Isotopic and Chemical Tracing for Residence Time and Recharge Mechanisms of Groundwater under Semi-Arid Climate: Case from Rif Mountains (Northern Morocco)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Geographical and Climatic Setting
2.1.2. Geological and Hydrogeological Setting
- The Haouz to the north of Tetouan, the limestone ridge between Tetouan and Jebha, and the chain of Bokoya to the west of the city of Al Hoceima;
- The Haouz chain extends between Sebta and Tetouan in the form of a narrow strip of about thirty kilometers long. It covers an area of 134 km2. From Tleta Taghramt, this chain breaks up into several small massifs, of which Jbel Moussa is the last link in the north;
- The limestone ridge south of Tetouan: extends from Tetouan to Jebha; it consists mainly of a thick series of limestone and dolomitic Trias-Lias strongly tectonized, karstified and cracked.
2.2. Methods and Analytical Techniques
3. Results and Discussion
3.1. Groundwater Hydrochemistry Processes
3.2. Stable Hydrogen and Oxygen Isotopes
3.3. Identifying Recharge Processes
3.4. Radiocarbon (14C) and Stable Isotopes of Carbon (δ13C)
3.5. Groundwater Residence Time
3.5.1. Tritium Content
3.5.2. Radiocarbon Dating
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ford, D.; Williams, P. Karst Water Resources Management. In Karst Hydrogeology and Geomorphology; John Wiley & Sons, Ltd.: Chichester, UK, 2007; pp. 441–469. [Google Scholar] [CrossRef]
- Calvache, M.L.; Duque, C.; Pulido-Velazquez, D. Summary Editorial: Impacts of global change on groundwater in Western Mediterranean countries. Environ. Earth Sci. 2020, 79, 1–5. [Google Scholar] [CrossRef]
- Martosrosillo, S.; González-Ramón, A.; Jimenezgavilan, P.; Andreo, B.; Duran, J.J.; Mancera, E. Review on groundwater recharge in carbonate aquifers from SW Mediterranean (Betic Cordillera, S Spain). Environ. Earth Sci. 2015, 74, 7571–7581. [Google Scholar] [CrossRef]
- Bouchaou, L.; Chauve, P.; Mudry, J.; Mania, J.; Hsissou, Y. Structure et fonctionnement d’un hydrosystème karstique de montagne sous climat semi-aride: Cas de l’Atlas de Beni-Mellal (Maroc). J. Afr. Earth Sci. 1997, 25, 225–236. [Google Scholar] [CrossRef]
- de Jong, C.; Cappy, S.; Finckh, M.; Funk, D. A transdisciplinary analysis of water problems in the mountainous karst areas of Morocco. Eng. Geol. 2008, 99, 228–238. [Google Scholar] [CrossRef]
- Akdim, B. Karst landscape and hydrology in Morocco: Research trends and perspectives. Environ. Earth Sci. 2015, 74, 251–265. [Google Scholar] [CrossRef]
- El Bardai, R.; Targuisti, K.; Hlila, R.; Aluni, K. The Fracturing Role in the Conditioning of Karst Groundwater Circulations in the Calcareous Dorsal (Northern Rif, Morocco). Int. J. Innov. Appl. Stud. 2014, 6, 825–838. [Google Scholar]
- El Bardai, R.; Targuisti, K.; Aluni, K. Caractérisation hydrodynamique des sources karstiques: Cas de la source de Ras El Maa (Rif Septentrional, Maroc). Rev. Sci. L’eau 2014, 27, 139–153. [Google Scholar] [CrossRef] [Green Version]
- Sardinha, J.; Carneiro, J.F.; Zarhloule, Y.; Barkaoui, A.-E.; Correia, A.; Boughriba, M.; Rimi, A.; El Houadi, B. Structural and hydrogeological features of a Lias carbonate aquifer in the Triffa Plain, NE Morocco. J. Afr. Earth Sci. 2012, 73–74, 24–32. [Google Scholar] [CrossRef]
- Amraoui, F.; Razack, M.; Bouchaou, L. Comportement d’une source karstique soumise à une sécheresse prolongée: La source Bittit (Maroc). Comptes Rendus Geosci. 2004, 336, 1099–1109. [Google Scholar] [CrossRef]
- Hssaisoune, M.; Bouchaou, L.; Sifeddine, A.; Bouimetarhan, I.; Chehbouni, A. Moroccan Groundwater Resources and Evolution with Global Climate Changes. Geosciences 2020, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Hssaisoune, M.; Bouchaou, L.; N’Da, B.; Malki, M.; Abahous, H.; Fryar, A.E. Isotopes to assess sustainability of overexploited groundwater in the Souss–Massa system (Morocco). Isot. Environ. Health Stud. 2017, 53, 298–312. [Google Scholar] [CrossRef]
- Bouchaou, L.; Tagma, T.; Boutaleb, S.; Hssaisoune, M.; El Morjani, Z.E.A. Climate Change and Its Impacts on Groundwater Resources in Morocco: The Case of the Souss-Massa Basin. In Climate Change Effects on Groundwater Resources: A Global Synthesis of Findings and Recommendations; CRC Press: London, UK, 2011; pp. 129–144. [Google Scholar]
- Batlle-Aguilar, J.; Banks, E.W.; Batelaan, O.; Kipfer, R.; Brennwald, M.S.; Cook, P.G. Groundwater residence time and aquifer recharge in multilayered, semi-confined and faulted aquifer systems using environmental tracers. J. Hydrol. 2017, 546, 150–165. [Google Scholar] [CrossRef]
- Guo, Q.; Zhou, Z.; Wang, S. The Source, Flow Rates, and Hydrochemical Evolution of Groundwater in an Alluvial Fan of Qilian Mountain, Northwest China. Water 2017, 9, 912. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Madrid, A.; Castaño, S.; Vadillo, I.; Martinez, C.; Carrasco, F.; Soler, A. Applications of Hydro-Chemical and Isotopic Tools to Improve Definitions of Groundwater Catchment Zones in a Karstic Aquifer: A Case Study. Water 2017, 9, 595. [Google Scholar] [CrossRef] [Green Version]
- Bouchaou, L.; Michelot, J.L.; Qurtobi, M.; Zine, N.; Gaye, C.B.; Aggarwal, P.K.; Marah, H.; Zerouali, A.; Taleb, H.; Vengosh, A. Origin and residence time of groundwater in the Tadla basin (Morocco) using multiple isotopic and geochemical tools. J. Hydrol. 2009, 379, 323–338. [Google Scholar] [CrossRef]
- Bouchaou, L.; Michelot, J.L.; Vengosh, A.; Hsissou, Y.; Qurtobi, M.; Gaye, C.B.; Bullen, T.D.; Zuppi, G.M. Application of multiple isotopic and geochemical tracers for investigation of recharge, salinization, and residence time of water in the Souss–Massa aquifer, southwest of Morocco. J. Hydrol. 2008, 352, 267–287. [Google Scholar] [CrossRef]
- Müller, T.; Osenbrück, K.; Strauch, G.; Pavetich, S.; Al-Mashaikhi, K.-S.; Herb, C.; Merchel, S.; Rugel, G.; Aeschbach, W.; Sanford, W. Use of multiple age tracers to estimate groundwater residence times and long-term recharge rates in arid southern Oman. Appl. Geochem. 2016, 74, 67–83. [Google Scholar] [CrossRef]
- Cartwright, I.; Cendón, D.; Currell, M.; Meredith, K. A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: Possibilities, challenges, and limitations. J. Hydrol. 2017, 555, 797–811. [Google Scholar] [CrossRef]
- Salhi, A.; Martin-Vide, J.; Benhamrouche, A.; Benabdelouahab, S.; Himi, M.; Benabdelouahab, T.; Ponsati, A.C. Rainfall distribution and trends of the daily precipitation concentration index in northern Morocco: A need for an adaptive environmental policy. SN Appl. Sci. 2019, 1, 277. [Google Scholar] [CrossRef] [Green Version]
- Ajbilou, R.; Marañón, T.; Arroyo, J. Ecological and biogeographical analyses of Mediterranean forests of northern Morocco. Acta Oecologica 2006, 29, 104–113. [Google Scholar] [CrossRef]
- Muller, S.D.; Rhazi, L.; Andrieux, B.; Bottollier-Curtet, M.; Fauquette, S.; Saber, E.-R.; Rifai, N.; Daoud-Bouattour, A. Vegetation history of the western Rif mountains (NW Morocco): Origin, late-Holocene dynamics and human impact. Veg. Hist. Archaeobotany 2015, 24, 487–501. [Google Scholar] [CrossRef]
- Cheddadi, R.; Nourelbait, M.; Bouaissa, O.; Tabel, J.; Rhoujjati, A.; López-Sáez, J.A.; Sánchez, F.A.; Khater, C.; Ballouche, A.; Dezileau, L.; et al. A History of Human Impact on Moroccan Mountain Landscapes. Afr. Archaeol. Rev. 2015, 32, 233–248. [Google Scholar] [CrossRef]
- Hartmann, A.; Baker, A. Modelling karst vadose zone hydrology and its relevance for paleoclimate reconstruction. Earth-Sci. Rev. 2017, 172, 178–192. [Google Scholar] [CrossRef]
- Gil, A.; Gallart, J.; Diaz, J.; Carbonell, R.; Torne, M.; Levander, A.; Harnafi, M. Crustal structure beneath the Rif Cordillera, North Morocco, from the RIFSIS wide-angle reflection seismic experiment. Geochem. Geophys. Geosystems 2014, 15, 4712–4733. [Google Scholar] [CrossRef] [Green Version]
- Rossetti, F.; Lucci, F.; Theye, T.; Bouybaouenne, M.; Gerdes, A.; Opitz, J.; Dini, A.; Lipp, C. Hercynian anatexis in the envelope of the Beni Bousera peridotites (Alboran Domain, Morocco): Implications for the tectono-metamorphic evolution of the deep crustal roots of the Mediterranean region. Gondwana Res. 2020, 83, 157–182. [Google Scholar] [CrossRef]
- Vitale, S.; Zaghloul, M.N.; El Ouaragli, B.; Tramparulo, F.D.; Ciarcia, S. Polyphase deformation of the Dorsale Calcaire Complex and the Maghrebian Flysch Basin Units in the Jebha area (Central Rif, Morocco): New insights into the Miocene tectonic evolution of the Central Rif belt. J. Geodyn. 2015, 90, 14–31. [Google Scholar] [CrossRef]
- Zaghloul, M.N.; Critelli, S.; Perri, F.; Mongelli, G.; Perrone, V.; Sonnino, M.; Tucker, M.; Aiello, M.; Ventimiglia, C. Depositional systems, composition and geochemistry of Triassic rifted-continental margin redbeds of the Internal Rif Chain, Morocco. Sedimentology 2010, 57, 312–350. [Google Scholar] [CrossRef]
- Zaghloul, M.N.; di Staso, A.; Hlila, R.; Perrone, V.; Perrotta, S. The Oued Dayr Formation: First evidence of a new Miocene late-orogenic cycle on the Ghomaride complex (Internal Domains of the Rifian Maghrebian Chain, Morocco). Geodin. Acta 2010, 23, 37–41. [Google Scholar] [CrossRef]
- Qurtobi, M.; Marah, H.; El Mahboul, A.; Emblanch, C. Groundwater Tracing Using Stable Isotopein the Western Mediterranean (Case of Rif Chain in the North of Morocco). In Advances in Research in Karst Media; Andreo, B., Carrasco, F., Durán, J.J., LaMoreaux, J.W., Eds.; Environmental Earth Sciences Series; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Chen, S.; Tang, Z.; Wang, J.; Wu, J.; Yang, C.; Kang, W.; Huang, X. Multivariate Analysis and Geochemical Signatures of Shallow Groundwater in the Main Urban Area of Chongqing, Southwestern China. Water 2020, 12, 2833. [Google Scholar] [CrossRef]
- Celestino, A.E.M.; Leal, J.A.R.; Cruz, D.A.M.; Vargas, J.T.; Bashulto, J.D.L.; Ramírez, J.M. Identification of the Hydrogeochemical Processes and Assessment of Groundwater Quality, Using Multivariate Statistical Approaches and Water Quality Index in a Wastewater Irrigated Region. Water 2019, 11, 1702. [Google Scholar] [CrossRef] [Green Version]
- Gat, J.R.; Carmi, I. Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J. Geophys. Res. Earth Surf. 1970, 75, 3039–3048. [Google Scholar] [CrossRef]
- Craig, H. Isotopic Variations in Meteoric Waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Ouda, B.; El Hamdaoui, A.; Ibn Majah, M. Isotopic composition of precipitation at three Moroccan stations influenced by Oceanic and Mediterranean air masses. In Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate; TEC-DOC; IAEA: Vienna, Austria, 2004; Volume 1453, pp. 125–140. [Google Scholar]
- Marcé, A. Contribution Des Méthodes Isotopiques à l’étude Des Modalités d’alimentation et de Renouvellement Des Réserves Souterraines Du Maroc; Report Number 75SGN447 LAB; BRGM: Orléans, France, 1975; 131p. [Google Scholar]
- El Messari, J.S.; García-López, S.; Emran, A. Hydrogeological, Hydrochemical and Isotopic Survey of the Groundwater of the Haouz Karstic Massif (Northern Rif, Morocco). Geogaceta 2011, 50, 95–98. [Google Scholar]
- Ait Brahim, Y.; Bouchaou, L.; Sifeddine, A.; Khodri, M.; Reichert, B.; Cruz, F. Elucidating the climate and topographic controls on stable isotope composition of meteoric waters in Morocco, using station-based and spatially-interpolated data. J. Hydrol. 2016, 543, 305–315. [Google Scholar] [CrossRef]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology, 1st ed.; CRC Press: New York, NY, USA, 1997. [Google Scholar]
- Han, L.F.; Plummer, L.N. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater. Earth-Sci. Rev. 2016, 152, 119–142. [Google Scholar] [CrossRef]
- Han, L.-F.; Plummer, L.N.; Aggarwal, P. A graphical method to evaluate predominant geochemical processes occurring in groundwater systems for radiocarbon dating. Chem. Geol. 2012, 318-319, 88–112. [Google Scholar] [CrossRef]
- Han, L.-F.; Plummer, L.N.; Aggarwal, P. The curved 14 C vs. δ 13 C relationship in dissolved inorganic carbon: A useful tool for groundwater age- and geochemical interpretations. Chem. Geol. 2014, 387, 111–125. [Google Scholar] [CrossRef]
- Han, L.-F.; Plummer, L.N. Revision of Fontes & Garnier’s model for the initial 14C content of dissolved inorganic carbon used in groundwater dating. Chem. Geol. 2013, 351, 105–114. [Google Scholar] [CrossRef] [Green Version]
Spring Code | Name | Group | Spring Elevation (m) | Flow Rate | Uses | Contact | Nature of Discharge |
---|---|---|---|---|---|---|---|
2 | Ras El Maa | Lakrâa Mountain | 700 | >100 L·s−1 | Drinking water and irrigation (DW and I) | Faults oriented NE-SW and NW-SE | Highly variable |
21 | Chrafate | Lakrâa Mountain | 960 | High flow | DW and I | Faults oriented NW-SE, NE-SW and E-W | Highly variable |
15 | Onsar Rahmanio | Lakrâa Mountain | 760 | >10 L·s−1 | DW and I | Fault and stratigraphic | Variable |
26 | Onsar El Fouara | Lakrâa Mountain | 660 | ~5 L·s−1 | DW and I | Stratigraphic contact | Constant |
17 | Aghbalou | North of Lao River | 840 | >30 L·s−1 | DW and I | Fault and stratigraphic | Variable |
42 | El Hamma | North of Lao River | 380 | >50 L·s−1 | DW and I | Fault and stratigraphic | Highly variable |
60 | Khezanat Melhia | North of Lao River | 300 | ~50 L·s−1 | DW and I | Lithological and tectonic contact | Constant |
5 | Aïn Bousmlal | North of Lao River | 300 | >10 L·s−1 | DW and I | Stratigraphic | Variable |
57 | Aïn Jamaâ | Haouz end Dersa Mountain | 1300 | ~1 L·s−1 | DW and I | Lithological contact | Constant |
Variable | Observations | Minimum | Maximum | Mean Value | Std. Deviation |
---|---|---|---|---|---|
T (°C) | 67 | 9.00 | 26.00 | 16.44 | 3.09 |
pH | 67 | 7.06 | 8.80 | 7.79 | 0.36 |
EC (µS/cm) | 67 | 243.00 | 1130.00 | 541.80 | 178.99 |
HCO3− (mg/L) | 67 | 118.80 | 1024.80 | 553.81 | 204.76 |
Ca2+ (mg/L) | 67 | 88.17 | 216.43 | 153.78 | 26.64 |
Mg2+ (mg/L) | 67 | 4.86 | 188.57 | 50.76 | 35.09 |
Cl−(mg/L) | 67 | 14.18 | 425.40 | 98.67 | 84.12 |
Na+(mg/L) | 67 | 8.24 | 230.95 | 54.00 | 45.56 |
NO3− (mg/L) | 67 | 0.00 | 26.90 | 3.55 | 4.43 |
δ18O (‰ vsVSMOW) | 67 | −7.50 | −4.78 | −6.14 | 0.88 |
δ2H (‰vs VSMOW) | 67 | −43.75 | −22.36 | −32.76 | 5.96 |
D excess (‰) | 67 | 6.41 | 24.78 | 16.41 | 3.17 |
3H (TU) | 30 | 1.90 | 6.68 | 3.76 | 0.98 |
δ13C (‰ PDB) | 10 | −14.39 | −9.69 | −12.72 | 1.52 |
14C (pmC) | 10 | 79 | 98 | 89.5 | 6.45 |
T°C | pH | EC | HCO3− | Ca2+ | Mg2+ | Cl− | Na+ | NO3− | δ18O | δ2H | |
---|---|---|---|---|---|---|---|---|---|---|---|
T°C | 1 | ||||||||||
pH | −0.02 | 1 | |||||||||
EC | 0.53 | −0.56 | 1 | ||||||||
HCO3− | 0.27 | −0.33 | 0.61 | 1 | |||||||
Ca2+ | 0.13 | −0.55 | 0.47 | 0.23 | 1 | ||||||
Mg2+ | 0.12 | −0.03 | 0.34 | 0.38 | −0.14 | 1 | |||||
Cl− | 0.35 | 0.18 | 0.21 | 0.21 | 0.01 | 0.42 | 1 | ||||
Na+ | 0.35 | 0.18 | 0.21 | 0.21 | 0.01 | 0.42 | 0.98 | 1 | |||
NO3− | 0.23 | −0.05 | 0.18 | −0.03 | 0.05 | 0.13 | 0.26 | 0.26 | 1 | ||
δ18O | 0.44 | −0.38 | 0.53 | 0.42 | 0.27 | −0.09 | −0.01 | −0.01 | 0.08 | 1 | |
δ2H | 0.40 | −0.32 | 0.45 | 0.47 | 0.18 | −0.01 | 0.07 | 0.07 | 0.02 | 0.90 | 1 |
F1 | F2 | F3 | F4 | F5 | |
---|---|---|---|---|---|
T | 0.62 | 0.01 | 0.31 | −0.16 | 0.65 |
pH | −0.29 | 0.80 | −0.01 | −0.14 | 0.27 |
EC | 0.77 | −0.50 | −0.03 | 0.06 | 0.18 |
HCO3− | 0.63 | −0.33 | −0.47 | −0.01 | 0.14 |
Ca2+ | 0.33 | −0.65 | 0.33 | −0.32 | −0.35 |
Mg2+ | 0.58 | 0.24 | −0.54 | 0.40 | −0.11 |
Cl− | 0.73 | 0.58 | 0.07 | −0.23 | −0.24 |
Na+ | 0.73 | 0.58 | 0.07 | −0.23 | −0.24 |
NO3− | 0.36 | 0.15 | 0.61 | 0.65 | −0.06 |
Eigenvalue | 3.09 | 2.18 | 1.11 | 0.84 | 0.81 |
Variability (%) | 34.40 | 24.3 | 12.33 | 9.38 | 9.09 |
Cumulative % | 34.40 | 58.7 | 71.04 | 80.42 | 89.52 |
Group | Sample/Code | 3H/TU | (DIC)/(mg/L) | δ13C/‰ | 14C/PmC | ± | s | q | Corrected Age/Years | Uncorrected Age/Years |
---|---|---|---|---|---|---|---|---|---|---|
Haouz and Dersa Mountain | 3 | 3.96 ± 0.1 | 610.0 | −12.5 | 86.0 | ± | 1.0 | 0.92 | 644 | 1247 |
7 | 4.01 ± 0.1 | 854.0 | −14.4 | 87.0 | ± | 0.3 | 1.02 | 460 | 1151 | |
4 | NA | 610.0 | −13.4 | 89.0 | ± | 0.3 | 0.97 | 823 | 963 | |
North of Oued Lao | 5 | 4.53 ± 0.1 | 585.6 | −14.0 | 88.0 | ± | 0.4 | 1.00 | 183 | 1057 |
9 | 2.72 ± 0.1 | 390.0 | −13.2 | 95.0 | ± | 0.8 | 0.95 | 164 | 424 | |
25 | 3.41 ± 0.1 | 378.2 | −9.7 | 82.0 | ± | 0.3 | 0.76 | 488 | 1641 | |
59′ | 3.23 ± 0.1 | 663.6 | −11.0 | 98.0 | ± | 0.4 | 0.83 | 224 | 167 | |
Lakrâa Mountain | 21 | 4.20 ± 0.1 | 317.2 | −11.7 | 79.0 | ± | 0.4 | 0.87 | 939 | 1949 |
32 | 2.87 ± 0.1 | 732.0 | −13.4 | 93.0 | ± | 0.3 | 0.97 | 458 | 600 | |
66 | 3.39 ± 0.1 | 610.0 | −14.1 | 98.0 | ± | 0.4 | 1.01 | 339 | 1167 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hssaisoune, M.; Bouchaou, L.; Qurtobi, M.; Marah, H.; Beraaouz, M.; Stitou El Messari, J. Isotopic and Chemical Tracing for Residence Time and Recharge Mechanisms of Groundwater under Semi-Arid Climate: Case from Rif Mountains (Northern Morocco). Geosciences 2022, 12, 74. https://doi.org/10.3390/geosciences12020074
Hssaisoune M, Bouchaou L, Qurtobi M, Marah H, Beraaouz M, Stitou El Messari J. Isotopic and Chemical Tracing for Residence Time and Recharge Mechanisms of Groundwater under Semi-Arid Climate: Case from Rif Mountains (Northern Morocco). Geosciences. 2022; 12(2):74. https://doi.org/10.3390/geosciences12020074
Chicago/Turabian StyleHssaisoune, Mohammed, Lhoussaine Bouchaou, Mohamed Qurtobi, Hamid Marah, Mohamed Beraaouz, and Jamal Stitou El Messari. 2022. "Isotopic and Chemical Tracing for Residence Time and Recharge Mechanisms of Groundwater under Semi-Arid Climate: Case from Rif Mountains (Northern Morocco)" Geosciences 12, no. 2: 74. https://doi.org/10.3390/geosciences12020074
APA StyleHssaisoune, M., Bouchaou, L., Qurtobi, M., Marah, H., Beraaouz, M., & Stitou El Messari, J. (2022). Isotopic and Chemical Tracing for Residence Time and Recharge Mechanisms of Groundwater under Semi-Arid Climate: Case from Rif Mountains (Northern Morocco). Geosciences, 12(2), 74. https://doi.org/10.3390/geosciences12020074