Prototype Scale Evaluation of Non-Newtonian Algorithms in HEC-RAS: Mud and Debris Flow Case Studies of Santa Barbara and Brumadinho
Abstract
:1. Introduction
- Present prototype-scale verification and validation of the model methods that will be applied to many high hazard scenarios.
- Explore some of the nuances, trade-offs, and best practices for modeling these two primary applications (post wildfire and mine tailing dam debris flows) of single-phase, non-Newtonian models (e.g., is diffusion wave appropriate and equifinality implications).
2. Materials and Methods
2.1. Event Descriptions and Observed Data
2.1.1. Santa Barbara Post-Wildfire Event
2.1.2. Brumadinho Mine Tailings Dam Failure
2.2. Event Descriptions and Observed Data
2.3. Model Data, Parameterization, and Assumptions
2.3.1. Santa Barbara Model
Model Parameters and Input Data: Santa Barbara
Santa Barbara Post-Wildfire Debris Flow | Brumadinho Dam Failure | |||
---|---|---|---|---|
Variable | Value | Source | Value | Source |
Breach Hydrograph | HEC-HMS Simulation reconstructed from damaged gage and other, calibrated, clear-water events with modified post-burn parameters. | USACE (2021) | Step-wise hydrograph from the output of a dam breach model (EMBREA-MUD) | Lumbroso et al. (2021) [20] |
Volumetric Concentration | 45%—added to a clear water hydrograph by HEC-RAS | USACE (2021) [17] | 23%—included in the upstream hydrograph ** | |
Yield stress * | Pa 1000 Pa | Julien (1995) [30] Bessette-Kirton et al. (2019) [34] | 800 Pa | Lumbroso et al. (2021) [20] |
Fluid viscosity ++ | Pa-s 100 Pa-s | Julien (1995) [30] Bessette-Kirton et al. (2019) [34] | 100 Pa-s | Lumbroso et al. (2021) [20] |
Manning’s n | 0.08 | 0.167 | Lumbroso et al. (2021) [20] | |
Digital elevation model | 1 m resolution LiDAR | 5 m resolution LiDAR | ||
2d mesh Resolution | 15.25 m default cell size Channel refinement with similar spacing (average cell size ~240 m3) | 20 m near channel centerline 25 m for remaining model | ||
Model cells | Mⱡ = 11,909, SYⱡ = 7797 | 40,319 | ||
Time step | Adaptive-courant: max = 2.0, min = 0.9 Mⱡ~0.2–1 s, SYⱡ~0.3–2.5 s | Adapt.-courant: max = 1.0, min = 0.45 0.2–3.75 s | ||
Calibration Observations | Mudplain boundary shape files. | Kean et al. (2019) [1] | Observed wave front timing at key locations shown in Figure 1 and deposition extents from aerial and satellite imagery | Robertson et al. (2019) [2] Lumbroso et al. (2021) [20] |
Calibration Data: Santa Barbara
2.3.2. Brumadinho Model
Model Parameters and Input Data: Brumadinho
Calibration Data: Brumadinho
2.3.3. Planform Evaluation Metrics
3. Results
3.1. Santa Barbara Model
3.2. Brumadinho Model
4. Discussion
4.1. Verification and Validation
4.2. Limitations
4.3. Topographic Convexity and Urban Stochasticity
4.4. Interpreting Sub-Grid Results
4.5. Shallow Water Equations vs. Diffusion Wave
4.6. Equifinality, Trade-Offs and Sensitivity
4.7. Other Applications of Non-Newtonian Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Disclaimer
References
- Kean, J.W.; Staley, D.M.; Lancaster, J.T.; Rengers, F.K.; Swanson, B.J.; Coe, J.A.; Hernandez, J.L.; Sigman, A.J.; Allstadt, K.E.; Kindsay, D.N. Inundation, flow dynamics, and damage in the 9 January 2018 Montecito debris-flow event, California, USA: Opportunities and challenges for post-wildfire risk assessment. Geosphere 2019, 15, 1140–1163. [Google Scholar] [CrossRef] [Green Version]
- Robert, D.; Niehaus, I. The Economic Impacts of the Montecito Mudslides a Preliminary Assessment. In Preliminary Impact Assessment: Montecito Mudslides; RDN: Santa Barbara, CA, USA, 2018. [Google Scholar]
- Robertson, P.E.; de Melo, L.; Williams, D.J.; Wilson, G.W. Report of the Expert Panel on the Technical Causes of the Failure of Feijão Dam I. Available online: http://www.b1technicalinvestigation.com (accessed on 3 February 2021).
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palu, M.C.; Julien, P.Y. Review of Tailings Dam Failures in Brazil. In Proceedings of the XXIII Simpósio Brasileiro de Recursos Hídricosat, Foz Do Iguaçú, Brazil, 24–28 November 2019; p. 10. [Google Scholar]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azam, S.; Li, Q. Tailings Dam Failures: A Review of the Last One Hundred Years. Geotech. News 2010, 28, 50–54. [Google Scholar]
- McDougall, S. Canadian geotechnical colloquium: Landslide runout analysis—current practice and challenges. Can. Geotech. J. 2017, 54, 605–620. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.S. FLO-2D Reference Manual. Technical Report. 2020. Available online: https://www.flo-2d.com/download/ (accessed on 28 February 2022).
- Christen, M.; Kowalski, J.; Bartelt, P. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 2010, 63, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Su, B.; Li, Y.; Dou, J.; Wang, W.; Zhao, L. Modeling the progressive entrainment of bed sediment by viscous debris flows using the three-dimensional SC-HBP-SPH method. Water Res. 2020, 182, 116031. [Google Scholar] [CrossRef]
- Iverson, R.M.; George, D.L. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014, 470, 20130819. [Google Scholar] [CrossRef]
- Hungr, O.; McDougall, S. Two numerical models for landslide dynamic analysis. Comput. Geosci. 2009, 35, 978–992. [Google Scholar] [CrossRef]
- Pudasaini, S.P.; Mergili, M. A multi-phase mass flow model. J. Geophys. Res. Earth Surf. 2019, 124, 2920–2942. [Google Scholar] [CrossRef] [Green Version]
- Pastor, M.; Haddad, B.; Sorbino, G.; Cuomo, S.; Drempetic, V. A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int. J. Numer. Anal. Methods GeoMech. 2009, 33, 143e184. [Google Scholar] [CrossRef]
- Han, Z.; Chen, G.; Li, Y.; Tang, C.; Xu, L.; He, Y.; Huang, X.; Wang, W. Numerical simulation of debris flow behavior incorporating a dynamic method for estimating the entrainment. Eng. Geol. 2015, 190, 52e64. [Google Scholar] [CrossRef]
- USACE. Santa Barbara Pre- and Post-Fire Debris Flow Modeling and Risk Reduction Measures Santa Barbara County, California, Floodplain Management Services Special Study; United States Army Corps of Engineers: Washington, DC, WA, USA, 2022; in review. [Google Scholar]
- Feldman, A.D. HEC-HMS Technical Reference Manual. Hydrologic Modeling System; Army Corps of Engineers: Davis, CA, USA, 2000; 148p. [Google Scholar]
- US Army Corps of Engineers—Hydrologic Engineering Center, HEC-HMS User’s Manual; 2011. Available online: https://www.hec.usace.army.mil/confluence/hmsdocs/hmsum/4.9 (accessed on 7 February 2022).
- Lumbroso, D.; Davison, M.; Body, R.; Petkovšek, G. Modelling the Brumadinho tailings dam failure, the subsequent loss of life and how it could have been reduced. Nat. Hazards Earth Syst. Sci. 2021, 21, 21–37. [Google Scholar] [CrossRef]
- Pak, J.; Lee, J. A Statistical Sediment Yield Prediction Model Incorporating the Effect of Fires and Subsequent Storm Events. J. Am. Water Resour. Assoc. 2008, 44, 689–699. [Google Scholar] [CrossRef]
- Gartner, J.; Cannon, S.; Santi, P. Empirical models for predicting volumes of sediment deposited by debris flows and sediment-laden floods in the transverse ranges of southern California. Eng. Geol. 2014, 176, 45–56. [Google Scholar] [CrossRef]
- Gatwood, E.; Pedersen, J.; Casey, K. Los Angeles District Method for Prediction of Debris Yield; U.S. Army Corps of Engineers: Los Angeles, CA, USA, 2000; p. 166. [Google Scholar]
- Gibson, S.; Floyd, I.; Sánchez, A.; Heath, R. Comparing single-pahse, non-Newtonian approaches with experimental results: Validating flume-scale mud and debris flows in HEC-RAS. Earth Surf. Proces. Landf. 2020, 46, 540–553. [Google Scholar] [CrossRef]
- Floyd, I.; Sánchez, A.; Gibson, S.; Savant, G. A Modular, Non-Newtonian, Model, Library Framework (DebrisLib) for Post-Wildfire Flood Risk Management. Nat. Hazards Earth Syst. Sci. 2020, 1–21. [Google Scholar]
- Floyd, I.; Gibson, S.; Heath, R.; Ramos-Villanueva, M.; Pradhan, N. Development of ’Debris Library’ and 1D HEC-RAS and 2D Adaptive Hydraulics Linkage-Architecture for Predicting Post-Wildfire non-Newtonian Flows. In Proceedings of the Federal Interagency SEDHYD, Reno, NV, USA, 24–28 June 2019; pp. 24–28. [Google Scholar]
- Gibson, S.; Sánchez, A. HEC-RAS Mud and Debris Flow: User and Technical Reference Manual v6.1. 2021. Available online: https://www.hec.usace.army.mil/confluence/rasdocs/rasmuddebris (accessed on 7 February 2022).
- HEC. HEC-RAS 2D User’s Manual v6.1. 2021. Available online: https://www.hec.usace.army.mil/confluence/rasdocs/r2dum/latest (accessed on 22 February 2022).
- O’Brien, J.S.; Julien, P.Y. Physical properties and mechanics of Hyperconcentrated sediment flows. In Proceedings of the Specialty Conference on Delineation of Landslide, Flash Flood and Debris Flow Hazard in Utah; Utah State University: Logan, UT, USA, 1988; pp. 260–279. [Google Scholar]
- Julien, P.Y. Erosion and Sedimentation; Cambridge University Press: Cambridge, UK, 1995; p. 280. [Google Scholar]
- Moura, L. Preliminary Results of Simulation on the Brumadinho Mine Tailings Dam Failure, Minas Gerais, Brazil, January 2019, Internal Report. 8p.
- Chien, N.; Mai, H. Properties of slurry flow. J. Sediment Res. 1958, 3. [Google Scholar]
- Dai, Z.; Huang, Y.; Cheng, H.; Xu, Q. 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake. Eng. Geol. 2014, 180, 21–33. [Google Scholar] [CrossRef]
- Bessette-Kirton, E.K.; Kean, J.W.; Coe, J.A.; Rengers, F.K.; Staley, D.M. Evaluation of debris-flow runout model accuracy and complexity in Montecito, California. In Proceedings of the 7th International Conference on debris-Flow Hazards Mitigation, Golden, CO, USA, 10–13 June 2019; pp. 257–264. [Google Scholar]
- Barnhart, K.R.; Jones, R.P.; George, D.L.; McArdell, B.W.; Rengers, F.W.; Staley, D.M.; Kean, J.W. Multi-model comparisons of computed debris flow runout for the 9 January 2018 Montecito, California post-wildfire event. J. Geophys. Res. 2021, 126, e2021JF006245. [Google Scholar] [CrossRef]
- Gomes, M.A. Caracterização Tecnológica no Aproveitamento do Rejeito de Minério de Ferro. Master’s Thesis, Mining Engineering, Universidade Federal de Ouro Preto, Ouro Preto, Brasil, 2009. [Google Scholar]
- Pirete, W.; Gomes, R.C. Tailings Liquefaction Analysis Using Strength Ratios and SPT/CPT Results. Soils Rocks 2013, 36, 37–53. [Google Scholar]
- Ferreira, D.S. Análise do Comportamento Geotécnico de Aterro Experimental Executado Sobre um Depósito de Rejeitos Finos. Master’s Thesis, Geotechnical Engineering, Universidade Federal de Ouro Preto, Ouro Preto, Brazil, 2016. [Google Scholar]
- Machado, N.C. Retroanálise da Propagação Decorrente da Ruptura da Barragem do Fundão com Diferentes Modelos Numéricos e Hipóteses de Simulação. Master’s Thesis, Sanitation, Environment and Water Resources Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2017. [Google Scholar]
- Chácara, D.M. Reologia de Depósitos de Rejeitos Espessados de Minério de Ferro para Estudos de Dam Break. Master’s Thesis, Mining Engineering, Universidade Federal de Ouro Preto, Ouro Preto, Brazil, 2020. [Google Scholar]
- Rotta, L.H.S.; Alcântara, E.; Park, E.; Negri, R.G.; Lin, Y.N.; Bernardo, N.; Mendes, T.S.G.; Filho, C.R.S. The Brumadinho tailings dam collapse: Possible cause and impacts of the worst human and environmental disaster in Brazil. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102119. [Google Scholar] [CrossRef]
- Schafer, J.T. The critical success index as an indicator of warning skill. Weather. Forecast. 1990, 5, 570. [Google Scholar] [CrossRef] [Green Version]
- Staley, D.M.; Negri, J.A.; Kean, J.W.; Laber, J.L.; Tillery, A.C.; Youberg, A.M. Prediction of spatially explicit rainfall intensity-duration thresholds for post-fire debris-flow generation in the western United States. Geomorphology 2017, 278, 149–162. [Google Scholar] [CrossRef]
- Heiser, M.; Scheidl, C.; Kaitna, R. Evaluation concepts to compare observed and simulated deposition areas of mass movements. Comput. Geosci. 2017, 21, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Oreskes, N.; Shrader-Frechette, K.; Belitz, K. Verification, Validation, and Confirmation of Numerical Models in the Earth Science. Science 1994, 263, 641–646. [Google Scholar] [CrossRef] [Green Version]
- Rykiel, E.J. Testing ecological models: The meaning of validation. Ecol. Model. 1995, 90, 229–244. [Google Scholar] [CrossRef]
- Major, J.J.; Iverson, R.M. Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins. GSA Bull. 1999, 111, 1424–1434. [Google Scholar] [CrossRef]
- Rocha, F.M.; Johnson, C.G.; Gray, J.M.N.T. Self-channelization and levee formation in monodisperse granular flows. J. Fluid Mech. 2019, 876, 591–641. [Google Scholar] [CrossRef] [Green Version]
- Bevan, K.J. Prophecy, reality and uncertainty in distributed hydrological modeling. Adv. Water Resour. 1993, 16, 41–51. [Google Scholar] [CrossRef]
- Bevan, K. A manifesto for the equifinality thesis. J. Hydrol. 2005, 320, 18–36. [Google Scholar] [CrossRef] [Green Version]
Metric | Santa Barbara Bingham Julien Param. | Santa Barbara Bessette-Kirton (2019) Param. | Santa Barbara Julien Param. Wet Cell | Brumadinho |
---|---|---|---|---|
True Positive | M: 0.35 SY: 0.39 | M: 0.46 SY: 0.48 | M: 0.72 SY: 0.63 | 0.93 |
False Negative | M: 0.65 SY: 0.61 | M: 0.54 SY: 0.52 | M: 0.28 SY: 0.36 | 0.07 |
False Positive | M: 0.07 SY: 0.12 | M: 0.13 SY: 0.19 | M: 0.41 SY: 0.31 | 0.14 |
Threat Score | M: 0.33 SY: 0.35 | M: 0.41 SY: 0.41 | M: 0.51 SY: 0.48 | 0.82 |
Omega Scaled | M: 0.67 SY: 0.65 | M: 0.59 SY: 0.59 | M: 0.49 SY: 0.52 | 0.18 |
Metric | Santa Barbara Bingham Julien Param. | Santa Barbara Bessette-Kirton (2019) Param. |
---|---|---|
Positive Residuals | M: 91% SY: 65% | M: 71% SY: 52% |
Negative Residual | M: 4% SY: 19% | M: 25% SY: 33% |
True Negative | M: 5% SY: 15% | M: 3% SY: 14% |
Location | Observed Mudflow Front Time (hh:mm:ss) | HEC-RAS Simulated Time (hh:mm:ss) | Error |
---|---|---|---|
Canteen | 00:01:30 | 00:01:30 | 0% |
Railway Bridge | 00:09:10 | 00:09:15 | 0.9% |
Paraopeba River | 01:26:05 | 01:27:45 | 1.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibson, S.; Moura, L.Z.; Ackerman, C.; Ortman, N.; Amorim, R.; Floyd, I.; Eom, M.; Creech, C.; Sánchez, A. Prototype Scale Evaluation of Non-Newtonian Algorithms in HEC-RAS: Mud and Debris Flow Case Studies of Santa Barbara and Brumadinho. Geosciences 2022, 12, 134. https://doi.org/10.3390/geosciences12030134
Gibson S, Moura LZ, Ackerman C, Ortman N, Amorim R, Floyd I, Eom M, Creech C, Sánchez A. Prototype Scale Evaluation of Non-Newtonian Algorithms in HEC-RAS: Mud and Debris Flow Case Studies of Santa Barbara and Brumadinho. Geosciences. 2022; 12(3):134. https://doi.org/10.3390/geosciences12030134
Chicago/Turabian StyleGibson, Stanford, Leonardo Zandonadi Moura, Cameron Ackerman, Nikolas Ortman, Renato Amorim, Ian Floyd, Moosub Eom, Calvin Creech, and Alejandro Sánchez. 2022. "Prototype Scale Evaluation of Non-Newtonian Algorithms in HEC-RAS: Mud and Debris Flow Case Studies of Santa Barbara and Brumadinho" Geosciences 12, no. 3: 134. https://doi.org/10.3390/geosciences12030134
APA StyleGibson, S., Moura, L. Z., Ackerman, C., Ortman, N., Amorim, R., Floyd, I., Eom, M., Creech, C., & Sánchez, A. (2022). Prototype Scale Evaluation of Non-Newtonian Algorithms in HEC-RAS: Mud and Debris Flow Case Studies of Santa Barbara and Brumadinho. Geosciences, 12(3), 134. https://doi.org/10.3390/geosciences12030134