Geophysical and Geological Views of Potential Water Resources in the North-Eastern Adriatic Sea
Abstract
:1. Introduction
2. Geological and Hydrological Setting
3. Materials and Methods
4. Results
- (a)
- The several kilometres thick Upper Triassic-Paleogene carbonate sequences host water characterised by variable salinity, from brackish to salty. The multichannel seismic profile CROP95-M18, calibrated with the Amanda 1bis well, indicates that: (a) the Middle Triassic carbonates, occurring below 4.5–7.5 km depth, host brackish waters; (b) the above 1.3–1.4 km thick Upper Triassic to Lower Jurassic carbonate sequences from 1.5–4.5 km depth in the east to 4–6 km depth in the west, contain mainly salty water; (c) the about 1 km thick Middle Jurassic to Lower Cretaceous carbonate contains mainly brackish aquifer. The multichannel seismic profile GT05-07 (Figure 4), offshore Tagliamento river, is located along the slope of the FDCP, where the carbonate sequence is constituted by basinal carbonates and slope (Jurassic-Cretaceous limestones and Upper Cretaceous-Paleocene Scaglia). According to the Amanda 1bis well, the Jurassic-Cretaceous sequences are characterised by a continuous alternation of different salinity waters, while the Upper Cretaceous-Paleocene Scaglia do not appear to host aquifers. The multichannel seismic GT05-09 (Figure 5), offshore Isonzo river, is located on the shelf of the Cretaceous-Paleogene FDCP. These carbonate units host salty and brackish waters, as confirmed by the Grado 1 well, that identified two main fracture zones, from 736 to 740 m and from 1040 to the well bottom at 1108 m, containing low enthalpy (from 30 to 41 °C) salty water, in the Eocene and Cretaceous limestones, respectively [64,76].
- (b)
- The Eocene to Miocene terrigenous units lie above the carbonates: in the basinal area, on the western GT05-07 profile, they are constituted by the Gallare Marls, that in the Amanda 1bis well host brackish waters, while above the FDCP, on the eastern profile GT05-09, these are constituted by the turbiditic terrigenous sequence of the Eocene Trieste Flysch and Miocene Molassa that, in the Grado 1 well, seem to be characterised by low permeability. The top of these units is shaped by the Messinian Unconformity, showing a complex morphology with channels or valleys incised by drainage system (Figure 4 and Figure 5);
- (c)
- The Pliocene progradation sediments, deposited in marine environments on the top of the Messinian Unconformity, according to the Amanda 1bis well, host mainly brackish water;
- (d)
- The early Pleistocene sediments, characterised by marine sediment, deposited from deep to shallow water environments, according to the Amanda 1bis well host salty waters;
- (e)
- The Middle-Late Pleistocene deposits are characterised by the alternation of continental and shallow water sediments related to the cyclicity of glacial and interglacial phases. The base of these units is from 250 to 280 ms twt and from 250–300 ms twt along the lines located near the offshore Tagliamento river and Isonzo river, respectively. In the analysed areas, sediments are mainly composed of silty–clayey fine deposits [28]. The correlation of these sequences with the two hydrogeological transects located near the coast suggests that they host mainly freshwater aquifers identified onshore (Figure 2). The high-resolution single-channel seismic profile APb-F2, offshore the Tagliamento river, and VCT08-12, offshore the Isonzo river (Figure 6) images the last glacial/interglacial cycle.
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Custodio, E. Coastal aquifers of europe: An overview. Hydrogeol. J. 2010, 18, 269–280. [Google Scholar] [CrossRef]
- Post, V.E.; Groen, J.; Kooi, H.; Person, M.; Ge, S.; Edmunds, W.M. Offshore fresh groundwater reserves as a global phenomenon. Nature 2013, 504, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Lofi, J.; Inwood, J.; Proust, J.-N.; Monteverde, D.H.; Loggia, D.; Basile, C.; Otsuka, H.; Hayashi, T.; Stadler, S.; Mottl, M.J. Fresh-water and salt-water distribution in passive margin sediments: Insights from integrated ocean drilling program expedition 313 on the New Jersey margin. Geosphere 2013, 9, 1009–1024. [Google Scholar] [CrossRef] [Green Version]
- Lippert, K.; Tezkan, B. On the exploration of a marine aquifer offshore Israel by long-offset transient electromagnetics. Geophys. Prospect. 2020, 68, 999–1015. [Google Scholar] [CrossRef] [Green Version]
- Attias, E.; Thomas, D.; Sherman, D.; Ismail, K.; Constable, S. Marine electrical imaging reveals novel freshwater transport mechanism in Hawai’i. Sci. Adv. 2020, 6, eabd4866. [Google Scholar] [CrossRef]
- Gustafson, C.; Key, K.; Evans, R.L. Aquifer systems extending far offshore on the U.S. Atlantic margin. Sci. Rep. 2019, 9, 8709. [Google Scholar] [CrossRef]
- Micallef, A.; Person, M.; Haroon, A.; Weymer, B.A.; Jegen, M.; Schwalenberg, K.; Faghih, Z.; Duan, S.; Cohen, D.; Mountjoy, J.J.; et al. 3D characterization and quantification of an offshore freshened groundwater system in the Canterbury Bight. Nat. Commun. 2020, 11, 1372. [Google Scholar] [CrossRef] [Green Version]
- Adkins, J.F.; McIntyre, K.; Schrag, D.P. The salinity, temperature and δ18O content of the glacial deep ocean. Science 2020, 298, 1769–1773. [Google Scholar] [CrossRef] [Green Version]
- Cohen, D.; Person, M.; Wang, P.; Gable, C.W.; Hutchinson, D.; Marksamer, A.; Dugan, B.; Kooi, H.; Groen, K.; Lizarralde, D. Origin and extent of fresh paleowaters on the Atlantic continental shelf, USA. Groundwater 2010, 48, 143–158. [Google Scholar] [CrossRef]
- Micallef, A.; Person, M.; Berndt, C.; Bertoni, C.; Cohen, D.; Dugan, B.; Evans, R.; Haroon, A.; Hensen, C.; Jegen, M.; et al. Offshore freshened groundwater in continental margins. Rev. Geophys. 2021, 59, e2020RG000706. [Google Scholar] [CrossRef]
- Hong, W.-L.; Lepland, A.; Himmler, T.; Kim, J.H.; Chand, S.; Sahy, D.; Solomon, E.A.; Rae, J.W.B.; Martma, T.; Nam, S., II; et al. Discharge of meteoric water in the eastern Norwegian Sea since the last glacial period. Geophys. Res. Lett. 2019, 46, 8194–8204. [Google Scholar] [CrossRef] [Green Version]
- Kooi, H.; Groen, J. Geological processes and the management of groundwater resources in coastal areas. Neth. J. Geosci. 2003, 82, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Michael, H.A.; Scott, K.C.; Koneshloo, M.; Yu, X.; Khan, M.R.; Li, K. Geologic influence on groundwater salinity drives large seawater circulation through the continental shelf. Geophys. Res. Lett. 2016, 43, 10782–10791. [Google Scholar] [CrossRef] [Green Version]
- Varma, S.; Michael, K. Impact of multi-purpose aquifer utilisation on a variable-density groundwater flow system in the Gippsland Basin, Australia. Hydrogeol. J. 2012, 20, 119–134. [Google Scholar] [CrossRef]
- Groen, J.; Velstra, J.; Meesters, A. Salinization processes in paleowaters in coastal sediments of Suriname: Evidence from Δ7Cl analysis and diffusion modelling. J. Hydrol. 2000, 234, 1–20. [Google Scholar] [CrossRef]
- Siegel, J.; Person, M.; Dugan, B.; Cohen, D.; Lizarralde, D.; Gable, C.W. Influence of late Pleistocene glaciations on the hydrogeology of the continental shelf offshore Massachusetts, USA. Geochem. Geophys. Geosyst. 2014, 15, 4651–4670. [Google Scholar] [CrossRef] [Green Version]
- Van Geldern, R.; Baier, A.; Subert, H.L.; Kowol, S.; Balk, L.; Barth, J.A.C. Pleistocene paleo-groundwater as a pristine fresh water resource—Evidence from stable and radiogenic isotopes. Sci. Total Environ. 2014, 496, 107–115. [Google Scholar] [CrossRef]
- DeFoor, W.; Person, M.; Larsen, H.C.; Lizarralde, D.; Cohen, D.; Dugan, B. Ice sheet-derived submarine groundwater discharge on Greenland’s continental shelf. Water Resour. Res. 2011, 47, W07549. [Google Scholar] [CrossRef]
- Lemieux, J.-M.; Sudicky, E.A.; Peltier, W.R.; Tarasov, L. Simulating the impact of glaciations on continental groundwater flow systems: 1. Relevant processes and model formulation. J. Geophys. Res. 2008, 113, F03017. [Google Scholar] [CrossRef] [Green Version]
- Marksammer, A.J.; Person, M.A.; Day-Lewis, F.D.; Lane, J.W.; Cohen, D.; Dugan, B.; Kooi, H.; Willett, M. Integrating geophysical, hydrochemical, and hydrologic data to understand the freshwater resources on Nantucket Island, Massachusetts. In Subsurface Hydrology: Data Integration for Properties and Processes; Hyndman, D.W., Day-Lewis, F.D., Singha, K., Eds.; AGU Water Resources Monograph; American Geophysical Union: Washington, DC, USA, 2007; pp. 143–159. [Google Scholar]
- Person, M.; Dugan, B.; Swenson, J.B.; Urbano, L.; Stott, C.; Taylor, J.; Willett, M. Pleistocene hydrogeology of the Atlantic continental shelf, New England. Geol. Soc. Am. Bull. 2003, 115, 1324–1343. [Google Scholar] [CrossRef]
- Person, M.; Marksamer, A.; Dugan, B.; Sauer, P.E.; Brown, K.; Bish, D.; Licht, K.J.; Willett, M. Use of a vertical δ18O profile to constrain hydraulic properties and recharge rates across a glacio-lacustrine unit, Nantucket Island, Massachusetts, USA. Hydrogeol. J. 2012, 20, 325–336. [Google Scholar] [CrossRef]
- Uchupi, E.; Driscoll, N.; Ballard, R.D.; Bolmer, S.T. Drainage of late Wisconsin glacial lakes and the morphology and late Quaternary stratigraphy of the New Jersey-southern New England continental shelf and slope. Mar. Geol. 2001, 172, 117–145. [Google Scholar] [CrossRef]
- Hupers, A.; Kopf, A. Effect of smectite dehydration on pore water geochemistry in the shallow subduction zone: An experimental approach. Geochem. Geophys. Geosyst. 2012, 13, Q0AD26. [Google Scholar] [CrossRef]
- Ijiri, A.; Tomioka, N.; Wakaki, S.; Masuda, H.; Shozugawa, K.; Kim, S.; Khim, B.-K.; Murayama, M.; Matsuo, M.; Inagaki, F. Low-temperature clay mineral dehydration contributes to Porewater dilution in Bering Sea slope subseafloor. Front. Earth Sci. 2018, 6, 36. [Google Scholar] [CrossRef] [Green Version]
- Lin, I.T.; Wang, C.H.; You, C.F.; Lin, S.; Huang, K.F.; Chen, Y.G. Deep submarine groundwater discharge indicated by tracers of oxygen, strontium isotopes and barium content in the Pingtung coastal zone, southern Taiwan. Mar. Chem. 2010, 122, 51–58. [Google Scholar] [CrossRef]
- Zini, L.; Cucchi, F.; Franceschini, G.; Treu, F. Geochemical and hydrological characteristics of the groundwater aquifers in the alluvial plain of Friuli Venezia Giulia. GORTANIA Atti Museo Friul. Storia Nat. 2008, 30, 5–30. [Google Scholar]
- Zini, L.; Calligaris, C.; Treu, F.; Iervolino, D.; Lippi, F. Risorse Idriche Sotterranee del Friuli Venezia Giulia: Sostenibilità Dell’attuale Indirizzo; Edizioni Università di Trieste: Trieste, Italy, 2011; p. 89. Available online: http://eventi.regione.fvg.it/redazione/Reposit/Eventi/1481_RISORSE-IDRICHE-risoluzione-media.pdf (accessed on 1 July 2016).
- Bertoni, C.; Lofi, J.; Micallef, A.; Moe, H. Seismic reflection methods in offshore groundwater research. Geosciences 2020, 10, 299. [Google Scholar] [CrossRef]
- Zampa, L.S. New Bathymetric Maps of the North East Adriatic Sea; Busetti, M., Camerlenghi, A., Eds.; Technical Report 05/2020OGS; National Institute of Oceanography and Applied Geophysics-OGS: Sgonico, Italy, 2020. [Google Scholar]
- Trobec, A.; Busetti, M.; Zgur, F.; Baradello, L.; Babich, A.; Cova, A.; Gordini, E.; Romeo, R.; Tomini, I.; Poglajen, S.; et al. Thickness of marine Holocene sediment in the Gulf of Trieste (Northern Adriatic Sea). Earth Syst. Sci. Data 2018, 10, 1077–1092. [Google Scholar] [CrossRef] [Green Version]
- EMODnet Bathymetry Consortium. EMODnet Digital Bathymetry. 2018. Available online: https://www.emodnet.eu (accessed on 1 March 2018).
- IDT-RV Infrastruttura Dati Territoriali della Regione del Veneto. 2017. Available online: https://idt2.regione.veneto.it (accessed on 1 December 2017).
- IRDAT-FVG. Infrastruttura Regionale di Dati Ambientali e Territoriali per il Friuli Venezia Giulia. 2017. Available online: https://irdat.regione.fvg.it/WebGIS/ (accessed on 1 June 2017).
- Arso, Ministry of the Environment and Spatial Planning, Slovenian Environment Agency. 2017. Available online: https://gis.arso.gov.si (accessed on 1 April 2017).
- EU-DEM. Copernicus Land Monitoring Service. 2017. Available online: https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem (accessed on 1 July 2017).
- Ambrosetti, P.; Bosi, C.; Carraro, F.; Ciaranfi, N.; Panizza, M.; Papani, G.; Vezzani, L.; Zanferrari, A. Neotectonic Map of Italy: Scale 1:500,000. Consiglio Nazionale delle Ricerche, Progetto Finalizzato Geodinamica, Sottoprogetto Neotettonica. Litografia Artistica Cartografica, Florence (Italy). 1987. Available online: https://www.socgeol.it/438/structural-model-of-italy-scale-1-500-000.html (accessed on 1 June 2017).
- Burrato, P.; Poli, M.E.; Vannoli, P.; Zanferrari, A.; Basili, R.; Galadini, F. Sources of Mw 5+ earthquakes in northeastern Italy and western Slovenia: An updated view based on geological and seismological evidence. Tectonophysics 2008, 453, 157–176. [Google Scholar] [CrossRef]
- Cucchi, F.; Piano, C.; Fanucci, C.F.; Pugliese, N.; Tunis, G. Brevi Note Illustrative della Carta Geologica del Carso Classico Italiano. 2013, p. 43. Available online: http://www.regione.fvg.it/rafvg/cms/RAFVG/ambiente-territorio/tutela-ambiente-gestione-risorse-naturali/ (accessed on 1 December 2016).
- Galadini, F.; Poli, M.E.; Zanferrari, A. Seismogenic sources potentially responsible for earthquakes with M ≥ 6 in the eastern Southern Alps (Thiene–Udine sector, NE Italy). Geophys. J. Int. 2005, 161, 739–762. [Google Scholar] [CrossRef] [Green Version]
- Jurkovšek, B.; Biolchi, S.; Furlani, S.; Kolar-Jurkovšek, T.; Zini, L.; Jež, J.; Tunis, G.; Bavec, M.; Cucchi, F. Geology of the Classical Karst Region (SW Slovenia-NE Italy). J. Maps 2016, 12 (Suppl. S1), 352–362. [Google Scholar] [CrossRef] [Green Version]
- Placer, L.; Vrabec, M.; Celarc, B. The bases for understanding of the NW Dinarides and Istria Peninsula tectonics. Geologija 2010, 53, 55–86. [Google Scholar] [CrossRef]
- Zanferrari, A.; Avigliano, R.; Fontana, A.; Paiero, G. Note Illustrative della Carta geologica d’Italia alla scala 1:50,000–Foglio 068 San Vito al Tagliamento. Dipartimento Difesa del Suolo-Servizio Geologico D’Italia. In Regione Friuli Venezia Giulia-Servizio Geologico; ISPRA-Servizio Geologico D’italia: Rome, Italy, 2008; p. 178. [Google Scholar]
- Cati, A.; Sartorio, D.; Venturini, S. Carbonate Platforms in the Subsurface of the Northern Adriatic Area. Mem. Soc. Geol. Ital. 1987, 40, 295–308. [Google Scholar]
- Zanferrari, A.; Masetti, D.; Monegato, G.; Poli, M.E.; Avigliano, R.; Carraro, F.; Faranda, C.; Grandesso, P.; Ligios, S.; Podda, F.; et al. Carta Geologica d’Italia Alla Scala 1:50,000–Foglio 049 Gemona del Friuli. In Regione Friuli Venezia Giulia-Servizio Geologico; ISPRA-Servizio Geologico d’Italia: Rome, Italy, 2013; p. 262. [Google Scholar]
- Busetti, M.; Volpi, V.; Barison, E.; Giustiniani, M.; Marchi, M.; Ramella, R.; Wardell, N.; Zanolla, C. Meso-Cenozoic seismic stratigraphy and the tectonic setting of the Gulf of Trieste (Northern Adriatic). GeoActa 2010, SP3, 1–14. [Google Scholar]
- Busetti, M.; Volpi, V.; Nicolich, R.; Barison, E.; Romeo, R.; Baradello, L.; Brancatelli, G.; Giustiniani, M.; Marchi, M.; Zanolla, C.; et al. Dinaric tectonic features in the Gulf of Trieste (Northern Adriatic). Boll. Geofis. Teor. Appl. 2010, 51, 117–128. [Google Scholar]
- Velić, I.; Tišljar, J.; Matičec, D.; Vlahović, I. Introduzione alla Geologia dell’Istria. In Guida Alle Escursioni, Proceedings of the 80° Riunione Estiva della Società Geologica Italiana, Trieste, Italy, 6–8 Settembre 2000; Carulli, G.B., Ed.; Università di Trieste: Trieste, Italy; Società Geologica Italiana: Rome, Italy, 2000; pp. 237–244. [Google Scholar]
- Zanferrari, A.; Avigliano, R.; Monegato, G.; Paiero, G.; Poli, M.E.; Barbieri, S.; Calderoni, G.; Carraro, F.; Donegana, M.; Grandesso, P.; et al. Note Illustrative della Carta Geologica d’Italia alla Scala 1:50,000, Foglio 066 Udine. In Regione Friuli Venezia Giulia-Servizio Geologico; ISPRA-Servizio Geologico d’Italia: Rome, Italy, 2008; p. 176. [Google Scholar] [CrossRef]
- Amadori, C.; Garcia-Castellanos, D.; Toscani, G.; Sternai, P.; Fantoni, R.; Ghielmi, M.; Di Giulio, A. Restored topography of the Po Plain-Northern Adriatic region during the Messinian base-level drop—Implications for the physiography and compartmentalization of the palaeo-Mediterranean basin. Basin Res. 2018, 30, 1247–1263. [Google Scholar] [CrossRef] [Green Version]
- Fantoni, R.; Catellani, D.; Merlini, S.; Rogledi, S.; Venturini, S. La registrazione degli eventi deformativi cenozoici nell’avampaese veneto-friulano. Mem. Soc. Geol. Ital. 2002, 57, 301–313. [Google Scholar]
- Ghielmi, M.; Minervini, M.; Nini, C.; Rogledi, S.; Rossi, M. Late Miocene-Middle Pleistocene sequences in the Po Plain-Northern Adriatic Sea (Italy): The stratigraphic record of modification phases affecting a complex foreland basin. Mar. Pet. Geol. 2013, 42, 50–81. [Google Scholar] [CrossRef]
- Massari, F.; Rio, D.; Serandrei Barbero, R.; Asioli, A.; Capraro, L.; Fornaciari, E.; Vergerio, P.P. The environment of Venice area in the past two million years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 202, 273–308. [Google Scholar] [CrossRef]
- Zecchin, M.; Tosi, L. Multi-sourced depositional sequences in the neogene to Quaternary succession of the Venice area (northern Italy). Mar. Pet. Geol. 2014, 56, 1–15. [Google Scholar] [CrossRef]
- Zecchin, M.; Busetti, M.; Donda, F.; Dal Cin, M.; Zgur, F.; Brancatelli, G. Plio-Quaternary sequences and tectonic events in the northern Adriatic Sea (Northern Italy). Mar. Pet. Geol. 2002. under review. [Google Scholar]
- Castiglioni, G.B. The eastern sector of the Italian Alps. In Quaternary Glaciations. Developments in Quaternary Science; Gibbard, P., Ehlers, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 209–214. [Google Scholar]
- Mancin, N.; Di Giulio, A.; Cobianchi, M. Tectonic vs. climate forcing in the Cenozoic sedimentary evolution of a foreland basin (Eastern South Alpine system, Italy). Basin Res. 2009, 21, 799–823. [Google Scholar] [CrossRef]
- Martelli, G.; Granati, C. The confined aquifer system of Friuli Plain (North Eastern Italy): Analysis of sustainable groundwater use. G. Geol. Appl. 2006, 3, 59–67. [Google Scholar] [CrossRef]
- Giustiniani, M.; Accaino, F.; Picotti, S.; Tinivella, U. Characterization of the shallow aquifers by high-resolution seismic data. Geophys. Prospect. 2008, 56, 655–666. [Google Scholar] [CrossRef]
- Giustiniani, M.; Accaino, F.; Picotti, S.; Tinivella, U. 3D seismic data for shallow aquifers characterisation. J. Appl. Geophys. 2009, 68, 394–403. [Google Scholar] [CrossRef]
- Barison, E.; Brancatelli, G.; Nicolich, R.; Accaino, F.; Giustiniani, M.; Tinivella, U. Wave equation datuming applied to marine OBS data and to land high resolution seismic profiling. J. Appl. Geophys. 2011, 73, 267–277. [Google Scholar] [CrossRef]
- Cimolino, A. Caratterizzazione delle Risorse Geotermiche della Bassa Pianura Friulana (Regione FVG): Progetto Geotermia-grado. Ph.D. Thesis, University of Trieste, Trieste, Italy, 2010. [Google Scholar]
- ViDEPI-Project. Visibility of Petroleum Exploration Data in Italy. 2009. Available online: https://www.videpi.com (accessed on 1 December 2019).
- Cimolino, A.; Della Vedova, B.; Nicolich, R.; Barison, E.; Brancatelli, G. New evidence of the outer Dinaric deformation front in the Grado area (NE Italy). Rend. Fis. Acc. Lincei 2010, 21, 167–179. [Google Scholar] [CrossRef]
- Petrini, R.; Italiano, F.; Ponton, M.; Slejko, F.F.; Aviani, U.; Zini, L. Geochemistry and isotope geochemistry of the Monfalcone thermal waters (northern Italy): Inference on the deep geothermal reservoir. Hydrogeol. J. 2013, 21, 1275–1287. [Google Scholar] [CrossRef]
- Žumer, J. Odkritje podmorskih termalnih izvirov. Geogr. Obz. 2004, 51, 11–17. [Google Scholar]
- Faganeli, J.; Ogrinc, N.; Walter, L.M.; Žumer, J. Modelling Method for SDG Phenomen and SGD Measurements in the Gulf of Trieste. Part B: Geochemical Characterization of the Submarine Spring off IZOLA (Gulf of Trieste, N Adriatic Sea). In Nuclear and Isotopic Techniques for the Characterization of Submarine Groundwater Discharge in Coastal Zone, IAEA-TECDOC-1595; International Atomic Energy Agency: Vienna, Austria, 2007; pp. 155–160. [Google Scholar]
- Della Vedova, B.; Cimolino, A. Rendiconto delle Attività Svolte e Piattaforma GIS “GEOTERMIA Nord Adriatico”; Report Dipartimento di Ingegneria Civile ed Ambientale of University of Trieste: Trieste, Italy; National Institute of Oceanography and Applied Geophysics-OGS: Sgonico, Italy, 2016. [Google Scholar]
- Scrocca, D.; Doglioni, C.; Innocenti, F.; Manetti, P.; Mazzotti, A.; Bertelli, L.; D’Offizi, S. Atlante CROP–Profili Sismici a riflessione della crosta italiana. Mem. Descr. Carta Geol. D’italia 2013, 62, 194. [Google Scholar]
- Finetti, I.R. CROP Project: Deep Seismic Exploration of the Central Mediterranean and Italy. In Atlases in Geoscience 1; Elsevier Science: Amsterdam, The Netherlands, 2005; p. 779. [Google Scholar]
- Brancatelli, G.; Busetti, M.; Dal Cin, M.; Forlin, E. Reprocessing the CROP95-M18 vintage multichannel seismic data acquired in the northern Adriatic Sea: The case of high penetration crustal profile recorded in shallow waters. Bull. Geophys. Oceanogr. under review.
- Dal Cin, M. 3D Velocity Depth Model in the Gulf of Trieste by Means of Tomographic Analysis from Multichannel Seismic Reflection Data. Ph.D. Thesis, University of Trieste, National Institute of Oceanography and Applied Geophysics—OGS, International Centre for Theoretical Physics (ICTP), OGS and ICTP, Trieste, Italy, March 2018. Available online: http://hdl.handle.net/11368/2922569 (accessed on 1 July 2020).
- Dal Cin, M.; Böhm, G.; Busetti, M.; Picotti, S.; Zgur, F.; Camerlenghi, A. 3D velocity-depth model from multichannel seismic in the Dinaric foredeep of the Gulf of Trieste (Adriatic Sea), at the NE edge of Adria plate. Tectonophysics 2022. under review. [Google Scholar]
- Picotti, S.; Dal Cin, M.; Böhm, G.; Busetti, M. Evidences of Seismic Flysch Anisotropy in the Gulf of Trieste. In Proceedings of the Conference Proceedings, 24th European Meeting of Environmental and Engineering Geophysics, Porto, Portugal, 9–12 September 2018; 2018, pp. 1–5. [Google Scholar] [CrossRef]
- Accaino, F.; Busetti, M.; Böhm, G.; Baradello, L.; Affatato, A.; Dal Cin, M.; Nieto, D. Geophysical investigation of the Isonzo Plain (NE Italy): Imaging of the Dinaric foredeep at the Alpine-Dinaric chain convergence zone. Ital. J. Geosci. 2019, 138, 202–215. [Google Scholar] [CrossRef]
- Della Vedova, B.; Castelli, E.; Cimolino, A.; Vecellio, C.; Nicolich, R.; Barison, E. La valutazione e lo sfruttamento delle acque geotermiche per il riscaldamento degli edifici pubblici. Rass. Tec. Friuli Venezia Giulia 2008, 6, 16–19. [Google Scholar]
- Gordini, E.; Falace, A.; Kaleb, S.; Donda, F.; Marocco, R.; Tunis, G. Methane-Related Carbonate Cementation of Marine Sediments and Related Macroalgal Coralligenous Assemblages in the Northern Adriatic Sea. In Seafloor Geomorphology as Benthic Habitats; Harris, P.T., Baker, E.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 183–198. [Google Scholar]
- Busetti, M.; Zgur, F.; Vrabec, M.; Facchin, L.; Pelos, C.; Romeo, R.; Sormani, L.; Slavec, P.; Tomini, I.; Visnovich, G.; et al. Neotectonic reactivation of Meso-Cenozoic structures in the Gulf of Trieste and its relationship with fluid seepings. In Proceedings of the 32° Convegno del Gruppo Nazionale di Geofisica della Terra Solida (GNGTS), Trieste, Italy, 19–21 November 2013. [Google Scholar]
- Vesnaver, A.; Böhm, G.; Cance, P.; Dal Cin, M.; Gei, D. Windowless Q-factor tomography by the instantaneous frequency. Geophys. Prospect. 2020, 68, 2611–2636. [Google Scholar] [CrossRef]
- Vesnaver, A.; Böhm, G.; Busetti, M.; Dal Cin, M.; Zgur, F. Broadband Q-factor imaging for geofluid detection in the Gulf of Trieste (northern Adriatic Sea). Front. Earth Sci. 2021, 9, 84. [Google Scholar] [CrossRef]
- Vesnaver, A.; Busetti, M.; Baradello, L. Chirp data processing for fluid detection at the Gulf of Trieste (northern Adriatic Sea). Bull. Geophys. Oceanogr. 2021, 62, 365–386. [Google Scholar] [CrossRef]
- Zamrsky, D.; Karssenberg, M.E.; Cohen, K.M.; Marc, F.P.; Bierkens, M.F.P.; Oude Essink, G.H.P. Geological heterogeneity of coastal unconsolidated groundwater systems worldwide and its influence on offshore fresh groundwater occurrence. Front. Earth Sci. 2020, 7, 339. [Google Scholar] [CrossRef] [Green Version]
- Velić, J.; Malvić, T. Depositional conditions during Pliocene and Pleistocene in Northern Adriatic and possible lithostratigraphic division of these rocks (Taložni uvjeri tijekom pliocena i pleistocena u Sjevernom Jadranu te moguća litostratigrafska raščlamba nastalih stijena). Nafta 2011, 62, 25–38. [Google Scholar]
- Vai, G.B.; Cantelli, L. Litho-Palaeoenvironmental Maps of Italy during the Last Two Climatic Extreme, Map 1—Last Glacial Maximum (22 ± 2 ka cal BP); Antonioli, F., Vai, G.B., Eds.; Climex Maps Italy: Bologna, Italy, 2004. [Google Scholar]
- Waelbroeck, A.C.; Labeyriea, L.; Michel, E.; Duplessy, J.C.; McManus, J.F.; Lambeck, K.; Balbon, E.; Labracherie, M. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 2002, 21, 295–305. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giustiniani, M.; Busetti, M.; Dal Cin, M.; Barison, E.; Cimolino, A.; Brancatelli, G.; Baradello, L. Geophysical and Geological Views of Potential Water Resources in the North-Eastern Adriatic Sea. Geosciences 2022, 12, 139. https://doi.org/10.3390/geosciences12030139
Giustiniani M, Busetti M, Dal Cin M, Barison E, Cimolino A, Brancatelli G, Baradello L. Geophysical and Geological Views of Potential Water Resources in the North-Eastern Adriatic Sea. Geosciences. 2022; 12(3):139. https://doi.org/10.3390/geosciences12030139
Chicago/Turabian StyleGiustiniani, Michela, Martina Busetti, Michela Dal Cin, Erika Barison, Aurélie Cimolino, Giuseppe Brancatelli, and Luca Baradello. 2022. "Geophysical and Geological Views of Potential Water Resources in the North-Eastern Adriatic Sea" Geosciences 12, no. 3: 139. https://doi.org/10.3390/geosciences12030139
APA StyleGiustiniani, M., Busetti, M., Dal Cin, M., Barison, E., Cimolino, A., Brancatelli, G., & Baradello, L. (2022). Geophysical and Geological Views of Potential Water Resources in the North-Eastern Adriatic Sea. Geosciences, 12(3), 139. https://doi.org/10.3390/geosciences12030139