territory-Volume 1; Springer: Berlin/Heidelberg, Germany, 2015; pp. 233–237. [Google Scholar]
- Kenner, R.; Arenson, L.U.; Grämiger, L. Mass movement processes related to permafrost and glaciation. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Krainer, K.; Bressan, D.; Dietre, B.; Haas, J.N.; Hajdas, I.; Lang, K.; Mair, V.; Nickus, U.; Reidl, D.; Thies, H.; et al. A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy). Quat. Res. 2015, 83, 324–335. [Google Scholar] [CrossRef]
- Haeberli, W.; Kääb, A.; Wagner, S.; Mühll, D.V.; Geissler, P.; Haas, J.N.; Glatzel-Mattheier, H.; Wagenbach, D. Pollen analysis and 14C age of moss remains in a permafrost core recovered from the active rock glacier Murtèl-Corvatsch, Swiss Alps: Geomorphological and glaciological implications. J. Glaciol. 1999, 45, 1–8. [Google Scholar] [CrossRef]
- Hendriks, M. Introduction to Physical Hydrology; Oxford University Press: Oxford, UK, 2010; p. 304. [Google Scholar]
- Ayala, A.; Pellicciotti, F.; Peleg, N.; Burlando, P. Melt and surface sublimation across a glacier in a dry environment: Distributed energy-balance modelling of Juncal Norte Glacier, Chile. J. Glaciol. 2017, 63, 803–822. [Google Scholar] [CrossRef] [Green Version]
- Voordendag, A.; Réveillet, M.; MacDonell, S.; Lhermitte, S. Snow model comparison to simulate snow depth evolution and sublimation at point scale in the semi-arid Andes of Chile. Cryosphere 2021, 15, 4241–4259. [Google Scholar] [CrossRef]
- Walvoord, M.A.; Kurylyk, B.L. Hydrologic impacts of thawing permafrost-A review. Vadose Zone J. 2016, 15, vzj10. [Google Scholar] [CrossRef]
- Rogger, M.; Chirico, G.B.; Hausmann, H.; Krainer, K.; Brückl, E.; Stadler, P.; Blöschl, G. Impact of mountain permafrost on flow path and runoff response in a high alpine catchment. Water Resour. Res. 2017, 53, 1288–1308. [Google Scholar] [CrossRef] [Green Version]
- Arenson, L.U.; Jakob, M. The significance of rock glaciers in the dry Andes-A discussion of Azócar and Brenning (2010) and Brenning and Azócar (2010). Permafr. Periglac. Process. 2010, 21, 282–285. [Google Scholar] [CrossRef]
- Lemke, P.; Ren, J.; Alley, R.B.; Allison, I.; Carrasco, J.; Flato, G.; Fujii, Y.; Kaser, G.; Mote, P.; Thomas, R.H.; et al. Observations: Changes in snow, ice and frozen ground. In Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007; p. 48. [Google Scholar]
- Singh, P.; Singh, V.P. Snow and glacier hydrology. In Water Science and Technology Library; Springer: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Irvine-Fynn, T.; Hubbard, B. Glacier hydrology and runoff. In International Encyclopedia of Geography: People, the Earth, Environment and Technology; Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 1–18. [Google Scholar]
- Irvine-Fynn, T.D.; Hodson, A.J.; Moorman, B.J.; Vatne, G.; Hubbard, A.L. Polythermal glacier hydrology: A review. Rev. Geophys. 2011, 49, 37. [Google Scholar] [CrossRef] [Green Version]
- Noetzli, J.; Phillips, M. Mountain Permafrost Hydrology; WSL Institute for Snow and Avalanche Research SLF: Davos, Switzerland, 2019; p. 18. [Google Scholar]
- Jones, D.B.; Harrison, S.; Anderson, K.; Betts, R.A. Mountain rock glaciers contain globally significant water stores. Sci. Rep. 2018, 8, 2834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bodin, X.; Rojas, F.; Brenning, A. Status and evolution of the cryosphere in the Andes of Santiago (Chile, 33.5° S). Geomorphology 2010, 118, 453–464. [Google Scholar] [CrossRef]
- Vicuña, S.; Vargas, X.; Boisier, J.P.; Mendoza, P.A.; Gómez, T.; Vásquez, N. Impacts of climate change on water resources in Chile. In Water Resources of Chile; Springer: Berlin/Heidelberg, Germany, 2021; pp. 347–363. [Google Scholar]
- Falaschi, D.; Castro, M.; Masiokas, M.; Tadono, T.; Ahumada, A.L. Rock glacier inventory of the Valles Calchaquíes Region (~25° S), Salta, Argentina, Derived from ALOS Data. Permafr. Perigl. Process. 2014, 25, 69–75. [Google Scholar] [CrossRef]
- Gao, H.; Wang, J.; Yang, Y.; Pan, X.; Ding, Y.; Duan, Z. Permafrost hydrology of the Qinghai-Tibet Plateau: A review of processes and modeling. Front. Earth Sci. 2021, 8, 576838. [Google Scholar] [CrossRef]
- Schaffer, N.; MacDonell, S.; Réveillet, M.; Yáñez, E.; Valois, R. Rock glaciers as a water resource in a changing climate in the semiarid Chilean Andes. Reg. Environ. Chang. 2019, 19, 1263–1279. [Google Scholar] [CrossRef]
- van Everdingen, R.O. Multi-Language Glossary of Permafrost and Related Ground-Ice Terms (Revised 2005); International Permafrost Association: Ottawa, ON, Canada, 1998. [Google Scholar]
- Dingman, S.L. Physical Hydrology, 2nd ed.; Pearson: London, UK, 2001; p. 656. [Google Scholar]
- Muller, S.W. Permafrost, or Permanently Frozen Ground and Related Engineering Problems; J.W. Edward Publication: Ann Arbour, MI, USA, 1947. [Google Scholar]
- Woo, M.-K. Permafrost Hydrology, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2012; p. 564. [Google Scholar]
- Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef] [Green Version]
- Baker, H.S.; Millar, R.J.; Karoly, D.J.; Beyerle, U.; Guillod, B.P.; Mitchell, D.; Shiogama, H.; Sparrow, S.; Woollings, T.; Allen, M.R. Higher CO2 concentrations increase extreme event risk in a 1.5 °C world. Nat. Clim. Chang. 2018, 8, 604–608. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.R.; van Everdingen, R.O. Groundwater Investigations in Permafrost Regions of North America: A Review. In Proceedings of the Second International Conference on Permafrost, Yakutsk, Russia, 20–24 June 1973; pp. 435–446. [Google Scholar]
- Dingman, S.L. Hydrologic Effects of Frozen Ground: Literature Review and Synthesis; U.S. Army Cold Regions Research and Engineering Laboratory: Washington, DC, USA, 1975. [Google Scholar]
- Woo, M.-K.; Kane, D.L.; Carey, S.K.; Yang, D. Progress in permafrost hydrology in the new millennium. Permafr. Perigl. Process. 2008, 19, 237–254. [Google Scholar] [CrossRef]
- Fredlund, D.G.; Rahardjo, H.; Fredlund, M.D. Unsaturated Soil Mechanics in Engineering Practice; Wiley: Hoboken, NJ, USA, 2012; p. 944. [Google Scholar]
- McPhee, J.; MacDonell, S.; Casassa, G. Snow Cover and Glaciers, in Water Resources of Chile; Springer: Berlin/Heidelberg, Germany, 2021; pp. 129–151. [Google Scholar]
- Baselt, I.; Heinze, T. Rain, snow and frozen soil: Open questions from a porescale perspective with implications for geohazards. Geosciences 2021, 11, 375. [Google Scholar] [CrossRef]
- Haeberli, W.; Whiteman, C. Snow and Ice-Related Hazards, Risks, and Disasters, 2nd ed.; Schroder, J.F.S., Jr., Ed.; Elsevier: Amsterdam, The Netherlands, 2021; p. 784. [Google Scholar]
- Andersland, O.B.; Ladanyi, B. Frozen Ground Engineering, 2nd ed.; Wiley: Hoboken, NJ, USA, 2003; p. 384. [Google Scholar]
- Prowse, T.D.; Ommanney, C.S.L. Northern Hydrology: Canadian Perspectives; National Hydrology Research Institute: Saskatoon, ON, Canada, 1990; p. 308. [Google Scholar]
- Burt, T.P.; Williams, P.J. Hydraulic conductivity in frozen soils. Earth Surf. Process. 1976, 1, 349–360. [Google Scholar] [CrossRef]
- Azmatch, T.F.; Sego, D.C.; Arenson, L.U.; Biggar, K.W. Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils. Cold Reg. Sci. Technol. 2012, 83–84, 103–109. [Google Scholar] [CrossRef]
- Kane, D.L.; Yoshikawa, K.; McNamara, J.P. Regional groundwater flow in an area mapped as continuous permafrost, NE Alaska (USA). Hydrogeol. J. 2013, 21, 41–52. [Google Scholar] [CrossRef]
- Arenson, L.; Colgan, W.; Marshall, H.P. Physical, thermal, and mechanical properties of snow, ice, and permafrost. In Snow and Ice-Related Hazards, Risks, and Disasters; Elsevier: Amsterdam, The Netherlands, 2021; pp. 35–71. [Google Scholar]
- Hivon, E.G.; Sego, D.C. Distribution of saline permafrost in the Northwest Territories, Canada. Can. Geotechn. J. 1993, 30, 506–514. [Google Scholar] [CrossRef]
- Arenson, L.U.; Sego, D.C. The effect of salinity on the freezing of coarse-grained sands. Can. Geotechn. J. 2006, 43, 325–337. [Google Scholar] [CrossRef]
- Brown, R.J.E. Distribution and environmental relationships of permafrost. In Permafrost Hydrology Workshop Seminar: The International Hydrological Decade; Canadian National Committee: Ottawa, ON, Canada, 1974. [Google Scholar]
- French, H.M. The Periglacial Environment, 4th ed.; Wiley-Blackwell: London, UK, 2017. [Google Scholar]
- Cheng, G.; Jin, H. Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeol. J. 2012, 21, 5–23. [Google Scholar] [CrossRef]
- Harrington, J.S.; Mozil, A.; Hayashi, M.; Bentley, L.R. Groundwater flow and storage processes in an inactive rock glacier. Hydrol. Process. 2018, 32, 3070–3088. [Google Scholar] [CrossRef]
- Lemieux, J.-M.; Fortier, R.; Murray, R.; Dagenais, S.; Cochand, M.; Delottier, H.; Therrien, R.; Molson, J.; Pryet, A.; Parhizkar, M. Groundwater dynamics within a watershed in the discontinuous permafrost zone near Umiujaq (Nunavik, Canada). Hydrogeol. J. 2020, 28, 833–851. [Google Scholar] [CrossRef]
- Lemieux, J.-M.; Fortier, R.; Molson, J.; Therrien, R.; Ouellet, M. Topical Collection: Hydrogeology of a cold-region watershed near Umiujaq (Nunavik, Canada). Hydrogeol. J. 2020, 28, 809–812. [Google Scholar] [CrossRef] [Green Version]
- Gruber, S.; Egli, M.; Gärtner-roer, I.; Hoelzle, M. Preface: The mountain cryosphere-a holistic view on processes and their interactions. Geogr. Ann. Ser. A Phys. Geogr. Environ. Sustain. 2012, 94, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Deluigi, N.; Lambiel, C.; Kanevski, M. Data-driven mapping of the potential mountain permafrost distribution. Sci. Total Environ. 2017, 590–591, 370–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnaventure, P.P.; Hillaire-Marcel, C.; Lewkowicz, A.G. Mountain permafrost probability mapping using the BTS method in two climatically dissimilar locations, northwest Canada. Can. J. Earth Sci. 2008, 45, 443–455. [Google Scholar] [CrossRef]
- Lewkowicz, A.G.; Bonnaventure, P.P.; Smith, S.L.; Kuntz, Z. Spatial and thermal characteristics of mountain permafrost, northwest canada. Geogr. Ann. Ser. A Phys. Geogr. 2016, 94, 195–213. [Google Scholar] [CrossRef]
- Arenson, L.U.; Jakob, M. A New GIS Based Mountain Permafrost Distribution Model. In Proceedings of the 63rd GEO2010: Canadian Geotechnical Conference & 6th Canadian Permafrost Conference, Calgary, AB, Canada, 12–15 September 2010; pp. 452–458. [Google Scholar]
- Ruiz, L.; Liaudat, D.T. Mountain permafrost distribution in the Andes of Chubut. In Proceedings of the Tenth International Conference on Permafrost, Salekhard, Russia, 25–29 June 2012. [Google Scholar]
- Esper Angillieri, M.Y. Permafrost distribution map of San Juan Dry Andes (Argentina) based on rock glacier sites. J. S. Am. Earth Sci. 2017, 73, 42–49. [Google Scholar] [CrossRef]
- Obu, J. How much of the Earth’s surface is underlain by permafrost? J. Geophys. Res. Earth Surf. 2021, 126, 740. [Google Scholar] [CrossRef]
- Hayashi, M. Alpine hydrogeology: The critical role of groundwater in sourcing the headwaters of the world. Ground Water 2020, 58, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Rist, A.; Phillips, M. First results of investigations on hydrothermal processes within the active layer above alpine permafrost in steep terrain. Nor. Geogr. Tidsskr.-Nor. J. Geogr. 2007, 59, 177–183. [Google Scholar] [CrossRef]
- Krautblatter, M.; Funk, D.; Günzel, F.K. Why permafrost rocks become unstable: A rock-ice-mechanical model in time and space. Earth Surf. Process. Landf. 2013, 38, 876–887. [Google Scholar] [CrossRef] [Green Version]
- Phillips, M.; Wolter, A.; Lüthi, R.; Amann, F.; Kenner, R.; Bühler, Y. Rock slope failure in a recently deglaciated permafrost rock wall at Piz Kesch (Eastern Swiss Alps), February 2014. Earth Surf. Process. Landf. 2017, 42, 426–438. [Google Scholar] [CrossRef]
- Colombo, N.; Salerno, F.; Gruber, S.; Freppaz, M.; Williams, M.; Fratianni, S.; Giardino, M. Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water. Glob. Planet. Chang. 2018, 162, 69–83. [Google Scholar] [CrossRef]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, F.; Amann, F.; Kos, A.; Kenner, R.; Phillips, M.; de Preux, A.; Huss, M.; Tognacca, C.; Clinton, J.; Diehl, T.; et al. Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows. Geomorphology 2020, 351, 106933. [Google Scholar] [CrossRef]
- Krainer, K.; Mostler, W. Hydrology of active rock glaciers: Examples from the Austrian Alps. Arct. Antarct. Alp. Res. 2002, 34, 142–149. [Google Scholar] [CrossRef]
- Ireson, A.M.; Van Der Kamp, G.; Ferguson, G.; Nachshon, U.; Wheater, H.S. Hydrogeological processes in seasonally frozen northern latitudes: Understanding, gaps and challenges. Hydrogeol. J. 2013, 21, 53–66. [Google Scholar] [CrossRef]
- Frampton, A.; Painter, S.L.; Destouni, G. Permafrost degradation and subsurface-flow changes caused by surface warming trends. Hydrogeol. J. 2012, 21, 271–280. [Google Scholar] [CrossRef]
- Pomeroy, J.W. Book review: Snow and glacier hydrology. Mt. Res. Dev. 2002, 22, 307–308. [Google Scholar] [CrossRef]
- Jones, D.B.; Harrison, S.; Anderson, K.; Whalley, W.B. Rock glaciers and mountain hydrology: A review. Earth-Sci. Rev. 2019, 193, 66–90. [Google Scholar] [CrossRef]
- Croce, F.A.; Milana, J.P. Internal structure and behaviour of a rock glacier in the Arid Andes of Argentina. Permafr. Perigl. Process. 2002, 13, 289–299. [Google Scholar] [CrossRef]
- Brenning, A. Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of Central Chile (33–35° S). Permafr. Perigl. Process. 2005, 16, 231–240. [Google Scholar] [CrossRef]
- Azócar, G.F.; Brenning, A. Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27–33° S). Permafr. Perigl. Process. 2010, 21, 42–53. [Google Scholar] [CrossRef]
- Bolch, T.; Marchenko, S. Significance of glaciers, rockglaciers, and ice-rich permafrost in the Northern Tien Shan as water towers under climate change conditions. In Assessment of Snow, Glacier and Water Resources in Asia: Selected Papers from the Workshop in Almaty, Kazakhstan, 2006; Braun, L.N., Hagg, W., Severskiy, I.V., Young, G., Eds.; IHP UNESCO: Koblenz, Germany, 2009; pp. 132–143. [Google Scholar]
- Reato, A.; Carol, E.S.; Cottescu, A.; Martínez, O.A. Hydrological significance of rock glaciers and other periglacial landforms as sustenance of wet meadows in the Patagonian Andes. J. S. Am. Earth Sci. 2021, 111, 103471. [Google Scholar] [CrossRef]
- Halla, C.; Blöthe, J.H.; Tapia Baldis, C.; Trombotto Liaudat, D.; Hilbich, C.; Hauck, C.; Schrott, L. Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina. Cryosphere 2021, 15, 1187–1213. [Google Scholar] [CrossRef]
- Perucca, L.; Angillieri, M.Y.E. Glaciers and rock glaciers’ distribution at 28° SL, Dry Andes of Argentina, and some considerations about their hydrological significance. Environ. Earth Sci. 2011, 64, 2079–2089. [Google Scholar] [CrossRef]
- Rangecroft, S.; Harrison, S.; Anderson, K. Rock glaciers as water stores in the Bolivian Andes: An assessment of their hydrological importance. Arct. Antarct. Alp. Res. 2018, 47, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Villarroel, C.D.; Ortiz, D.A.; Forte, A.P.; Tamburini Beliveau, G.; Ponce, D.; Imhof, A.; López, A. Internal structure of a large, complex rock glacier and its significance in hydrological and dynamic behavior: A case study in the semi-arid Andes of Argentina. Permafr. Perigl. Process. 2022. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/ppp.2132 (accessed on 12 November 2021).
- Jones, D.B.; Harrison, S.; Anderson, K.; Selley, H.L.; Wood, J.L.; Betts, R.A. The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya. Glob. Planet. Chang. 2018, 160, 123–142. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.B.; Harrison, S.; Anderson, K.; Shannon, S.; Betts, R.A. Rock glaciers represent hidden water stores in the Himalaya. Sci. Total Environ. 2021, 793, 145368. [Google Scholar] [CrossRef]
- Springman, S.M.; Arenson, L.U.; Yamamoto, Y.; Maurer, H.; Kos, A.; Buchli, T.; Derungs, G. Multidisciplinary investigations on three rock glaciers in the Swiss Alps: Legacies and future perspectives. Geogr. Ann. Ser. A Phys. Geogr. 2012, 94, 215–243. [Google Scholar] [CrossRef]
- Barsch, D. Rockglaciers-Indicators for the Present and Former Geoecology in High Mountain Environments; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Kääb, A.; Reichmuth, T. Advance mechanisms of rock glaciers. Permafr. Perigl. Process. 2005, 16, 187–193. [Google Scholar] [CrossRef]
- Berthling, I. Beyond confusion: Rock glaciers as cryo-conditioned landforms. Geomorphology 2011, 131, 98–106. [Google Scholar] [CrossRef]
- Knight, J.; Harrison, S.; Jones, D.B. Rock glaciers and the geomorphological evolution of deglacierizing mountains. Geomorphology 2019, 324, 14–24. [Google Scholar] [CrossRef]
- Wahrhaftig, C.; Cox, A. Rock Glaciers in the Alaska Range. Geol. Soc. Am. Bull. 1959, 70, 383–436. [Google Scholar] [CrossRef]
- Tyrrell, J.B. Rock glaciers or chrystocrenes. J. Geol. 1910, 18, 549–553. [Google Scholar] [CrossRef] [Green Version]
- Capps, S.R., Jr. Rock glaciers in Alaska. J. Geol. 1910, 18, 359–375. [Google Scholar] [CrossRef]
- Wagner, T.; Kainz, S.; Krainer, K.; Winkler, G. Storage-discharge characteristics of an active rock glacier catchment in the Innere Ölgrube, Austrian Alps. Hydrol. Process. 2021, 35, 1–16. [Google Scholar] [CrossRef]
- Krainer, K.; Mostler, W.; Spötl, C. Discharge from active rock glaciers, Austrian Alps: A stable isotope approach. Aust. J. Earth Sci. 2007, 100, 102–112. [Google Scholar]
- Wagner, T.; Kainz, S.; Helfricht, K.; Fischer, A.; Avian, M.; Krainer, K.; Winkler, G. Assessment of liquid and solid water storage in rock glaciers versus glacier ice in the Austrian Alps. Sci. Total Environ. 2021, 800, 149593. [Google Scholar] [CrossRef]
- Tenthorey, G. Hydrologie liee aux glaciers rocheux, Haut-Val De Rechy (Nax, VS). Bull. Murithienne 1994, 112, 97–116. [Google Scholar]
- Mewes, B.; Hilbich, C.; Delaloye, R.; Hauck, C. Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes. Cryosphere 2017, 11, 2957–2974. [Google Scholar] [CrossRef] [Green Version]
- Harrington, J.S.; Hayashi, M.; Kurylyk, B.L. Influence of a rock glacier spring on the stream energy budget and cold-water refuge in an alpine stream. Hydrol. Process. 2017, 31, 4719–4733. [Google Scholar] [CrossRef]
- Arenson, L.U.; Jakob, M.; Wainstein, P. Hydrological contribution from degrading permafrost and rock glaciers in the northern Argentinian Andes. In Mine Water Solutions in Extreme Environments; InfoMine: Lima, Peru, 2013. [Google Scholar]
- PERMOS. Swiss Permafrost Bulletin 2019/2020; Noetzli, J., Pellet, C., Eds.; PERMOS: Zurich, Switzerland, 2021; p. 21. [Google Scholar]
- Haeberli, W.; Hoelzle, M.; Kääb, A.; Keller, F.; Vonder Mühll, D.; Wagner, S. Ten Years after Drilling through the Permafrost of the Active Rock Glacier Murtèl, Eastern Swiss Alps: Answered Questions and New Perspectives. In Proceedings of the 7th International Conference on Permafrost; Centre d’Études Nordiques Sainte-Foy: Yellowknife, NT, Canada, 1998; Volume 57, pp. 403–410. [Google Scholar]
- Arenson, L.; Hoelzle, M.; Springman, S. Borehole deformation measurements and internal structure of some rock glaciers in Switzerland. Permafr. Perigl. Process. 2002, 13, 117–135. [Google Scholar] [CrossRef]
- Vonder Mühll, D.S.; Holub, P. Borehole logging in alpine permafrost, upper Engadin, Swiss Alps. Permafr. Perigl. Process. 1992, 3, 125–132. [Google Scholar] [CrossRef]
- Kellerer-Pirklbauer, A.; Rieckh, M. Monitoring nourishment processes in the rooting zone of an active rock glacier in an alpine environment. Zeitschr. Geomorphol. Suppl. Issues 2016, 60, 99–121. [Google Scholar] [CrossRef]
- Benn, D.; Evans, D.J. Glaciers and Glaciation; Routledge: London, UK, 2014. [Google Scholar]
- Kummert, M.; Bodin, X.; Braillard, L.; Delaloye, R. Pluri-decadal evolution of rock glaciers surface velocity and its impact on sediment export rates towards high alpine torrents. Earth Surf. Process. Landf. 2021, 46, 3213–3227. [Google Scholar] [CrossRef]
- Rock Glacier Inventories and Kinematics (RGIK). Towards Standard Guidelines for Inventorying Rock Glaciers. Baseline Concepts (Version 4.2.1); Barboux, C., Delaloye, R., Pellet, C., Eds.; IPA Action Group Rock Glacier Inventories and Kinematics: Fribourg, Switzerland, 2021; p. 13. [Google Scholar]
- Duguay, M.A.; Edmunds, A.; Arenson, L.U.; Wainstein, P.A. Quantifying the significance of the hydrological contribution of a rock glacier–A review. In Proceedings of the 68th Canadian Geotechnical Conference and 7th Canadian Permafrost Conference (GeoQuébec 2015); Canadian Geotechnical Society: Richmond, BC, Canada, 2015; p. 8. [Google Scholar]
- Konrad, S.K.; Humphrey, N.F.; Steig, E.J.; Clark, D.H.; Potter, N., Jr.; Pfeffer, W.T. Rock glacier dynamics and paleoclimatic implications. Geology 1999, 27, 1131–1134. [Google Scholar] [CrossRef]
- Bodin, X.; Thibert, E.; Fabre, D.; Ribolini, A.; Schoeneich, P.; Francou, B.; Reynaud, L.; Fort, M. Two decades of responses (1986–2006) to climate by the Laurichard rock glacier, French Alps. Permafr. Perigl. Process. 2009, 20, 331–344. [Google Scholar] [CrossRef]
- Buchli, T.; Merz, K.; Zhou, X.; Kinzelbach, W.; Springman, S.M. Characterization and Monitoring of the Furggwanghorn Rock Glacier, Turtmann Valley, Switzerland: Results from 2010 to 2012. Vadose Zone J. 2013, 12, vzj067. [Google Scholar] [CrossRef] [Green Version]
- Sorg, A.; Kääb, A.; Roesch, A.; Bigler, C.; Stoffel, M. Contrasting responses of Central Asian rock glaciers to global warming. Sci. Rep. 2015, 5, 8228. [Google Scholar] [CrossRef] [Green Version]
- Scherler, M.; Hauck, C.; Hoelzle, M.; Salzmann, N. Modeled sensitivity of two alpine permafrost sites to RCM-based climate scenarios. J. Geophys. Res. Earth Surf. 2013, 118, 780–794. [Google Scholar] [CrossRef] [Green Version]
- Scherler, M.; Hauck, C.; Hoelzle, M.; Stähli, M.; Völksch, I. Meltwater infiltration into the frozen active layer at an alpine permafrost site. Permafr. Perigl. Process. 2010, 21, 325–334. [Google Scholar] [CrossRef] [Green Version]
- Delaloye, R.; Lambiel, C. Evidence of winter ascending air circulation throughout talus slopes and rock glaciers situated in the lower belt of alpine discontinuous permafrost (Swiss Alps). Nor. Geogr. Tidsskr.-Nor. J. Geogr. 2007, 59, 194–203. [Google Scholar] [CrossRef]
- Kenner, R.; Phillips, M.; Hauck, C.; Hilbich, C.; Mulsow, C.; Bühler, Y.; Stoffel, A.; Buchroithner, M. New insights on permafrost genesis and conservation in talus slopes based on observations at Flüelapass, Eastern Switzerland. Geomorphology 2017, 290, 101–113. [Google Scholar] [CrossRef]
- Lachenbruch, A.H.; Marshall, B.V. Heat flow in the Arctic. Arctic 1969, 22, 300–311. [Google Scholar] [CrossRef] [Green Version]
- Thies, H.; Nickus, U.; Tolotti, M.; Tessadri, R.; Krainer, K. Evidence of rock glacier melt impacts on water chemistry and diatoms in high mountain streams. Cold Reg. Sci. Technol. 2013, 96, 77–85. [Google Scholar] [CrossRef]
- Thies, H.; Nickus, U.; Mair, V.; Tessadri, R.; Tait, D.; Thaler, B.; Psenner, R. Unexpected response of high Alpine Lake waters to climate warming. Environ. Sci. Technol. 2007, 41, 7424–7429. [Google Scholar] [CrossRef]
- Nickus, U.; Krainer, K.; Thies, H.; Tolotti, M. Blockgletscherabflüsse im Äußeren Hochebenkar: Hydrologie, Wasserchemie und Kieselalgen; Innsbruck University: Innsbruck, Austria, 2015; pp. 117–134. [Google Scholar]
- Ilyashuk, B.P.; Ilyashuk, E.A.; Psenner, R.; Tessadri, R.; Koinig, K.A. Rock glacier outflows may adversely affect lakes: Lessons from the past and present of two neighboring water bodies in a crystalline-rock watershed. Environ. Sci. Technol. 2014, 48, 6192–6200. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.W.; Knauf, M.; Caine, N.; Liu, F.; Verplanck, P.L. Geochemistry and source waters of rock glacier outflow, Colorado Front Range. Permafr. Perigl. Process. 2006, 17, 13–33. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.W.; Knauf, M.; Cory, R.; Caine, N.; Liu, F. Nitrate content and potential microbial signature of rock glacier outflow, Colorado Front Range. Earth Surf. Process. Landf. 2007, 32, 1032–1047. [Google Scholar] [CrossRef]
- Wagner, T.; Brodacz, A.; Krainer, K.; Winkler, G. Active rock glaciers as shallow groundwater reservoirs, Austrian Alps. Grundwasser 2020, 25, 215–230. [Google Scholar] [CrossRef]
- Fegel, T.S.; Baron, J.S.; Fountain, A.G.; Johnson, G.F.; Hall, E.K. The differing biogeochemical and microbial signatures of glaciers and rock glaciers. J. Geophys. Res. Biogeosci. 2016, 121, 919–932. [Google Scholar] [CrossRef] [Green Version]
- Trombotto-Liaudat, D.; Sileo, N.; Dapeña, C. Periglacial water paths within a rock glacier-dominated catchment in the Stepanek area, Central Andes, Mendoza, Argentina. Permafr. Perigl. Process. 2020, 31, 311–323. [Google Scholar] [CrossRef]
- Millar, C.I.; Westfall, R.D.; Delany, D.L. Thermal and hydrologic attributes of rock glaciers and periglacial talus landforms: Sierra Nevada, California, USA. Quat. Int. 2013, 310, 169–180. [Google Scholar] [CrossRef]
- Geiger, S.T.; Daniels, J.M.; Miller, S.N.; Nicholas, J.W. Influence of rock glaciers on stream hydrology in the La Sal Mountains, Utah. Arct. Antarct. Alp. Res. 2018, 46, 645–658. [Google Scholar] [CrossRef] [Green Version]
- Winkler, G.; Wagner, T.; Pauritsch, M.; Birk, S.; Kellerer-Pirklbauer, A.; Benischke, R.; Leis, A.; Morawetz, R.; Schreilechner, M.G.; Hergarten, S. Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria). Hydrogeol. J. 2016, 24, 937–953. [Google Scholar] [CrossRef]
- Colombo, N.; Gruber, S.; Martin, M.; Malandrino, M.; Magnani, A.; Godone, D.; Freppaz, M.; Fratianni, S.; Salerno, F. Rainfall as primary driver of discharge and solute export from rock glaciers: The Col d’Olen Rock Glacier in the NW Italian Alps. Sci. Total Environ. 2018, 639, 316–330. [Google Scholar] [CrossRef] [PubMed]
- Colombo, N.; Ferronato, C.; Antisari, L.V.; Marziali, L.; Salerno, F.; Fratianni, S.; D’Amico, M.E.; Ribolini, A.; Godone, D.; Sartini, S.; et al. A rock-glacier–pond system (NW Italian Alps): Soil and sediment properties, geochemistry, and trace-metal bioavailability. Catena 2020, 194, 104700. [Google Scholar] [CrossRef]
- Cicoira, A.; Marcer, M.; Gärtner-Roer, I.; Bodin, X.; Arenson, L.U.; Vieli, A. A general theory of rock glacier creep based on in-situ and remote sensing observations. Permafr. Perigl. Process. 2020, 32, 139–153. [Google Scholar] [CrossRef]
- Springman, S.M.; Yamamoto, Y.; Buchli, T.; Hertrich, M.; Maurer, H.; Merz, K.; Gärtner-Roer, I.; Seward, L. Rock glacier degradation and instabilities in the European Alps: A characterisation and monitoring experiment in the Turtmanntal, CH. In Landslides Science and Practice; Margottini, C.P., Sassa, C.K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 5–13. [Google Scholar]
- Moyer, A.N.; Moore, R.D.; Koppes, M.N. Streamflow response to the rapid retreat of a lake-calving glacier. Hydrol. Process. 2016, 30, 3650–3665. [Google Scholar] [CrossRef]
- Bocchiola, D. Long term (1921–2011) hydrological regime of Alpine catchments in Northern Italy. Adv. Water Resour. 2014, 70, 51–64. [Google Scholar] [CrossRef]
- Bard, A.; Renard, B.; Lang, M.; Giuntoli, I.; Korck, J.; Koboltschnig, G.; Janža, M.; d’Amico, M.; Volken, D. Trends in the hydrologic regime of Alpine rivers. J. Hydrol. 2015, 529, 1823–1837. [Google Scholar] [CrossRef]
- Fleming, S.W.; Dahlke, H.E. Modulation of linear and nonlinear hydroclimatic dynamics by mountain glaciers in Canada and Norway: Results from information-theoretic polynomial selection. Can. Water Resour. J. 2014, 39, 324–341. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, B.; Khan, A. Rising river flows and glacial mass balance in central Karakoram. J. Hydrol. 2014, 513, 192–203. [Google Scholar] [CrossRef]
- Duethmann, D.; Bolch, T.; Farinotti, D.; Kriegel, D.; Vorogushyn, S.; Merz, B.; Pieczonka, T.; Jiang, T.; Su, B.; Güntner, A. Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia. Water Resour. Res. 2015, 51, 4727–4750. [Google Scholar] [CrossRef] [Green Version]
- Rientjes, T.H.M.; Reggiani, P. A reflection on the long-term water balance of the Upper Indus Basin. Hydrol. Res. 2015, 46, 446–462. [Google Scholar]
- Brahney, J.; Weber, F.; Foord, V.; Janmaat, J.; Curtis, P.J. Evidence for a climate-driven hydrologic regime shift in the Canadian Columbia Basin. Can. Water Resour. J. 2017, 42, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Engelhardt, M.; Leclercq, P.; Eidhammer, T.; Kumar, P.; Landgren, O.; Rasmussen, R. Meltwater runoff in a changing climate (1951–2099) at Chhota Shigri Glacier, Western Himalaya, Northern India. Ann. Glaciol. 2017, 58 Pt 1, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wang, F.; Li, Z.; Wang, W.; Li, H.; Wang, P. Glacier changes in the Sikeshu River basin, Tienshan Mountains. Quat. Int. 2015, 358, 153–159. [Google Scholar] [CrossRef]
- Beamer, J.P.; Hill, D.F.; Arendt, A.; Liston, G.E. High-resolution modeling of coastal freshwater discharge and glacier mass balance in the Gulf of Alaska watershed. Water Resour. Res. 2016, 52, 3888–3909. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, W.; Deng, H.; Fang, G.; Li, Z. Changes in Central Asia’s Water Tower: Past, Present and Future. Sci. Rep. 2016, 6, 35458. [Google Scholar] [CrossRef]
- Morse, P.D.; Burn, C.R.; Kokelj, S.V. Influence of snow on near-surface ground temperatures in upland and alluvial environments of the outer Mackenzie Delta, Northwest Territories. Can. J. Earth Sci. 2012, 49, 895–913. [Google Scholar] [CrossRef]
- Bernhard, L.; Sutter, F.; Haeberli, W.; Keller, F. Processes of snow/permafrost-interactions at a high-mountain site, Murtèl/Corvatsch, eastern Swiss Alps. In Proceedings of the 7th International Conference on Permafrost; Centre d’Études Nordiques: Yellowknife, NT, Canada; Université Laval Saint-Foy (Québec): Quebec, ON, Canada, 1998. [Google Scholar]
- Keller, F.; Gubler, H.U. Interaction between Snowcover and High Mountain Permafrost at Murtel/Corvatsch, Swiss Alps. In Proceedings of the Sixth International Conference on Permafrost, Beijing, China, 5–9 July 1993; pp. 332–337. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arenson, L.U.; Harrington, J.S.; Koenig, C.E.M.; Wainstein, P.A. Mountain Permafrost Hydrology—A Practical Review Following Studies from the Andes. Geosciences 2022, 12, 48. https://doi.org/10.3390/geosciences12020048
Arenson LU, Harrington JS, Koenig CEM, Wainstein PA. Mountain Permafrost Hydrology—A Practical Review Following Studies from the Andes. Geosciences. 2022; 12(2):48. https://doi.org/10.3390/geosciences12020048
Chicago/Turabian StyleArenson, Lukas U., Jordan S. Harrington, Cassandra E. M. Koenig, and Pablo A. Wainstein. 2022. "Mountain Permafrost Hydrology—A Practical Review Following Studies from the Andes" Geosciences 12, no. 2: 48. https://doi.org/10.3390/geosciences12020048
APA StyleArenson, L. U., Harrington, J. S., Koenig, C. E. M., & Wainstein, P. A. (2022). Mountain Permafrost Hydrology—A Practical Review Following Studies from the Andes. Geosciences, 12(2), 48. https://doi.org/10.3390/geosciences12020048