Oxygen Isotopes from Apatite of Middle and Late Ordovician Conodonts in Peri-Baltica (The Holy Cross Mountains, Poland) and Their Climatic Implications
Abstract
:1. Introduction
2. Geological and Palaeogeographic Outline
3. Study Section
4. Samples and Methods
5. Results
6. Discussion
6.1. Calculation of Palaeotemperatures
6.2. Variability of δ18Oapatite in a Climatic Context
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frakes, L.A.; Francis, J.E.; Syktus, J.I. Climate Modes of the Phanerozoic; Cambridge University Press (CUP): Cambridge, UK, 1992. [Google Scholar]
- Brenchley, P.J.; Marshall, J.D.; Carden, G.A.F.; Robertson, D.B.R.; Long, D.G.F.; Meidla, T.; Hints, L.; Anderson, T.F. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology 1994, 22, 295–298. [Google Scholar] [CrossRef]
- Sheehan, P.M. The Late Ordovician Mass Extinction. Annu. Rev. Earth Planet. Sci. 2001, 29, 331–364. [Google Scholar] [CrossRef]
- Herrmann, A.D.; Patzkowsky, M.E.; Pollard, D. The impact of paleogeography, pCO2, poleward ocean heat transport and sea level change on global cooling during the Late Ordovician. Palaeogeogr. Palaeoclim. Palaeoecol. 2004, 206, 59–74. [Google Scholar] [CrossRef]
- Trotter, J.A.; Williams, I.S.; Barnes, C.R.; Lécuyer, C.; Nicoll, R.S. Did Cooling Oceans Trigger Ordovician Biodiversification? Evidence from Conodont Thermometry. Science 2008, 321, 550–554. [Google Scholar] [CrossRef]
- Finnegan, S.; Bergmann, K.; Eiler, J.M.; Jones, D.S.; Fike, D.A.; Eisenman, I.; Hughes, N.C.; Tripati, A.K.; Fischer, W.W. The Magnitude and Duration of Late Ordovician–Early Silurian Glaciation. Science 2011, 331, 903–906. [Google Scholar] [CrossRef] [Green Version]
- Algeo, T.J.; Marenco, P.J.; Saltzman, M.R. Co-evolution of oceans, climate, and the biosphere during the ‘Ordovician Revolution’: A review. Palaeogeogr. Palaeoclim. Palaeoecol. 2016, 458, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Saltzman, M.R.; Young, S.A. Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology 2005, 33, 109–112. [Google Scholar] [CrossRef]
- Buggisch, W.; Joachimski, M.M.; Lehnert, O.; Bergström, S.M.; Repetski, J.E.; Webers, G.F. Did intense volcanism trigger the first Late Ordovician icehouse? Geology 2010, 38, 327–330. [Google Scholar] [CrossRef]
- Rasmussen, C.M.Ø.; Ullmann, C.V.; Jakobsen, K.G.; Lindskog, A.; Hansen, J.; Hansen, T.; Eriksson, M.E.; Dronov, A.; Frei, R.; Korte, C.; et al. Onset of main Phanerozoic marine radiation sparked by emerging Mid Ordovician icehouse. Sci. Rep. 2016, 6, 18884. [Google Scholar] [CrossRef] [Green Version]
- Shields, G.; Carden, G.A.; Veizer, J.; Meidla, T.; Rong, J.-Y.; Li, R.-Y. Sr, C, and O isotope geochemistry of Ordovician brachiopods: A major isotopic event around the Middle-Late Ordovician transition. Geochim. Cosmochim. Acta 2003, 67, 2005–2025. [Google Scholar] [CrossRef]
- Young, S.A.; Saltzman, M.R.; Foland, K.A.; Linder, J.S.; Kump, L.R. A major drop in seawater 87Sr/86Sr during the Middle Ordovician (Darriwilian): Links to volcanism and climate? Geology 2009, 37, 951–954. [Google Scholar] [CrossRef]
- Young, S.A.; Saltzman, M.R.; Bergström, S.M.; Leslie, S.A.; Xu, C. Paired δ13Ccarb and δ13Corg records of Upper Ordovician (Sandbian–Katian) carbonates in North America and China: Implications for paleoceanographic change. Palaeogeogr. Palaeoclim. Palaeoecol. 2008, 270, 166–178. [Google Scholar] [CrossRef]
- Bergström, S.M.; Young, S.; Schmitz, B. Katian (Upper Ordovician) δ13C chemostratigraphy and sequence stratigraphy in the United States and Baltoscandia: A regional comparison. Palaeogeogr. Palaeoclim. Palaeoecol. 2010, 296, 217–234. [Google Scholar] [CrossRef]
- Jones, D.; Martini, A.M.; Fike, D.; Kaiho, K. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology 2017, 45, 631–634. [Google Scholar] [CrossRef] [Green Version]
- Bassett, D.; MacLeod, K.; Miller, J.F.; Ethington, R.L. Oxygen isotopic composition of biogenic phosphate and the temperature of early ordovician seawater. Palaios 2007, 22, 98–103. [Google Scholar] [CrossRef]
- Rosenau, N.A.; Herrmann, A.D.; Leslie, S. Conodont apatite δ18O values from a platform margin setting, Oklahoma, USA: Implications for initiation of Late Ordovician icehouse conditions. Palaeogeogr. Palaeoclim. Palaeoecol. 2012, 315–316, 172–180. [Google Scholar] [CrossRef]
- Elrick, M.; Reardon, D.; Labor, W.; Martin, J.; DesRochers, A.; Pope, M. Orbital-scale climate change and glacioeustasy during the early Late Ordovician (pre-Hirnantian) determined from δ18O values in marine apatite. Geology 2013, 41, 775–778. [Google Scholar] [CrossRef]
- Quinton, P.C.; Law, S.; Macleod, K.G.; Herrmann, A.D.; Haynes, J.T.; Leslie, S.A. Testing the early Late Ordovician cool-water hypothesis with oxygen isotopes from conodont apatite. Geol. Mag. 2018, 155, 1727–1741. [Google Scholar] [CrossRef] [Green Version]
- Albanesi, G.L.; Barnes, C.R.; Trotter, J.; Williams, I.S.; Bergström, S.M. Comparative Lower-Middle Ordovician conodont oxygen isotope palaeothermometry of the Argentine Precordillera and Laurentian margins. Palaeogeogr. Palaeoclim. Palaeoecol. 2020, 549, 109115. [Google Scholar] [CrossRef]
- Männik, P.; Lehnert, O.; Nõlvak, J.; Joachimski, M.M. Climate changes in the pre-Hirnantian Late Ordovician based on δ18Ophos studies from Estonia. Palaeogeogr. Palaeoclim. Palaeoecol. 2021, 569, 110347. [Google Scholar] [CrossRef]
- Edwards, C.T.; Jones, C.M.; Quinton, P.C.; Fike, D.A. Oxygen isotope (δ18O) trends measured from Ordovician conodont apatite using secondary ion mass spectrometry (SIMS): Implications for paleo-thermometry studies. GSA Bull. 2021, 134, 261–274. [Google Scholar] [CrossRef]
- Luz, B.; Kolodny, Y.; Kovach, J. Oxygen isotope variations in phosphate of biogenic apatites, III. Conodonts. Earth Planet. Sci. Lett. 1984, 69, 255–262. [Google Scholar] [CrossRef]
- Wenzel, B.; Lecuyer, C.; Joachimski, M. Comparing oxygen isotope records of silurian calcite and phosphate—δ18O compositions of brachiopods and conodonts. Geochim. Cosmochim. Acta 2000, 64, 1859–1872. [Google Scholar] [CrossRef]
- Joachimski, M.M.; Von Bitter, P.H.; Buggisch, W. Constraints on Pennsylvanian glacioeustatic sea-level changes using oxygen isotopes of conodont apatite. Geology 2006, 34, 277–280. [Google Scholar] [CrossRef]
- Quinton, P.C.; Speir, L.; Miller, J.; Ethington, R.; MacLeod, K. Extreme heat in the early ordovician. Palaios 2018, 33, 353–360. [Google Scholar] [CrossRef]
- Servais, T.; Harper, D.A. The Great Ordovician Biodiversification Event (GOBE): Definition, concept and duration. Lethaia 2018, 51, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, A.D.; MacLeod, K.; Leslie, S. Did a volcanic mega-eruption cause global cooling during the late ordovician? Palaios 2010, 25, 831–836. [Google Scholar] [CrossRef]
- Quinton, P.C.; MacLeod, K. Oxygen isotopes from conodont apatite of the midcontinent, US: Implications for Late Ordovician climate evolution. Palaeogeogr. Palaeoclim. Palaeoecol. 2014, 404, 57–66. [Google Scholar] [CrossRef]
- Czarnocki, J. Ogólna Mapa Geologiczna Polski 1:100,000; Arkusz 4, Kielce; Państwowy Instytut Geologiczny: Warszawa, Poland, 1938. [Google Scholar]
- Dadlez, R.; Marek, S.; Pokorski, J. Geological Map of Poland without Cenozoic deposits 1:1,000,000; Polish Geological Institute: Warszawa, Poland, 2000. [Google Scholar]
- Scotese, C.R. Atlas of Silurian and Middle-Late Ordovician Paleogeographic Maps (Mollweide Projection), Maps 73–80, Volume 5, The Early Paleozoic, PALEOMAP Atlas for ArcGIS, PALEOMAP Project; PALEOMAP Project: Evanston, IL, USA, 2014. [Google Scholar]
- Narkiewicz, M.; Petecki, Z. Basement structure of the Paleozoic Platform in Poland. Geol. Q. 2017, 61, 502–520. [Google Scholar] [CrossRef] [Green Version]
- Nawrocki, J.; DunlAp, J.; Pecskay, Z.; Krzemiński, L.; Żylińska, A.; Fanning, C.M.; Kozłowski, W.; Salwa, S.; Szczepanik, Z.; Trela, W. Late Neoproterozoic to Early Palaeozoic palaoegeography of the Holy Cross Mountains (Central Europe): An integrated approach. J. Geol. Soc. 2007, 164, 405–423. [Google Scholar] [CrossRef]
- Walczak, A.; Belka, Z. Fingerprinting Gondwana versus Baltica provenance: Nd and Sr isotopes in Lower Paleozoic clastic rocks of the Małopolska and Łysogóry terranes, southern Poland. Gondwana Res. 2017, 45, 138–151. [Google Scholar] [CrossRef]
- Dadlez, R.; Kowalczewski, Z.; Znosko, J. Niektóre kluczowe problemy przedpermskiej tektoniki Polski. Geol. Q. 1994, 38, 169–190. [Google Scholar]
- Belka, Z.; Valverde-Vaquero, P.; Dörr, W.; Ahrendt, H.; Wemmer, K.; Franke, W.; Schäfer, J. Accretion of first Gondwana-derived terranes at the margin of Baltica. Geol. Soc. London, Spéc. Publ. 2002, 201, 19–36. [Google Scholar] [CrossRef]
- Schatz, M.; Zwing, A.; Tait, J.; Belka, Z.; Soffel, H.; Bachtadse, V. Paleomagnetism of Ordovician carbonate rocks from Malopolska Massif, Holy Cross Mountains, SE Poland—Magnetostratigraphic and geotectonic implications. Earth Planet. Sci. Lett. 2006, 244, 349–360. [Google Scholar] [CrossRef]
- Cocks, L.R.M.; Torsvik, T.H. Baltica from the late Precambrian to mid-Palaeozoic times: The gain and loss of a terrane’s identity. Earth-Sci. Rev. 2005, 72, 39–66. [Google Scholar] [CrossRef]
- Dzik, J. Ordovician conodonts and the Tornquist Lineament. Palaeogeogr. Palaeoclim. Palaeoecol. 2020, 549, 109157. [Google Scholar] [CrossRef]
- Trela, W. Litostratygrafia ordowiku w Górach Świętokrzyskich. Przegląd Geol. 2006, 54, 622–631. [Google Scholar]
- Trela, W. Eustatic and local tectonic impact on the Late Ordovician—Early Silurian facies evolution on the SW margin of peri-Baltica (the southern Holy Cross Mountains, Poland). Geol. Mag. 2021, 158, 1472–1486. [Google Scholar] [CrossRef]
- Trela, W. Upper Ordovician mudrock facies and trace fossils in the northern Holy Cross Mountains, Poland, and their relation to oxygen- and sea-level dynamics. Palaeogeogr. Palaeoclim. Palaeoecol. 2007, 246, 488–501. [Google Scholar] [CrossRef]
- Dzik, J. Conodonts of the Mójcza Limestone. Paleontol. Pol. 1994, 53, 43–128. [Google Scholar]
- Dzik, J. Evolution of the Late Ordovician high-latitude conodonts and dating of Gondwana glaciations. Boll. Della Soc. Paleontol. Ital. 1998, 37, 237–253. [Google Scholar]
- Dzik, J.; Pisera, A. Sedimentation and fossils of the Mójcza Limestones. Paleontol. Pol. 1994, 53, 5–41. [Google Scholar]
- Trela, W. Condensation and phosphatization of the Middle and Upper Ordovician limestones on the Malopolska Block (Poland): Response to paleoceanographic conditions. Sediment. Geol. 2005, 178, 219–236. [Google Scholar] [CrossRef]
- Tomczykowa, E.; Tomczyk, H. Rozwój badań syluru i najniższego dewonu w Górach Świętokrzyskich. Przew 1981, 53, 42–57. [Google Scholar]
- Trela, W. Sedimentary and microbial record of the Middle/Late Ordovician phosphogenetic episode in the northern Holy Cross Mountains, Poland. Sediment. Geol. 2008, 203, 131–142. [Google Scholar] [CrossRef]
- Lécuyer, C.; Amiot, R.; Touzeau, A.; Trotter, J. Calibration of the phosphate δ18O thermometer with carbonate–water oxygen isotope fractionation equations. Chem. Geol. 2013, 347, 217–226. [Google Scholar] [CrossRef]
- Belka, Z. Thermal maturation and burial history from conodont colour alteration data, Holy Cross Mountains, Poland. Cour. Forsch.-Inst. Senckenberg 1990, 118, 241–251. [Google Scholar]
- Szczepanik, Z.; Malec, J. Reżim Termiczny Obszaru Świętokrzysko-Nidziańskiego Oraz Pozycja Paleogeograficzna Gór Świętokrzyskich w Świetle Badań Paleozoicznych Flory i Fauny; No. 2331/2001. (Archival study); National Geological Archives-Polish Geological Institute: Warsaw, Poland, 2001. [Google Scholar]
- Trotter, J.; Williams, I.; Nicora, A.; Mazza, M.; Rigo, M. Long-term cycles of Triassic climate change: A new δ18O record from conodont apatite. Earth Planet. Sci. Lett. 2015, 415, 165–174. [Google Scholar] [CrossRef]
- Rigo, M.; Trotter, J.A.; Preto, N.; Williams, I.S. Oxygen isotopic evidence for Late Triassic monsoonal upwelling in the northwestern Tethys. Geology 2012, 40, 515–518. [Google Scholar] [CrossRef]
- Narkiewicz, M.; Narkiewicz, K.; Krzemińska, E.; Kruchek, S.A. Oxygen isotopic composition of conodont apatite in the equatorial epeiric Belarussian Basin (Eifelian)—Relationship to fluctuating seawater salinity and temperature. Palaios 2017, 32, 439–447. [Google Scholar] [CrossRef]
- Cooper, R.; Sadler, P.; Hammer, O.; Gradstein, F. The Ordovician Period. In The Geologic Time Scale; Elsevier: Amsterdam, The Netherlands, 2012; pp. 489–523. [Google Scholar]
- Trotter, J.; Williams, I.S.; Barnes, C.R.; Männik, P.; Simpson, A. New conodont δ18O records of Silurian climate change: Implications for environmental and biological events. Palaeogeogr. Palaeoclim. Palaeoecol. 2016, 443, 34–48. [Google Scholar] [CrossRef]
- Wheeley, J.R.; Smith, M.P.; Boomer, I. Oxygen isotope variability in conodonts: Implications for reconstructing Palaeozoic palaeoclimates and palaeoceanography. J. Geol. Soc. 2012, 169, 239–250. [Google Scholar] [CrossRef]
- Wheeley, J.; Jardine, P.E.; Raine, R.; Boomer, I.; Smith, M.P. Paleoecologic and paleoceanographic interpretation of δ18O variability in Lower Ordovician conodont species. Geology 2018, 46, 467–470. [Google Scholar] [CrossRef] [Green Version]
- Kolodny, Y.; Luz, B.; Navon, O. Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—Rechecking the rules of the game. Earth Planet. Sci. Lett. 1983, 64, 398–404. [Google Scholar] [CrossRef]
- Joachimski, M.M.; van Geldern, R.; Breisig, S.; Buggisch, W.; Day, J. Oxygen isotope evolution of biogenic calcite and apatite during the Middle and Late Devonian. Geol. Rundsch. 2004, 93, 542–553. [Google Scholar] [CrossRef]
- Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Carden, G.A.; Diener, A.; Ebneth, S.; Godderis, Y.; et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar] [CrossRef] [Green Version]
- Veizer, J.; Godderis, Y.; François, L. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 2000, 408, 698–701. [Google Scholar] [CrossRef]
- Jaffrés, J.B.; Shields, G.; Wallmann, K. The oxygen isotope evolution of seawater: A critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth-Sci. Rev. 2007, 83, 83–122. [Google Scholar] [CrossRef] [Green Version]
- Veizer, J.; Prokoph, A. Temperatures and oxygen isotopic composition of Phanerozoic oceans. Earth-Sci. Rev. 2015, 146, 92–104. [Google Scholar] [CrossRef]
- Galili, N.; Shemesh, A.; Yam, R.; Brailovsky, I.; Sela-Adler, M.; Schuster, E.M.; Collom, C.; Bekker, A.; Planavsky, N.; Macdonald, F.A.; et al. The geologic history of seawater oxygen isotopes from marine iron oxides. Science 2019, 365, 469–473. [Google Scholar] [CrossRef]
- Pucéat, E.; Joachimski, M.; Bouilloux, A.; Monna, F.; Bonin, A.; Motreuil, S.; Morinière, P.; Hénard, S.; Mourin, J.; Dera, G. Revised phosphate–water fractionation equation reassessing paleotemperatures derived from biogenic apatite. Earth Planet. Sci. Lett. 2010, 298, 135–142. [Google Scholar] [CrossRef]
- Longinelli, A. Comment on work by Pucéat et al. (2010) on a revised phosphate–water fractionation equation. Earth Planet. Sci. Lett. 2013, 377–378, 378–379. [Google Scholar] [CrossRef]
- Pucéat, E.; Joachimski, M.; Bouilloux, A.; Monna, F.; Bonin, A.; Motreuil, S.; Morinière, P.; Hénard, S.; Mourin, J.; Dera, G.; et al. Reply on Comment by Longinelli (2013) on a revised phosphate–water fractionation equation. Earth Planet. Sci. Lett. 2013, 377–378, 380–382. [Google Scholar] [CrossRef]
- Halas, S.; Skrzypek, G.; Meier-Augenstein, W.; Pelc, A.; Kemp, H.F. Inter-laboratory calibration of new silver orthophosphate comparison materials for the stable oxygen isotope analysis of phosphates. Rapid Commun. Mass Spectrom. 2011, 25, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Pohl, A.; Donnadieu, Y.; Le Hir, G.; Buoncristiani, J.-F.; Vennin, E. Effect of the Ordovician paleogeography on the (in)stability of the climate. Clim. Past 2014, 10, 2053–2066. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Zhan, R.; Wu, R. Equatorial cold-water tongue in the Late Ordovician. Geology 2018, 46, 759–762. [Google Scholar] [CrossRef]
- Sweet, W.C. The Conodonta: Morphology, Taxonomy, Paleoecology, and Evolutionary History of a Long-Extinct Animal Phylum; Clarendon Press: New York, NY, USA, 1988. [Google Scholar]
- Rasmussen, J.A.; Stouge, S. Baltoscandian conodont biofacies fluctuations and their link to Middle Ordovician (Darriwilian) global cooling. Palaeontology 2018, 61, 391–416. [Google Scholar] [CrossRef]
- Zhang, T.; Trela, W.; Jiang, S.-Y.; Nielsen, J.K.; Shen, Y. Major oceanic redox condition change correlated with the rebound of marine animal diversity during the Late Ordovician. Geology 2011, 39, 675–678. [Google Scholar] [CrossRef]
- Kolata, D.R.; Huff, W.D.; Bergström, S.M. Ordovician K-Bentonites of Eastern North America; Geological Society of America: Boulder, CO, USA, 1996. [Google Scholar]
- Huff, W.D. Ordovician K-bentonites: Issues in interpreting and correlating ancient tephras. Quat. Int. 2008, 178, 276–287. [Google Scholar] [CrossRef]
- Kiipli, T.; Dahlqvist, P.; Kallaste, T.; Kiipli, E.; Nõlvak, J. Upper Katian (Ordovician) bentonites in the East Baltic, Scandinavia and Scotland: Geochemical correlation and volcanic source interpretation. Geol. Mag. 2015, 152, 589–602. [Google Scholar] [CrossRef]
- Trela, W.; Bąk, E.; Pańczyk, M. Upper Ordovician and Silurian ash beds in the Holy Cross Mountains, Poland: Preservation in mudrock facies and relation to atmospheric circulation in the Southern Hemisphere. J. Geol. Soc. 2017, 175, 352–360. [Google Scholar] [CrossRef]
- Smolarek-Lach, J.; Marynowski, L.; Trela, W.; Wignall, P.B. Mercury Spikes Indicate a Volcanic Trigger for the Late Ordovician Mass Extinction Event: An Example from a Deep Shelf of the Peri-Baltic Region. Sci. Rep. 2019, 9, 3139. [Google Scholar] [CrossRef] [PubMed]
- Dzik, J. Zespół konodontów jako wskaźnik zmian klimatu podczas epoki lodowej. Przegląd Geol. 1999, 47, 349–353. [Google Scholar]
- Loi, A.; Ghienne, J.-F.; Dabard, M.; Paris, F.; Botquelen, A.; Christ, N.; Elaouad-Debbaj, Z.; Gorini, A.; Vidal, M.; Videt, B.; et al. The Late Ordovician glacio-eustatic record from a high-latitude storm-dominated shelf succession: The Bou Ingarf section (Anti-Atlas, Southern Morocco). Palaeogeogr. Palaeoclim. Palaeoecol. 2010, 296, 332–358. [Google Scholar] [CrossRef]
Sample | Stages | Conodonts | No. Conodonts per Sample | No. Analyses | δ18O mean [‰VSMOW] | Std. Error ± | Std. Dev. |
---|---|---|---|---|---|---|---|
M1 | Darriwilian | B, NI | 8 | 35 | 16.99 | 0.16 | 0.95 |
M2 | B, P, NI | 8 | 35 | 16.75 | 0.13 | 0.75 | |
M3 | B, P, NI | 7 | 28 | 17.29 | 0.18 | 0.96 | |
M4 | B, D, NI | 7 | 23 | 17.06 | 0.14 | 0.68 | |
M5 | B, P, NI | 7 | 27 | 17.68 | 0.16 | 0.85 | |
M6 | A, D, NI | 6 | 14 | 17.11 | 0.23 | 1.08 | |
M7 | B, P, NI | 4 | 11 | 17.82 | 0.30 | 0.99 | |
M8 | Sandbian | B, P, NI | 8 | 32 | 17.80 | 0.20 | 1.09 |
M9 | A, NI | 4 | 14 | 19.00 | 0.19 | 0.71 | |
M10 | A, NI | 6 | 22 | 19.59 | 0.20 | 0.95 | |
M11 | Katian | B, NI | 6 | 20 | 19.10 | 0.37 | 1.66 |
M12 | A, B, NI | 5 | 10 | 18.36 | 0.53 | 1.73 | |
M13 | A, B, NI | 5 | 14 | 18.42 | 0.31 | 1.17 | |
M14 | A, S, NI | 4 | 12 | 19.63 | 0.30 | 1.03 | |
M15 | A, S, NI | 7 | 24 | 19.46 | 0.12 | 0.59 | |
M16 | S, A, H, NI | 6 | 22 | 19,40 | 0.09 | 0.43 | |
M17 | A, S, NI | 4 | 14 | 20,66 | 0.24 | 0.89 | |
M18 | A, H, NI | 4 | 15 | 18.68 | 0.28 | 1.12 | |
M19 | A, S, NI | 4 | 12 | 18.70 | 0.19 | 0.65 | |
M20 | A, NI | 5 | 22 | 19,36 | 0.21 | 0.98 | |
M21 | A, NI | 7 | 25 | 18.12 | 0.22 | 1.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trela, W.; Krzemińska, E.; Jewuła, K.; Czupyt, Z. Oxygen Isotopes from Apatite of Middle and Late Ordovician Conodonts in Peri-Baltica (The Holy Cross Mountains, Poland) and Their Climatic Implications. Geosciences 2022, 12, 165. https://doi.org/10.3390/geosciences12040165
Trela W, Krzemińska E, Jewuła K, Czupyt Z. Oxygen Isotopes from Apatite of Middle and Late Ordovician Conodonts in Peri-Baltica (The Holy Cross Mountains, Poland) and Their Climatic Implications. Geosciences. 2022; 12(4):165. https://doi.org/10.3390/geosciences12040165
Chicago/Turabian StyleTrela, Wiesław, Ewa Krzemińska, Karol Jewuła, and Zbigniew Czupyt. 2022. "Oxygen Isotopes from Apatite of Middle and Late Ordovician Conodonts in Peri-Baltica (The Holy Cross Mountains, Poland) and Their Climatic Implications" Geosciences 12, no. 4: 165. https://doi.org/10.3390/geosciences12040165
APA StyleTrela, W., Krzemińska, E., Jewuła, K., & Czupyt, Z. (2022). Oxygen Isotopes from Apatite of Middle and Late Ordovician Conodonts in Peri-Baltica (The Holy Cross Mountains, Poland) and Their Climatic Implications. Geosciences, 12(4), 165. https://doi.org/10.3390/geosciences12040165