A Geoscientific Review on CO and CO2 Ices in the Outer Solar System
Abstract
:1. Introduction
2. Mineralogical and Rheological Properties
3. Chemical and Spectral Aspects
4. Jupiter and Saturn
4.1. Ganymede
4.2. Callisto
4.3. Europa
4.4. Io
4.5. Saturnian System
4.6. Enceladus
4.7. Hyperion and Iapetus
4.8. Phoebe and Dione
4.9. Titan
5. Uranus and Neptune
6. Pluto
7. Comets
8. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bockelée-Morvan, D.; Biver, N. The composition of cometary ices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schorghofer, N.; Williams, J.P.; Martinez-Camacho, J.; Paige, D.A.; Siegler, M.A. Carbon dioxide cold traps on the moon. Geophys. Res. Lett. 2021, 48, e2021GL095533. [Google Scholar] [CrossRef]
- Chaban, G.M.; Bernstein, M.; Cruikshank, D.P. Carbon dioxide on planetary bodies: Theoretical and experimental studies of molecular complexes. Icarus 2007, 187, 592–599. [Google Scholar] [CrossRef]
- Escribano, R.M.; Caro, G.M.M.; Cruz-Diaz, G.A.; Rodríguez-Lazcano, Y.; Maté, B. Crystallization of CO2 ice and the absence of amorphous CO2 ice in space. Proc. Natl. Acad. Sci. USA 2013, 110, 12899–12904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matson, D.L.; Davies, A.G.; Johnson, T.V.; Combe, J.P.; McCord, T.B.; Radebaugh, J.; Singh, S. Enceladus’ near-surface CO2 gas pockets and surface frost deposits. Icarus 2018, 302, 18–26. [Google Scholar] [CrossRef]
- James, P.B.; Kieffer, H.H.; Paige, D.A. The seasonal cycle of carbon dioxide on Mars. Mars 1992, 934–968. Available online: https://ui.adsabs.harvard.edu/abs/1992mars.book..934J/abstract (accessed on 5 December 2021).
- Buratti, B.J.; Cruikshank, D.P.; Brown, R.H.; Clark, R.N.; Bauer, J.M.; Jaumann, R.; McCord, T.B.; Simonelli, D.P.; Hibbitts, C.A.; Hansen, G.B.; et al. Cassini visual and infrared mapping spectrometer observations of Iapetus: Detection of CO2. Astrophys. J. Lett. 2005, 622, L149. [Google Scholar] [CrossRef]
- Collins, G.; Johnson, T.V. Ganymede and Callisto. In Encyclopedia of the Solar System, 3th ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 813–829. [Google Scholar]
- Clark, R.N.; Cruikshank, D.P.; Jaumann, R.; Brown, R.H.; Stephan, K.; Dalle Ore, C.M.; Livo, K.; Pearson, N.; Curchin, J.; Hoefen, T.; et al. The surface composition of Iapetus: Mapping results from Cassini VIMS. Icarus 2012, 218, 831–860. [Google Scholar] [CrossRef]
- Brown, R.H.; Baines, K.H.; Bellucci, G.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.; Coradini, A.; Cruikshank, D.; Drossart, P.; et al. Observations in the Saturn system during approach and orbital insertion, with Cassini’s visual and infrared mapping spectrometer (VIMS). Astron. Astrophys. 2006, 446, 707–716. [Google Scholar] [CrossRef] [Green Version]
- Grundy, W.M.; Young, L.A.; Stansberry, J.A.; Buie, M.W.; Olkin, C.B.; Young, E.F. Near-infrared spectral monitoring of Triton with IRTF/SpeX II: Spatial distribution and evolution of ices. Icarus 2010, 205, 594–604. [Google Scholar] [CrossRef] [Green Version]
- Rubanenko, L.; Mazarico, E.; Neumann, G.A.; Paige, D.A. Ice in micro cold traps on Mercury: Implications for age and origin. J. Geophys. Res. Planets 2018, 123, 2178–2191. [Google Scholar] [CrossRef]
- Williams, J.P.; Paige, D.A.; Greenhagen, B.T.; Sefton-Nash, E. The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment. Icarus 2017, 283, 300–325. [Google Scholar] [CrossRef] [Green Version]
- Colaprete, A.; Schultz, P.; Heldmann, J.; Wooden, D.; Shirley, M.; Ennico, K.; Hermalyn, B.; Marshall, W.; Ricco, A.; Elphic, R.; et al. Detection of water in the LCROSS ejecta plume. Science 2010, 330, 463–468. [Google Scholar] [CrossRef] [Green Version]
- Gladstone, G.R.; Hurley, D.M.; Retherford, K.D.; Feldman, P.D.; Pryor, W.R.; Chaufray, J.Y.; Versteeg, M.; Greathouse, T.; Steffl, A.; Throop, H.; et al. LRO-LAMP observations of the LCROSS impact plume. Science 2010, 330, 472–476. [Google Scholar] [CrossRef]
- Haskin, L.; Warren, P. Lunar Chemistry. Chapter 8 in “Lunar Sourcebook”; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Zhang, J.A.; Paige, D.A. Cold-trapped organic compounds at the poles of the Moon and Mercury: Implications for origins. Geophys. Res. Lett. 2009, 36, 5. [Google Scholar] [CrossRef]
- Schorghofer, N.; Byrne, S.; Landis, M.E.; Mazarico, E.; Prettyman, T.H.; Schmidt, B.E.; Villarreal, M.; Castillo-Rogez, J.; Raymond, C.; Russell, C.T. The putative Cerean exosphere. Astrophys. J. 2017, 850, 85. [Google Scholar] [CrossRef] [Green Version]
- Slade, M.A.; Butler, B.J.; Muhleman, D.O. Mercury radar imaging: Evidence for polar ice. Science 1992, 258, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R.J.; Davis, B.J.; Tanaka, K.L.; Byrne, S.; Mellon, M.T.; Putzig, N.E.; Haberle, R.; Kahre, M.; Campbell, B.; Carter, L.; et al. Massive CO2 ice deposits sequestered in the south polar layered deposits of Mars. Science 2011, 332, 838–841. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.D. The role of eolian processes in forming surface features of the Martian polar layered deposits. Icarus 2000, 144, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Kieffer, H.H. Cold jets in the Martian polar caps. J. Geophys. Res. Planets 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Piqueux, S.; Christensen, P.R. Deposition of CO2 and erosion of the Martian south perennial cap between 1972 and 2004: Implications for current climate change. J. Geophys. Res. Planets 2008, 113. [Google Scholar] [CrossRef]
- Johnson, R.E.; Carlson, R.W.; Cooper, J.F.; Paranicas, C.; Moore, M.H.; Wong, M.C. Radiation effects on the surfaces of the Galilean satellites. Jupiter Planet Satellites Magnetosphere. 2004, pp. 485–512. Available online: https://lasp.colorado.edu/home/mop/files/2015/08/jupiter_ch20-1.pdf (accessed on 5 December 2021).
- Lebofsky, L.A. Stability of frosts in the solar system. Icarus 1975, 25, 205–217. [Google Scholar] [CrossRef]
- Cartwright, R.J.; Emery, J.P.; Rivkin, A.S.; Trilling, D.E.; Pinilla-Alonso, N. Distribution of CO2 ice on the large moons of Uranus and evidence for compositional stratification of their near-surfaces. Icarus 2015, 257, 428–456. [Google Scholar] [CrossRef] [Green Version]
- Kubo, T.; Nakata, H.; Kato, T. Effects of insoluble particles on grain growth in polycrystalline ice: Implications for rheology of ice shells of icy satellites. J. Mineral. Petrol. Sci. 2009, 104, 301–306. [Google Scholar] [CrossRef] [Green Version]
- Umurhan, O.M.; Ahrens, C.J.; Chevrier, V.F. Rheological and Thermophysical Properties and Some Processes Involving Common Volatile Materials Found on Pluto’s Surface. Pluto Syst. After New Horiz. 2021, 195–255. [Google Scholar]
- Hapke, B. Theory of Reflectance and Emittance Spectroscopy; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Moore, J.M.; Howard, A.D.; Umurhan, O.M.; White, O.L.; Schenk, P.M.; Beyer, R.A.; McKinnon, W.B.; Spencer, J.R.; Grundy, W.M.; Lauer, T.R.; et al. Sublimation as a landform-shaping process on Pluto. Icarus 2017, 287, 320–333. [Google Scholar] [CrossRef] [Green Version]
- Byrne, S.; Ingersoll, A.P. A sublimation model for Martian south polar ice features. Science 2003, 299, 1051–1053. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, T.; Forget, F. Observed glacier and volatile distribution on Pluto from atmosphere–topography processes. Nature 2016, 540, 86–89. [Google Scholar] [CrossRef]
- Grundy, W.M.; Binzel, R.P.; Buratti, B.J.; Cook, J.C.; Cruikshank, D.P.; Dalle Ore, C.M.; Earle, A.M.; Ennico, K.; Howett, C.A.; Lunsford, A.W.; et al. Surface compositions across Pluto and Charon. Science 2016, 351, aad9189. [Google Scholar] [CrossRef] [Green Version]
- Squyres, S.W. Ganymede and Callisto: One of Jupiter’s icy moons shows evidence of a period of intense geologic activity, whereas the other appears to have remained dormant. Am. Sci. 1983, 71, 56–64. [Google Scholar]
- De Bergh, C.; Schmitt, B.; Moroz, L.V.; Quirico, E.; Cruikshank, D.P. Laboratory data on ices, refractory carbonaceous materials, and minerals relevant to transneptunian objects and Centaurs. In The Solar System Beyond Neptune; University of Arizona: Tucson, AZ, USA, 2008; pp. 483–506. [Google Scholar]
- Barrett, C.S.; Meyer, L. Phase Diagram of Argon—Carbon Monoxide. J. Chem. Phys. 1965, 43, 3502–3506. [Google Scholar] [CrossRef]
- Quirico, E.; Schmitt, B. Near-Infrared Spectroscopy of Simple Hydrocarbons and Carbon Oxides Diluted in Solid N2and as Pure Ices: Implications for Triton and Pluto. Icarus 1997, 127, 354–378. [Google Scholar] [CrossRef]
- Fray, N.; Schmitt, B. Sublimation of ices of astrophysical interest: A bibliographic review. Planet. Space Sci. 2009, 57, 2053–2080. [Google Scholar] [CrossRef]
- Sori, M.M.; Bapst, J.; Bramson, A.M.; Byrne, S.; Landis, M.E. A Wunda-full world? Carbon dioxide ice deposits on Umbriel and other Uranian moons. Icarus 2017, 290, 1–13. [Google Scholar] [CrossRef]
- Gerakines, P.A.; Hudson, R.L. First infrared band strengths for amorphous CO2, an overlooked component of interstellar ices. Astrophys. J. Lett. 2015, 808, L40. [Google Scholar] [CrossRef] [Green Version]
- Satorre, M.Á.; Domingo, M.; Millán, C.; Luna, R.; Vilaplana, R.; Santonja, C. Density of CH4, N2 and CO2 ices at different temperatures of deposition. Planet. Space Sci. 2008, 56, 1748–1752. [Google Scholar] [CrossRef]
- Jiang, G.J.; Person, W.B.; Brown, K.G. Absolute infrared intensities and band shapes in pure solid CO and CO in some solid matrices. J. Chem. Phys. 1975, 62, 1201–1211. [Google Scholar] [CrossRef]
- Jamieson, C.S.; Mebel, A.M.; Kaiser, R.I. Understanding the kinetics and dynamics of radiation-induced reaction pathways in carbon monoxide ice at 10 K. Astrophys. J. Suppl. Ser. 2006, 163, 184. [Google Scholar] [CrossRef]
- Satorre, M.Á.; Luna, R.; Millán, C.; Domingo, M.; Santonja, C. Density of ices of astrophysical interest. In Laboratory Astrophysics; Springer: Cham, Switzerland, 2018; pp. 51–69. [Google Scholar]
- Moore, J.M.; McKinnon, W.B.; Spencer, J.R.; Howard, A.D.; Schenk, P.M.; Beyer, R.A.; Nimmo, F.; Singer, K.; Umurhan, O.; White, O.; et al. The geology of Pluto and Charon through the eyes of New Horizons. Science 2016, 351, 1284–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musiolik, G.; Teiser, J.; Jankowski, T.; Wurm, G. Collisions of CO2 ice grains in planet formation. Astrophys. J. 2016, 818, 16. [Google Scholar] [CrossRef] [Green Version]
- Luna, R.; Satorre, M.Á.; Santonja, C.; Domingo, M. New experimental sublimation energy measurements for some relevant astrophysical ices. Astron. Astrophys. 2014, 566, A27. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, B.; Espinasse, S.; Grim, R.J.A.; Greenberg, J.M.; Klinger, J. Laboratory studies of cometary ice analogues. In Physics and Mechanics of Cometary Materials, European Space Agency, Münster, FRG; European Space Agency: Paris, France, 1989; Volume 302, Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/21/088/21088789.pdf (accessed on 5 December 2021).
- Delitsky, M.L.; Lane, A.L. Ice chemistry on the Galilean satellites. J. Geophys. Res. Planets 1998, 103, 31391–31403. [Google Scholar] [CrossRef]
- Teolis, B.D.; Waite, J.H. Dione and Rhea seasonal exospheres revealed by Cassini CAPS and INMS. Icarus 2016, 272, 277–289. [Google Scholar] [CrossRef] [Green Version]
- Cruikshank, D.P.; Meyer, A.W.; Brown, R.H.; Clark, R.N.; Jaumann, R.; Stephan, K.; Hibbitts, C.; Sandford, S.; Mastrapa, R.; Filacchione, G.; et al. Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale. Icarus 2010, 206, 561–572. [Google Scholar] [CrossRef]
- Palumbo, M.E.; Strazzulla, G. The 2140/cm band of frozen CO-Laboratory experiments and astrophysical applications. Astron. Astrophys. 1993, 269, 568–580. [Google Scholar]
- Sandford, S.A.; Allamandola, L.J.; Tielens, A.G.G.M.; Valero, G.J. Laboratory studies of the infrared spectral propertries of CO in astrophysical ices. Astrophys. J. 1988, 329, 498–510. [Google Scholar] [CrossRef]
- Journaux, B.; Kalousová, K.; Sotin, C.; Tobie, G.; Vance, S.; Saur, J.; Bollengier, O.; Noack, L.; Ruckriemen-Bez, T.; Van Hoolst, T.; et al. Large ocean worlds with high-pressure ices. Space Sci. Rev. 2020, 216, 1–36. [Google Scholar] [CrossRef]
- Ehrenfreund, P.; Kerkhof, O.; Schutte, W.A.; Boogert, A.C.A.; Gerakines, P.A.; Dartois, E.; d’Hendecourt, L.; Tielens, A.; van Dishoeck, E.; Whittet, D.C.B. Laboratory studies of thermally processed H2O-CH3OH-CO2 ice mixtures and their astrophysical implications. Astron. Ap. 1999, 350, 240–253. [Google Scholar]
- Gibb, E.L.; Whittet, D.C.B.; Boogert, A.C.A.; Tielens, A.G.G.M. Interstellar ice: The infrared space observatory legacy. Astrophys. J. Suppl. Ser. 2004, 151, 35. [Google Scholar] [CrossRef] [Green Version]
- Raut, U.; Fulvio, D.; Loeffler, M.J.; Baragiola, R.A. Radiation synthesis of carbon dioxide in ice-coated carbon: Implications for interstellar grains and icy moons. Astrophys. J. 2012, 752, 159. [Google Scholar] [CrossRef]
- Ferrari, B.C.; Slavicinska, K.; Bennett, C.J. Role of Suprathermal Chemistry on the Evolution of Carbon Oxides and Organics within Interstellar and Cometary Ices. Acc. Chem. Res. 2021, 54, 1067–1079. [Google Scholar] [CrossRef]
- Raut, U.; Baragiola, R.A. Solid-state co oxidation by atomic o: A route to solid co2 synthesis in dense molecular clouds. Astrophys. J. Lett. 2011, 737, L14. [Google Scholar] [CrossRef] [Green Version]
- Mennella, V.; Baratta, G.A.; Palumbo, M.E.; Bergin, E.A. Synthesis of CO and CO2 molecules by UV irradiation of water ice-covered hydrogenated carbon grains. Astrophys. J. 2006, 643, 923. [Google Scholar] [CrossRef]
- Bennett, C.J.; Jamieson, C.S.; Kaiser, R.I. Mechanistical studies on the formation and destruction of carbon monoxide (CO), carbon dioxide (CO2), and carbon trioxide (CO3) in interstellar ice analog samples. Phys. Chem. Chem. Phys. 2010, 12, 4032–4050. [Google Scholar] [CrossRef]
- Kaiser, R.I. Experimental investigation on the formation of carbon-bearing molecules in the interstellar medium via neutral− neutral reactions. Chem. Rev. 2002, 102, 1309–1358. [Google Scholar] [CrossRef]
- Bennett, C.J.; Brotton, S.J.; Jones, B.M.; Misra, A.K.; Sharma, S.K.; Kaiser, R.I. High-sensitivity raman spectrometer to study pristine and irradiated interstellar ice analogs. Anal. Chem. 2013, 85, 5659–5665. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, M.J.; Baratta, G.A.; Palumbo, M.E.; Strazzulla, G.; Baragiola, R.A. CO synthesis in solid CO by Lyman-α photons and 200 keV protons. Astron. Astrophys. 2005, 435, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Gerakines, P.A.; Moore, M.H.; Hudson, R.L. Energetic processing of laboratory ice analogs: UV photolysis versus ion bombardment. J. Geophys. Res. Planets 2001, 106, 33381–33385. [Google Scholar] [CrossRef]
- Satorre, M.A.; Palumbo, M.E.; Strazzulla, G. CO/CO2 Molecular Number Ratio Produced by ion Irradiation of Ices. Astrophys. Space Sci. 2000, 274, 643–653. [Google Scholar] [CrossRef]
- Mennella, V.; Palumbo, M.E.; Baratta, G.A. Formation of CO and CO2 molecules by ion irradiation of water ice-covered hydrogenated carbon grains. Astrophys. J. 2004, 615, 1073. [Google Scholar] [CrossRef]
- Gomis, O.; Strazzulla, G. CO2 production by ion irradiation of H2O ice on top of carbonaceous materials and its relevance to the Galilean satellites. Icarus 2005, 177, 570–576. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kaiser, R.I. Electron irradiation of Kuiper belt surface ices: Ternary N2-CH4-CO mixtures as a case study. Astrophys. J. 2012, 758, 37. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Grieves, G.A.; Orlando, T.M. Vacuum ultraviolet photon-stimulated oxidation of buried ice: Graphite grain interfaces. Astrophys. J. 2015, 804, 24. [Google Scholar] [CrossRef] [Green Version]
- Sabri, T.; Baratta, G.A.; Jäger, C.; Palumbo, M.E.; Henning, T.; Strazzulla, G.; Wendler, E. A laboratory study of ion-induced erosion of ice-covered carbon grains. Astron. Astrophys. 2015, 575, A76. [Google Scholar] [CrossRef] [Green Version]
- Baragiola, R.A. Energetic electronic processes on extraterrestrial surfaces. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2005, 232, 98–107. [Google Scholar] [CrossRef]
- Moore, M.H.; Hudson, R.L. IR detection of H2O2 at 80 K in ion-irradiated laboratory ices relevant to Europa. Icarus 2000, 145, 282–288. [Google Scholar] [CrossRef]
- Kaiser, P.; Unde, R.B.; Kern, C.; Jess, A. Production of liquid hydrocarbons with CO2 as carbon source based on reverse water-gas shift and Fischer-Tropsch synthesis. Chem. Ing. Tech. 2013, 85, 489–499. [Google Scholar] [CrossRef]
- Strazzulla, G.; Baratta, G.A.; Palumbo, M.E. Vibrational spectroscopy of ion-irradiated ices. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2001, 57, 825–842. [Google Scholar] [CrossRef]
- Brucato, J.R.; Castorina, A.C.; Palumbo, M.E.; Satorre, M.A.; Strazzulla, G. Ion irradiation and extended CO emission in cometary comae. Planet. Space Sci. 1997, 45, 835–840. [Google Scholar] [CrossRef]
- Brucato, J.R.; Palumbo, M.E.; Strazzulla, G. Carbonic acid by ion implantation in water/carbon dioxide ice mixtures. Icarus 1997, 125, 135–144. [Google Scholar] [CrossRef]
- Hand, K.P.; Carlson, R.W. H2O2 production by high-energy electrons on icy satellites as a function of surface temperature and electron flux. Icarus 2011, 215, 226–233. [Google Scholar] [CrossRef]
- Johnson, R.E.; Quickenden, T.I.; Cooper, P.D.; McKinley, A.J.; Freeman, C.G. The production of oxidants in Europa’s surface. Astrobiology 2003, 3, 823–850. [Google Scholar] [CrossRef]
- Moore, M.H.; Khanna, R.; Donn, B. Studies of proton irradiated H2O+ CO2 and H2O+ CO ices and analysis of synthesized molecules. J. Geophys. Res. Planets 1991, 96, 17541–17545. [Google Scholar] [CrossRef]
- Mura, A.; Adriani, A.; Sordini, R.; Sindoni, G.; Plainaki, C.; Tosi, F.; Filacchionhe, G.; Bolton, S.; Zambon, F.; Hansen, C.; et al. Infrared Observations of Ganymede From the Jovian InfraRed Auroral Mapper on Juno. J. Geophys. Res. Planets 2020, 125, e2020JE006508. [Google Scholar] [CrossRef]
- Carlson, R.W.; Weissman, P.R.; Smythe, W.D.; Mahoney, J.C. Near-infrared mapping spectrometer experiment on Galileo. Space Sci. Rev. 1992, 60, 457–502. [Google Scholar] [CrossRef]
- Brown, R.H.; Baines, K.H.; Bellucci, G.; Bibring, J.P.; Buratti, B.J.; Capaccioni, F.; Cerroni, P.; Clark, R.; Coradini, A.; Cruikshank, D.; et al. The Cassini visual and infrared mapping spectrometer (VIMS) investigation. Space Sci. Rev. 2004, 115, 111–168. [Google Scholar] [CrossRef]
- Schmitt, B.; Philippe, S.; Grundy, W.M.; Reuter, D.C.; Côte, R.; Quirico, E.; Protopapa, S.; Young, L.; Binzel, R.; Cook, J.; et al. Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer. Icarus 2017, 287, 229–260. [Google Scholar] [CrossRef]
- McCord, T.A.; Hansen, G.B.; Clark, R.N.; Martin, P.D.; Hibbitts, C.A.; Fanale, F.P.; Granahan, J.; Segura, M.; Matson, D.; Johnson, T.; et al. Non-water-ice constituents in the surface material of the icy Galilean satellites from the Galileo near-infrared mapping spectrometer investigation. J. Geophys. Res. Planets 1998, 103, 8603–8626. [Google Scholar] [CrossRef]
- Isokoski, K.; Poteet, C.A.; Linnartz, H. Highly resolved infrared spectra of pure CO2 ice (15–75 K). Astron. Astrophys. 2013, 555, A85. [Google Scholar] [CrossRef] [Green Version]
- Hibbitts, C.A.; Szanyi, J. Physisorption of CO2 on non-ice materials relevant to icy satellites. Icarus 2007, 191, 371–380. [Google Scholar] [CrossRef]
- Baratta, G.A.; Palumbo, M.E. Infrared optical constants of CO and CO2 thin icy films. JOSA A 1998, 15, 3076–3085. [Google Scholar] [CrossRef]
- Bernstein, M.P.; Cruikshank, D.P.; Sandford, S.A. Near-infrared laboratory spectra of solid H2O/CO2 and CH3OH/CO2 ice mixtures. Icarus 2005, 179, 527–534. [Google Scholar] [CrossRef]
- Schmitt, B. The Solid Spectroscopy Data Model (SSDM) and the GhoSST Database. In EPSC-DPS Joint Meeting 2011; 2011; Volume 2011, p. 1475. Available online: https://ghosst.osug.fr/search/band (accessed on 5 December 2021).
- McCord, T.A.; Carlson, R.W.; Smythe, W.D.; Hansen, G.B.; Clark, R.N.; Hibbitts, C.A.; Fanale, F.; Granahan, J.; Segura, M.; Matson, D.; et al. Organics and other molecules in the surfaces of Callisto and Ganymede. Science 1997, 278, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Hibbitts, C.A.; Pappalardo, R.T.; Hansen, G.B.; McCord, T.B. Carbon dioxide on Ganymede. J. Geophys. Res. Planets 2003, 108, 5036. [Google Scholar] [CrossRef]
- Clark, R.N.; Brown, R.H.; Cruikshank, D.P.; Swayze, G.A. Isotopic ratios of Saturn’s rings and satellites: Implications for the origin of water and Phoebe. Icarus 2019, 321, 791–802. [Google Scholar] [CrossRef]
- Douté, S.; Schmitt, B.; Quirico, E.; Owen, T.C.; Cruikshank, D.P.; De Bergh, C.; Geballe, T.; Roush, T.L. Evidence for methane segregation at the surface of Pluto. Icarus 1999, 142, 421–444. [Google Scholar] [CrossRef]
- Gerakines, P.A.; Bray, J.J.; Davis, A.; Richey, C.R. The strengths of near-infrared absorption features relevant to interstellar and planetary ices. Astrophys. J. 2005, 620, 1140. [Google Scholar] [CrossRef]
- Nelson, R.M.; Lane, A.L.; Matson, D.L.; Veeder, G.J.; Buratti, B.J.; Tedesco, E.F. Spectral geometric albedos of the Galilean satellites from 0.24 to 0.34 micrometers: Observations with the International Ultraviolet Explorer. Icarus 1987, 72, 358–380. [Google Scholar] [CrossRef]
- Spencer, J.R.; Calvin, W.M.; Person, M.J. Charge-coupled device spectra of the Galilean satellites: Molecular oxygen on Ganymede. J. Geophys. Res. Planets 1995, 100, 19049–19056. [Google Scholar] [CrossRef]
- Spencer, J.R. Thermal segregation of water ice on the Galilean satellites. Icarus 1987, 69, 297–313. [Google Scholar] [CrossRef]
- Orton, G.S.; Spencer, J.R.; Travis, L.D.; Martin, T.Z.; Tamppari, L.K. Galileo photopolarimeter-radiometer observations of Jupiter and the Galilean satellites. Science 1996, 274, 389–391. [Google Scholar] [CrossRef]
- Hudson, R.L.; Moore, M.H. Far-IR spectral changes accompanying proton irradiation of solids of astrochemical interest. Radiat. Phys. Chem. 1995, 45, 779–789. [Google Scholar] [CrossRef]
- Carlson, R.; Smythe, W.; Baines, K.; Barbinis, E.; Becker, K.; Burns, R.; Calcutt, S.; Calvin, W.; Clark, R.; Danielson, G.; et al. Near-infrared spectroscopy and spectral mapping of Jupiter and the Galilean satellites: Results from Galileo’s initial orbit. Science 1996, 274, 385–388. [Google Scholar] [CrossRef]
- Pappalardo, R.T.; Collins, G.C.; Head, J.W.; Helfenstein, P.; McCord, T.B.; Moore, J.M.; Prockter, L.; Schenk, P.; Spencer, J.R. Geology of ganymede. Jupit. Planet Satell. Magnetos. 2004, 2, 363. [Google Scholar]
- Hibbitts, C.A.; Klemaszewski, J.E.; McCord, T.B.; Hansen, G.B.; Greeley, R. CO2-rich impact craters on Callisto. J. Geophys. Res. Planets 2002, 107, 14-1–14-12. [Google Scholar] [CrossRef]
- Hibbitts, C.A.; McCord, T.B.; Hansen, G.B. Distributions of CO2 and SO2 on the surface of Callisto. J. Geophys. Res. Planets 2000, 105, 22541–22557. [Google Scholar] [CrossRef]
- Jewitt, D. From comets to asteroids: When hairy stars go bald. In Worlds in Interaction: Small Bodies and Planets of the Solar System; Springer: Dordrecht, The Netherlands, 1996; pp. 185–201. [Google Scholar]
- Carlson, R.W.; Johnson, R.E.; Anderson, M.S. Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 1999, 286, 97–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, S.L. Clathrate hydrates in the solar system. In Ices in the Solar System; Springer: Dordrecht, The Netherlands, 1985; pp. 59–79. [Google Scholar]
- Kargel, J.S.; Lunine, J.I. Clathrate hydrates on Earth and in the solar system. In Solar System Ices; Springer: Dordrecht, The Netherlands, 1998; pp. 97–117. [Google Scholar]
- Kargel, J.S.; Kaye, J.Z.; Head III, J.W.; Marion, G.M.; Sassen, R.; Crowley, J.K.; Ballesteros, O.; Grant, S.; Hogenboom, D.L. Europa’s crust and ocean: Origin, composition, and the prospects for life. Icarus 2000, 148, 226–265. [Google Scholar] [CrossRef] [Green Version]
- Zolotov, M.Y.; Shock, E.L. Composition and stability of salts on the surface of Europa and their oceanic origin. J. Geophys. Res. Planets 2001, 106, 32815–32827. [Google Scholar] [CrossRef] [Green Version]
- Chyba, C.F. Energy for microbial life on Europa. Nature 2000, 403, 381–382. [Google Scholar] [CrossRef]
- Hand, K.P.; Chyba, C.F.; Carlson, R.W.; Cooper, J.F. Clathrate hydrates of oxidants in the ice shell of Europa. Astrobiology 2006, 6, 463–482. [Google Scholar] [CrossRef]
- Nordheim, T.A.; Hand, K.P.; Paranicas, C. Preservation of potential biosignatures in the shallow subsurface of Europa. Nat. Astron. 2018, 2, 673–679. [Google Scholar] [CrossRef]
- Hall, D.T.; Strobel, D.F.; Feldman, P.D.; McGrath, M.A.; Weaver, H.A. Detection of an oxygen atmosphere on Jupiter’s moon Europa. Nature 1995, 373, 677–679. [Google Scholar] [CrossRef]
- Hansen, G.B.; McCord, T.B. Widespread CO2 and other non-ice compounds on the anti-Jovian and trailing sides of Europa from Galileo/NIMS observations. Geophys. Res. Lett. 2008, 35, 1. [Google Scholar] [CrossRef]
- McCord, T.B.; Hansen, G.B.; Fanale, F.P.; Carlson, R.W.; Matson, D.L.; Johnson, T.V.; Smythe, W.; Crowley, J.; Martin, P.; Ocampo, A.; et al. Salts on Europa’s surface detected by Galileo’s near infrared mapping spectrometer. Science 1998, 280, 1242–1245. [Google Scholar] [CrossRef]
- McCord, T.B.; Hansen, G.B.; Matson, D.L.; Johnson, T.V.; Crowley, J.K.; Fanale, F.P.; Carlson, R.; Smythe, W.; Martin, P.; Hibbitts, C.; et al. Hydrated salt minerals on Europa’s surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J. Geophys. Res. Planets 1999, 104, 11827–11851. [Google Scholar] [CrossRef]
- Oancea, A.; Grasset, O.; Le Menn, E.; Bollengier, O.; Bezacier, L.; Le Mouélic, S.; Tobie, G. Laboratory infrared reflection spectrum of carbon dioxide clathrate hydrates for astrophysical remote sensing applications. Icarus 2012, 221, 900–910. [Google Scholar] [CrossRef]
- Bouquet, A.; Mousis, O.; Glein, C.R.; Danger, G.; Waite, J.H. The role of clathrate formation in Europa’s ocean composition. Astrophys. J. 2019, 885, 14. [Google Scholar] [CrossRef]
- Shock, E.L. Chemical environments of submarine hydrothermal systems. Mar. Hydrothermal Syst. Orig. Life 1992, 67–107. [Google Scholar] [CrossRef] [Green Version]
- Nash, D.B.; Nelson, R.M. Spectral evidence for sublimates and adsorbates on Io. Nature 1979, 280, 763–766. [Google Scholar] [CrossRef]
- Trafton, L.M.; Lester, D.F.; Ramseyer, T.F.; Salama, F.; Sanford, S.A.; Allamandola, L.J. A new class of absorption feature in lo’s near-infrared spectrum. Icarus 1991, 89, 264–276. [Google Scholar] [CrossRef]
- Sandford, S.A.; Salama, F.; Allamandola, L.J.; Trafton, L.M.; Lester, D.F.; Ramseyer, T.F. Laboratory studies of the newly discovered infrared band at 4705.2 cm−1 (2.1253 μm) in the spectrum of Io: The tentative identification of CO2. Icarus 1991, 91, 125–144. [Google Scholar] [CrossRef]
- Sandford, S.A.; Allamandola, L.J. The condensation and vaporization behavior of ices containing SO2, H2S, and CO2: Implications for Io. Icarus 1993, 106, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Salama, F.; Allamandola, L.J.; Witteborn, F.C.; Cruikshank, D.P.; Sandford, S.A.; Bregman, J.D. The 2.5–5.0 μm spectra of Io: Evidence for H2S and H2O frozen in SO2. Icarus 1990, 83, 66–82. [Google Scholar] [CrossRef]
- Clark, R.N.; Curchin, J.M.; Jaumann, R.; Cruikshank, D.P.; Brown, R.H.; Hoefen, T.M.; Steohan, K.; Moore, J.; Buratti, B.; Baines, K.; et al. Compositional mapping of Saturn’s satellite Dione with Cassini VIMS and implications of dark material in the Saturn system. Icarus 2008, 193, 372–386. [Google Scholar] [CrossRef]
- Waite, J.H.; Combi, M.R.; Ip, W.H.; Cravens, T.E.; McNutt, R.L.; Kasprzak, W.; Yelle, R.; Luhmann, J.; Niemann, H.; Gell, D.; et al. Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 2006, 311, 1419–1422. [Google Scholar] [CrossRef] [Green Version]
- Palmer, E.E.; Brown, R.H. Production and detection of carbon dioxide on Iapetus. Icarus 2011, 212, 807–818. [Google Scholar] [CrossRef]
- Cassidy, T.; Coll, P.; Raulin, F.; Carlson, R.W.; Johnson, R.E.; Loeffler, M.J.; Hand, K.; Baragiola, R.A. Radiolysis and photolysis of icy satellite surfaces: Experiments and theory. Space Sci. Rev. 2010, 153, 299–315. [Google Scholar] [CrossRef]
- Pinilla-Alonso, N.; Roush, T.L.; Marzo, G.A.; Cruikshank, D.P.; Dalle Ore, C.M. Iapetus surface variability revealed from statistical clustering of a VIMS mosaic: The distribution of CO2. Icarus 2011, 215, 75–82. [Google Scholar] [CrossRef]
- Teolis, B.D.; Perry, M.E.; Hansen, C.J.; Waite, J.H.; Porco, C.C.; Spencer, J.R.; Howett, C.J. Enceladus plume structure and time variability: Comparison of Cassini observations. Astrobiology 2017, 17, 926–940. [Google Scholar] [CrossRef] [Green Version]
- Combe, J.P.; McCord, T.B.; Matson, D.L.; Johnson, T.V.; Davies, A.G.; Scipioni, F.; Tosi, F. Nature, distribution and origin of CO2 on Enceladus. Icarus 2014, 317, 491–508. [Google Scholar] [CrossRef]
- Prasad, P.S.R.; Prasad, K.S.; Thakur, N.K. FTIR signatures of type-II clathrates of carbon dioxide in natural quartz veins. Curr. Sci. 2006, 90, 1544–1547. [Google Scholar]
- Moore, J.M.; Mellon, M.T.; Zent, A.P. Mass wasting and ground collapse in terrains of volatile-rich deposits as a solar system-wide geological process: The pre-Galileo view. Icarus 1996, 122, 63–78. [Google Scholar] [CrossRef]
- Blake, D.; Allamandola, L.; Sandford, S.; Hudgins, D.; Freund, F. Clathrate hydrate formation in amorphous cometary ice analogs in vacuo. Science 1991, 254, 548–551. [Google Scholar] [CrossRef] [PubMed]
- Ali-Dib, M.; Mousis, O.; Petit, J.M.; Lunine, J.I. The measured compositions of Uranus and Neptune from their formation on the CO ice line. Astrophys. J. 2014, 793, 9. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, R.; Emery, J.P. Compositional Trends on the Large Moons of Uranus: Evidence for System-Wide Modification. In AGU Fall Meeting Abstracts; AGU: New Orleans, LA, USA, 2017; Volume 2017, p. P31D-2861. [Google Scholar]
- Grundy, W.M.; Young, L.A.; Spencer, J.R.; Johnson, R.E.; Young, E.F.; Buie, M.W. Distributions of H2O and CO2 ices on Ariel, Umbriel, Titania, and Oberon from IRTF/SpeX observations. Icarus 2006, 184, 543–555. [Google Scholar] [CrossRef]
- Plescia, J.B. Geological terrains and crater frequencies on Ariel. Nature 1987, 327, 201–204. [Google Scholar] [CrossRef]
- Zahnle, K.; Schenk, P.; Levison, H.; Dones, L. Cratering rates in the outer Solar System. Icarus 2003, 163, 263–289. [Google Scholar] [CrossRef] [Green Version]
- Cruikshank, D.P.; Brown, R.H.; Clark, R.N. Nitrogen on Triton. Icarus 1984, 58, 293–305. [Google Scholar] [CrossRef]
- Cruikshank, D.P.; Roush, T.L.; Owen, T.C.; Geballe, T.R.; De Bergh, C.; Schmitt, B.; Brown, R.; Bartholomew, M.J. Ices on the surface of Triton. Science 1993, 261, 742–745. [Google Scholar] [CrossRef]
- Quirico, E.; Douté, S.; Schmitt, B.; de Bergh, C.; Cruikshank, D.P.; Owen, T.C.; Geballe, T.; Roush, T.L. Composition, physical state, and distribution of ices at the surface of Triton. Icarus 1999, 139, 159–178. [Google Scholar] [CrossRef]
- Tegler, S.C.; Stufflebeam, T.D.; Grundy, W.M.; Hanley, J.; Dustrud, S.; Lindberg, G.E.; Engle, A.; Dillingham, T.; Matthew, D.; Trilling, D.; et al. A New Two-molecule Combination Band as a Diagnostic of Carbon Monoxide Diluted in Nitrogen Ice on Triton. Astron. J. 2019, 158, 17. [Google Scholar] [CrossRef]
- Lellouch, E.; Stansberry, J.; Emery, J.; Grundy, W.; Cruikshank, D.P. Thermal properties of Pluto’s and Charon’s surfaces from Spitzer observations. Icarus 2011, 214, 701–716. [Google Scholar] [CrossRef]
- Quirico, E.; Schmitt, B. A Spectroscopic Study of CO Diluted in N2Ice: Applications for Triton and Pluto. Icarus 1997, 128, 181–188. [Google Scholar] [CrossRef]
- Stern, S.A.; Bagenal, F.; Ennico, K.; Gladstone, G.R.; Grundy, W.M.; McKinnon, W.B.; Moore, J.; Olkin, C.; Spencer, J.; Weaver, H.; et al. The Pluto system: Initial results from its exploration by New Horizons. Science 2015, 350, 6258. [Google Scholar] [CrossRef] [Green Version]
- White, O.L.; Moore, J.M.; McKinnon, W.B.; Spencer, J.R.; Howard, A.D.; Schenk, P.M.; Beyer, R.; Nimmo, F.; Singer, K.; Umurhan, O.; et al. Geological mapping of sputnik planitia on pluto. Icarus 2017, 287, 261–286. [Google Scholar] [CrossRef] [Green Version]
- Womack, M.; Sarid, G.; Wierzchos, K. CO and other volatiles in distantly active comets. Publ. Astron. Soc. Pac. 2017, 129, 031001. [Google Scholar] [CrossRef]
- Läuter, M.; Kramer, T.; Rubin, M.; Altwegg, K. Surface localization of gas sources on comet 67P/Churyumov–Gerasimenko based on DFMS/COPS data. Mon. Not. R. Astron. Soc. 2019, 483, 852–861. [Google Scholar] [CrossRef] [Green Version]
- Ip, W.H. On photochemical heating of cometary comae-The cases of H2O and CO-rich comets. Astrophys. J. 1983, 264, 726–732. [Google Scholar] [CrossRef]
- Huebner, W.F.; Carpenter, C.W. Solar Photo Rate Coefficients; Los Alamos Scientific Lab.: Los Alamos County, NM, USA, 1979; No. LA-8085-MS. [Google Scholar]
- Wesołowski, M.; Gronkowski, P.; Tralle, I. Outbursts of comets at large heliocentric distances: Concise review and numerical simulations of brightness jumps. Planet. Space Sci. 2020, 184, 104867. [Google Scholar] [CrossRef]
- Cochran, A.; Barker, E.S.; Cochran, W. Spectrophotometric observations of P/Schwassmann-Wachmann 1 during outburst. Astron. J. 1980, 85, 474–477. [Google Scholar] [CrossRef]
- Bockelee-Morvan, D.; Debout, V.; Erard, S.; Leyrat, C.; Capaccioni, F.; Filacchione, G.; Fougere, N.; Drossart, P.; Arnold, G.; Combi, M.; et al. First observations of H2O and CO2 vapor in comet 67P/Churyumov-Gerasimenko made by VIRTIS onboard Rosetta. Astron. Astrophys. 2015, 583, A6. [Google Scholar] [CrossRef] [Green Version]
- Filacchione, G.; Capaccioni, F.; Ciarniello, M.; Raponi, A.; Tosi, F.; De Sanctis, M.C.; Erard, S.; Bocklee Morvan, D.; Leyrat, C.; Arnold, G.; et al. The global surface composition of 67P/CG nucleus by Rosetta/VIRTIS.(I) Prelanding mission phase. Icarus 2016, 274, 334–349. [Google Scholar] [CrossRef] [Green Version]
- Hoang, M.; Garnier, P.; Gourlaouen, H.; Lasue, J.; Rème, H.; Altwegg, K.; Balsiger, H.; Beth, A.; Calmonte, U.; Fiethe, B.; et al. Two years with comet 67P/Churyumov-Gerasimenko: H2O, CO2, and CO as seen by the ROSINA/RTOF instrument of Rosetta. Astron. Astrophys. 2019, 630, A33. [Google Scholar] [CrossRef] [Green Version]
- Fink, U.; Doose, L.; Rinaldi, G.; Bieler, A.; Capaccioni, F.; Bockelée-Morvan, D.; Filacchione, G.; Erard, S.; Leyrat, C.; Blecka, M.; et al. Investigation into the disparate origin of CO2 and H2O outgassing for Comet 67/P. Icarus 2016, 277, 78–97. [Google Scholar] [CrossRef]
- Läuter, M.; Kramer, T.; Rubin, M.; Altwegg, K. The gas production of 14 species from comet 67P/Churyumov–Gerasimenko based on DFMS/COPS data from 2014 to 2016. Mon. Not. R. Astron. Soc. 2020, 498, 3995–4004. [Google Scholar] [CrossRef]
Species | Temperature (K) | Pressure (Bar) |
---|---|---|
CO2 | 70 | 1.00 × 10−13 |
80 | 3.98 × 10−11 | |
90 | 6.31 × 10−09 | |
100 | 2.00 × 10−07 | |
CO | 70 | 0.158 |
80 | 0.631 | |
90 | 2.51 | |
100 | 6.31 |
Species | Temperature (K) | Density (g cm−3) |
---|---|---|
CO2 | 10 | 1 |
30 | 1.17 | |
40 | 1.25 | |
50 | 1.45 | |
70 | 1.48 | |
80 | 1.51 |
%CO | Density (g cm−3) |
---|---|
10 | 0.94 |
20 | 0.87 |
30 | 0.87 |
50 | 0.89 |
70 | 0.92 |
90 | 0.95 |
Species | Temperature (K) | E (kJ mol−1) |
---|---|---|
CO2 | 91.5–92.5 | 29.3 |
80–90 | 22.37 | |
CO | 33.5–34.5 | 6.3 |
40–50 | 7.98 | |
54–61 | 7.6 |
Species | Mode | Band (cm−1) | Band (µm) |
---|---|---|---|
ν1 | 1385 | 7.22 b | |
ν2 | 660, 665 | 15.15, 15.04 | |
ν3 | 2340 | 4.274 c | |
2ν2 + ν3 | 3592 | 2.784 | |
ν1 + ν3 | 3700 | 2.703 | |
CO2 a | 2ν3 | 4685 | 2.134 |
4ν2 + ν3 | 4832 | 2.070 | |
ν1 + 2ν2 + ν3 | 4960 | 2.016 | |
2ν1 + ν3 | 5083 | 1.967 | |
ν1 + 4ν2 + ν3 | 6214 | 1.609 | |
2ν1 + 2ν2 + ν3 | 6341 | 1.577 | |
3ν3 | 6972 | 1.434 | |
ν + ν f | 4278.5 | 2.33 | |
2ν | 4250.9 | 2.35 | |
2ν | 4198.2 | 2.38 | |
2ν | 4158 | 2.4 | |
2ν | 4150.9 | 2.4 | |
CO d,e | 2ν | 4054.8 | 2.46 |
ν | 2139.4 | 4.67 | |
ν | 2112 | 4.73 | |
ν | 2091.7 | 4.78 | |
ν | 2088 | 4.78 | |
ν | 2039.9 | 4.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahrens, C.; Meraviglia, H.; Bennett, C. A Geoscientific Review on CO and CO2 Ices in the Outer Solar System. Geosciences 2022, 12, 51. https://doi.org/10.3390/geosciences12020051
Ahrens C, Meraviglia H, Bennett C. A Geoscientific Review on CO and CO2 Ices in the Outer Solar System. Geosciences. 2022; 12(2):51. https://doi.org/10.3390/geosciences12020051
Chicago/Turabian StyleAhrens, Caitlin, Hypatia Meraviglia, and Christopher Bennett. 2022. "A Geoscientific Review on CO and CO2 Ices in the Outer Solar System" Geosciences 12, no. 2: 51. https://doi.org/10.3390/geosciences12020051
APA StyleAhrens, C., Meraviglia, H., & Bennett, C. (2022). A Geoscientific Review on CO and CO2 Ices in the Outer Solar System. Geosciences, 12(2), 51. https://doi.org/10.3390/geosciences12020051