Assessment of Badlands Erosion Dynamics in the Adriatic Side of Central Italy
Abstract
:1. Introduction
2. Study Area
3. Methods
3.1. Badlands Identification
3.2. Badlands Classification
3.3. Temporal Evolution
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jie, C.; Chen, J.-Z.; Tan, M.-Z.; Gong, Z.-T. Soil degradation: A global problem endangering sustainable development. J. Geogr. Sci. 2002, 12, 243–252. [Google Scholar] [CrossRef]
- van Leeuwen, C.C.E.; Cammeraat, E.L.H.; de Vente, J.; Boix-Fayos, C. The evolution of soil conservation policies targeting land abandonment and soil erosion in Spain: A review. Land Use Policy 2019, 83, 174–186. [Google Scholar] [CrossRef]
- Harvey, A. Badlands. In Encyclopedia of Geomorphology; Goudie, A., Ed.; Psychology Press: London, UK, 2004; pp. 45–47. [Google Scholar]
- Caraballo-Arias, N.A.; Ferro, V. Assessing, measuring and modelling erosion in calanchi areas: A review. J. Agric. Eng. 2016, 47, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Azzi, G. I fenomeni della erosione nelle Argille Azzurre del Pliocene nel bacino del Santerno (Romagna). Boll. Soc. Geogr. Ital. 1912, II, 111–114. [Google Scholar]
- Castiglioni, B. Osservazioni sui calanchi appenninici. Boll. Soc. Geol. Ital. 1933, LII, 357–360. [Google Scholar]
- Castiglioni, B. Ricerche morfologiche nei terreni pliocenici dell’Italia centrale. Pubbl. Ist. Geogr. Univ. Rome 1935, Ser. A, 160. [Google Scholar]
- Bianchini, S.; Del Soldato, M.; Solari, L.; Nolesini, T.; Pratesi, F.; Moretti, S. Badland susceptibility assessment in Volterra municipality (Tuscany, Italy) by means of GIS and statistical analysis. Environ. Earth Sci. 2016, 75, 889. [Google Scholar] [CrossRef]
- Bosino, A.; Omran, A.; Maerker, M. Identification, characterisation and analysis of the Oltrepo Pavese calanchi in the Northern Apennines (Italy). Geomorphology 2019, 340, 53–66. [Google Scholar] [CrossRef]
- Ciccacci, S.; Galiano, M.; Roma, M.A.; Salvatore, M.C. Morphological analysis and erosion rate evaluation in badlands of Radicofani area (Southern Tuscany—Italy). Catena 2008, 74, 87–97. [Google Scholar] [CrossRef]
- Coratza, P.; Vandelli, V.; Soldati, M. Environmental rehabilitation linking natural and industrial heritage: A Master Plan for dismissed quarry areas in the Emilia Apennines (Italy). Environ. Earth Sci. 2018, 77, 455. [Google Scholar] [CrossRef]
- Coratza, P.; Parenti, C. Controlling Factors of badland morphological changes in the Emilia Apennines (Northern Italy). Water 2021, 13, 539. [Google Scholar] [CrossRef]
- Demangeot, J. Géomorphologie des Abruzzes adriatiques. In Éditions du Centre National de la Recherche Scientifique; Centre National de la Recherche Scientifique: Paris, France, 1965; pp. 188–189. [Google Scholar]
- Dramis, F.; Gentili, B.; Coltorti, M.; Cherubini, C. Osservazioni geomorfologiche sui calanchi marchigiani. Geogr. Fis. Din. Quat. 1982, 5, 38–45. [Google Scholar]
- Dramis, F.; Gentili, B.; Pieruccini, U. La degradazione dei versanti nel bacino del Sentino (Appennino Umbro-Marchigiano). Stud. Geol. Camerti 1976, 2, 45–72. [Google Scholar]
- Karmeshu, N. Trend Detection in Annual Temperature & Precipitation Using the Mann Kendall Test—A Case Study to Assess Climate Change on Select States in the Northeastern United States. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, USA, August 2012; pp. 1–33. [Google Scholar]
- Maerker, M.; Bosino, A.; Scopesi, C.; Giordani, P.; Firpo, M.; Rellini, I. Assessment of calanchi and rill-interrill erosion susceptibility in northern Liguria, Italy: A case study using a probabilistic modelling framework. Geoderma 2020, 371, 114367. [Google Scholar] [CrossRef]
- Rodolfi, G.; Frascati, F. Cartografia di base per la programmozione degli interventi in aree marginali (Area rappresentativa Alta val D’era). Ann. Dell’istituto Sper. Per Studio Dif. Suolo Firenze 1979, 10. [Google Scholar]
- Bosino, A.; Giordani, P.; Quénéhervé, G.; Maerker, M. Assessment of calanchi and rill–interrill erosion susceptibilities using terrain analysis and geostochastics: A case study in the Oltrepo Pavese, Northern Apennines, Italy. Earth Surf. Process. Landf. 2020, 45, 3025–3041. [Google Scholar] [CrossRef]
- Bouma, N.A.; Imeson, A.C. Investigation of relationships between measured field indicators and erosion processes on badland surfaces at Petrer, Spain. Catena 2000, 40, 147–171. [Google Scholar] [CrossRef]
- Brandolini, P.; Pepe, G.; Capolongo, D.; Cappadonia, C.; Cevasco, A.; Conoscenti, C.; Marsico, A.; Vergari, F.; Del Monte, M. Hillslope degradation in representative Italian areas: Just soil erosion risk or opportunity for development? Land Degrad. Dev. 2018, 29, 3050–3068. [Google Scholar] [CrossRef]
- Bucciante, M. Sulla distribuzione geografica dei calanchi in Italia. L’Universo 1922, 3, 585–605. [Google Scholar]
- Buccolini, M.; Coco, L.; Cappadonia, C.; Rotigliano, E. Relationships between a new slope morphometric index and calanchi erosion in northern Sicily, Italy. Geomorphology 2012, 149–150, 41–48. [Google Scholar] [CrossRef]
- Buccolini, M.; Coco, L. The role of the hillside in determining the morphometric characteristics of “calanchi”: The example of Adriatic central Italy. Geomorphology 2010, 123, 200–210. [Google Scholar] [CrossRef]
- Cappadonia, C.; Coco, L.; Buccolini, M.; Rotigliano, E. From slope morphometry to morphogenetic processes: An integrated approach of field survey, geographic information system morphometric analysis and statistics in Italian Badlands. Land Degrad. Dev. 2016, 27, 851–862. [Google Scholar] [CrossRef]
- Caraballo-Arias, N.A.; Conoscenti, C.; Di Stefano, C.; Ferro, V. Testing GIS-morphometric analysis of some Sicilian badlands. Catena 2014, 113, 370–376. [Google Scholar] [CrossRef]
- Del Monte, M. The typical badlands landscapes between the tyrrhenian sea and the tiber river. In Landscapes and Landforms of Italy; Springer: Berlin/Heidelberg, Germany, 2017; pp. 281–291. [Google Scholar] [CrossRef]
- Gallart, F.; Solé-Benet, A.; Puigdefábregas, J.; Lázaro, R. Badland systems in the Mediterranean. In Dryland Rivers: Hydrology and Geomorphology of Semi-Arid Channels; Wiley: New York, NY, USA, 2002; pp. 299–326. [Google Scholar]
- Stark, M.; Neugirg, F.; Kaiser, A.; Della Seta, M.; Schmidt, J.; Becht, M.; Haas, F. Calanchi badlands reconstructions and long-term change detection analysis from historical aerial and UAS image processing. J. Geomorphol. 2020, 1–24. [Google Scholar] [CrossRef]
- Alexander, D. Difference between’ calanchi’ and ’ biancane’ badlands in Italy. In Badland Geomorphology and Piping; 1982; pp. 71–87. [Google Scholar]
- Nadal-Romero, E.; Rodríguez-Caballero, E.; Chamizo, S.; Juez, C.; Cantón, Y.; García-Ruiz, J.M. Mediterranean badlands: Their driving processes and climate change futures. Earth Surf. Process. Landf. 2021, 47, 17–31. [Google Scholar] [CrossRef]
- Alexander, R.W.; Calvo, A. The influence of lichens on slope processes in some Spanish Badlands. Veg. Eros. 1990, 385–398. [Google Scholar]
- Bosino, A.; Szatten, D.A.; Omran, A.; Crema, S.; Crozi, M.; Becker, R.; Bettoni, M.; Schillaci, C.; Maerker, M. Assessment of suspended sediment dynamics in a small ungauged badland catchment in the Northern Apennines (Italy) using an in-situ laser diffraction method. Catena 2022, 209, 105796. [Google Scholar] [CrossRef]
- Clarke, M.L.; Rendell, H.M. Climate-driven decrease in erosion in extant Mediterranean badlands. Earth Surf. Process. Landf. 2010, 35, 1281–1288. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Martínez-Murillo, J.F.; Vanmaercke, M.; Poesen, J. Scale-dependency of sediment yield from badland areas in Mediterranean environments. Prog. Phys. Geogr. 2011, 35, 297–332. [Google Scholar] [CrossRef]
- Gallart, F.; Pérez-Gallego, N.; Latron, J.; Catari, G.; Martínez-Carreras, N.; Nord, G. Short- and long-term studies of sediment dynamics in a small humid mountain Mediterranean basin with badlands. Geomorphology 2013, 196, 242–251. [Google Scholar] [CrossRef]
- Moreno-de Las Heras, M.; Gallart, F. The Origin of Badlands; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128130544. [Google Scholar]
- García-Ruiz, J.M.; Nadal-Romero, E.; Lana-Renault, N.; Beguería, S. Erosion in Mediterranean landscapes: Changes and future challenges. Geomorphology 2013, 198, 20–36. [Google Scholar] [CrossRef] [Green Version]
- Díaz, V.; Mongil, J.; Navarro, J. Topographical surveying for improved assessment of sediment retention in check dams applied to a Mediterranean badlands restoration site (Central Spain). J. Soils Sediments 2014, 14, 2045–2056. [Google Scholar] [CrossRef]
- Ambrosetti, P.; Carraro, F.; Deiana, G.; Dramis, F. Il sollevamento dell’Italia centrale tra il Pleistocene inferiore e il Pleistocene medio. PF Geodin.-CNR 1982, 513, 219–223. [Google Scholar]
- Bisci, C.; Dramis, F.; Gentili, B. Badlands on the adriatic side of central Italy. Geookoplus 1992, 3, 55–58. [Google Scholar]
- Phillips, C.P. The badlands of Italy: A vanishing landscape? Appl. Geogr. 1998, 18, 243–257. [Google Scholar] [CrossRef]
- Buccolini, M.; Gentili, B.; Materazzi, M.; Aringoli, D.; Pambianchi, G.; Piacentini, T. Human impact and slope dynamics evolutionary trends in the monoclinal relief of Adriatic area of central Italy. Catena 2007, 71, 96–109. [Google Scholar] [CrossRef]
- Buccolini, M.; D’Alessandro, L.; Fazzini, M.; Gentili, B.; Materazzi, M.; Piacentini, T.; Aringoli, D. Aspetti morfoevolutivi del settore periadriatico marchigiano-abruzzese (Italia centrale). In Erosione Idrica in Ambiente Mediterraneo: Valutazione Diretta e Indiretta in Aree Sperimentali e Bacini Idrografici; Brigat, G., Ed.; Brigati: Camerino, Italy, 2006; pp. 159–175. [Google Scholar]
- Buccolini, M.; Coco, L. MSI (morphometric slope index) for analyzing activation and evolution of calanchi in Italy. Geomorphology 2013, 191, 142–149. [Google Scholar] [CrossRef]
- Ciccacci, S.; Fredi, P.; Lupia Palmieri, E.; Pugliese, F. Contributo dell’analisi geomorfica quantitativa alla valutazione dell’entità dell’erosione nei bacini fluviali. Boll. Soc. Geol. Ital. 1980, 99, 455–516. [Google Scholar] [CrossRef]
- Cocco, S.; Brecciaroli, G.; Agnelli, A.; Weindorf, D.; Corti, G. Soil genesis and evolution on calanchi (badland-like landform) of central Italy. Geomorphology 2015, 248, 33–46. [Google Scholar] [CrossRef]
- Farabollini, P.; Scalella, G. Itinerari geoturistici nel comprensorio del Monte dell’ Ascensione e dei calanchi Geotouristic routes in Monte Ascensione and badlands district. Mem. Descr. Cart. Geol. d’Ital. 2014, 102, 57–71. [Google Scholar]
- Farabollini, P.; Gentili, B.; Pambianchi, G. Contributo allo studio dei calanchi: Due aree campione nelle Marche. Stud. Geol. Camerti 1992, 12, 105–115. [Google Scholar]
- Moretti, S.; Rodolfi, G. A typical “calanchi” landscape on the Eastern Apennine margin (Atri, Central Italy): Geomorphological features and evolution. Catena 2000, 40, 217–228. [Google Scholar] [CrossRef]
- Castaldi, F.; Chiocchini, U. Effects of land use changes on badland erosion in clayey drainage basins, Radicofani, Central Italy. Geomorphology 2012, 169–170, 98–108. [Google Scholar] [CrossRef]
- Soldati, M.; Parenti, C.; Coratza, P. Geodiversity through time: Changing badland landscapes due to anthropogenic and climatic forcing in the Northern Apennines (Italy). In Proceedings of the 22nd EGU General Assembly, Online Event. 4–8 May 2020; p. 19319. [Google Scholar]
- Salvini, R. Analisi morfometriche delle Crete Senesi mediante remote sensing e GIS. Morphometric analysis of Crete Senesi by means of remote sensing and GIS. Mem. Descr. Della Carta Geol. D’Ital. 2008, 78, 245–252. [Google Scholar]
- D’Intino, J.; Buccolini, M.; Di Nardo, E.; Esposito, G.; Miccadei, E. Geomorphology of the Anversa degli Abruzzi badlands area (Central Apennines, Italy). J. Maps 2020, 16, 488–499. [Google Scholar] [CrossRef]
- Ciccacci, S.; Galiano, M.; Roma, M.A.; Salvatore, M.C. Morphodynamics and morphological changes of the last 50 years in a badland sample area of Southern Tuscany (Italy). Z. Geomorphol. 2009, 53, 273. [Google Scholar] [CrossRef]
- Della Seta, M.; Del Monte, M.; Fredi, P.; Lupia Palmieri, E. Space–time variability of denudation rates at the catchment and hillslope scales on the Tyrrhenian side of Central Italy. Geomorphology 2009, 107, 161–177. [Google Scholar] [CrossRef]
- Lugeri, F.R.; Farabollini, P.; De Pascale, F.; Lugeri, N.; Lugeri, F.R.; Farabollini, P.; De Pascale, F.; Lugeri, N. PPGIS applied to environmental communication and hazards for a community-based approach: A dualism in the Southern Italy “calanchi” landscape. AIMS Geosci. 2021, 7, 490–506. [Google Scholar] [CrossRef]
- Maccherini, S.; Marignani, M.; Gioria, M.; Renzi, M.; Rocchini, D.; Santi, E.; Torri, D.; Tundo, J.; Honnay, O. Determinants of plant community composition of remnant biancane badlands: A hierarchical approach to quantify species-environment relationships. Appl. Veg. Sci. 2011, 14, 378–387. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Gentilucci, M.; Materazzi, M.; Pambianchi, G.; Burt, P.; Guerriero, G. Temperature variations in Central Italy (Marche region) and effects on wine grape production. Theor. Appl. Climatol. 2020, 140, 303–312. [Google Scholar] [CrossRef]
- Centamore, E.; Deiana, G.; Micarelli, A.; Potetti, M. Il Trias-Paleogene delle Marche. In Studi Geologici Camerti, Volume Speciale “La Geologia delle Marche”; Università di Camerino: Camerino, Italy, 1986; pp. 9–27. [Google Scholar]
- Cantalamessa, G.; Centamore, E.; Didaskalou, P.; Micarelli, A.; Napoleone, G.; Potetti, M. Elementi di correlazione nella successione marina plio-pleistocenica del bacino periadriatico marchigiano. Studi Geol. Camerti Nuova Ser. 2002, 1, 33–49. [Google Scholar]
- Centamore, E.; Deiana, G. La Geologia Delle Marche; Univerisità di Camerino, Ed.; Università di Camerino: Camerino, Italy, 1986. [Google Scholar]
- Cantalamessa, G.; Centamore, E.; Chiocchini, U.; Colalongo, M.L.; Micarelli, A.; Nanni, T.; Pasini, G.; Potetti, M.; Ricci Lucchi, F.; Cristallini, C.; et al. Il Plio-Pleistocene delle Marche. In Studi Geologici Camerti, Colume Spec. “La Geol. delle Marche”; Università di Camerino: Camerino, Italy, 1986; pp. 61–81. [Google Scholar]
- Gentili, B.; Pambianchi, G.; Aringoli, D.; Cilla, G.; Farabollini, P.; Materazzi, M. Rapporti tra deformazioni fragili plio-quaternarie e morfogenesi gravitativa nella fascia alto-collinare delle marche centro-meridionali. Stud. Geol. Camerti 1995, 1, 421–435. [Google Scholar]
- Invernizzi, C.; Cacciamani, A.; Dignani, A. Jointing nell’area marchigiana esterna: Caratteristiche geometriche e significato strutturale. Studi Geol. Camerti 1992, 137–144. [Google Scholar]
- Paliaga, G. Erosion Triangular facets as markers of order in an open dissipative system. Pure Appl. Geophys. 2015, 172, 1985–1997. [Google Scholar] [CrossRef]
- Pierantoni, P.; Deiana, G.; Galdenzi, S. Stratigraphic and structural features of the sibillini mountains (Umbria-Marche Apennines, Italy). Ital. J. Geosci. 2013, 132, 497–520. [Google Scholar] [CrossRef]
- Vergari, F. Assessing soil erosion hazard in a key badland area of Central Italy. Nat. Hazards 2015, 79, 71–95. [Google Scholar] [CrossRef]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H. System for automated geoscientific analyses (SAGA) v. 2.1. 4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, H. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. Int. J. Geogr. Inf. Sci. 2006, 20, 193–213. [Google Scholar] [CrossRef]
- Emori, S.; Brown, S.J. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef]
- Anagnostopoulou, C.; Tolika, K. Extreme precipitation in Europe: Statistical threshold selection based on climatological criteria. Theor. Appl. Climatol. 2012, 107, 479–489. [Google Scholar] [CrossRef]
- Wasko, C.; Sharma, A. Quantile regression for investigating scaling of extreme precipitation with temperature. Water Resour. Res. 2014, 50, 3608–3614. [Google Scholar] [CrossRef]
- Pińskwar, I. Complex changes of extreme precipitation in the warming climate of Poland. Int. J. Climatol. 2021, 42, 817–833. [Google Scholar] [CrossRef]
- Najafi, M.R.; Moazami, S. Trends in total precipitation and magnitude–frequency of extreme precipitation in Iran, 1969–2009. Int. J. Climatol. 2016, 36, 1863–1872. [Google Scholar] [CrossRef]
- Buccolini, M.; Bufalini, M.; Coco, L.; Materazzi, M.; Piacentini, T. Small catchments evolution on clayey hilly landscapes in Central Apennines and northern Sicily (Italy) since the Late Pleistocene. Geomorphology 2020, 363, 107206. [Google Scholar] [CrossRef]
- Capolongo, D.; Diodato, N.; Mannaerts, C.M.; Piccarreta, M.; Strobl, R.O. Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (Southern Italy). J. Hydrol. 2008, 356, 119–130. [Google Scholar] [CrossRef]
- Weier, J.; Herring, D. Measuring Vegetation (NDVI & EVI). 2000. Available online: https://earthobservatory.nasa.gov/Features/MeasuringVegetation/measuring_vegetation_1.php (accessed on 19 November 2021).
- Mohajane, M.; Essahlaoui, A.; Oudija, F.; El Hafyani, M.; El Hmaidi, A.; El Ouali, A.; Randazzo, G.; Teodoro, A. Land use/land cover (LULC) using landsat data series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments 2018, 5, 131. [Google Scholar] [CrossRef] [Green Version]
- Hashim, H.; Abd Latif, Z.; Adnan, N. Urban Vegetation Classification with Ndvi Threshold Value Method with very High Resolution (vhr) Pleiades imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Sahebjalal, E.; Dashtekian, K. Analysis of land use-land covers changes using normalized difference vegetation index (NDVI) differencing and classification methods. Afr. J. Agric. Res. 2013, 8, 4614–4622. [Google Scholar] [CrossRef] [Green Version]
CLC CODE | Legend_3Level | AREA 1990 | AREA 2018 | 1990% | 2018% | ∆ (1990–2018) |
---|---|---|---|---|---|---|
111 | Continuous urban fabric | 0.00 | 0.62 | 0.00 | 0.37 | 0.37 |
112 | Discontinuous urban fabric | 2.04 | 6.36 | 1.22 | 3.80 | 2.58 |
121 | Industrial or commercial units | 1.02 | 3.02 | 0.61 | 1.80 | 1.20 |
122 | Road and rail networks and associated land | 5.86 | 0.00 | 3.50 | 0.00 | −3.50 |
123 | Port areas | 0.11 | 0.00 | 0.07 | 0.00 | −0.07 |
131 | Mineral extraction sites | 1.56 | 0.31 | 0.93 | 0.18 | −0.75 |
132 | Dump sites | 0.01 | 0.00 | 0.01 | 0.00 | −0.01 |
142 | Sport and leisure facilities | 0.50 | 0.00 | 0.30 | 0.00 | −0.30 |
211 | Non-irrigated arable land | 8.25 | 44.71 | 4.92 | 26.70 | 21.77 |
221 | Vineyards | 0.00 | 9.24 | 0.00 | 5.51 | 5.51 |
231 | Pastures | 3.07 | 0.00 | 1.83 | 0.00 | −1.83 |
242 | Complex cultivation patterns | 3.51 | 65.88 | 2.10 | 39.34 | 37.24 |
243 | Land principally occupied by agriculture, with significant areas of natural vegetation | 5.64 | 9.53 | 3.37 | 5.69 | 2.32 |
311 | Broad-leaved forest | 19.67 | 8.18 | 11.74 | 4.89 | −6.86 |
312 | Coniferous forest | 8.62 | 0.00 | 5.15 | 0.00 | −5.15 |
313 | Mixed forest | 63.26 | 0.00 | 37.77 | 0.00 | −37.77 |
321 | Natural grasslands | 4.07 | 0.00 | 2.43 | 0.00 | −2.43 |
324 | Transitional woodland-shrub | 12.64 | 13.21 | 7.55 | 7.89 | 0.34 |
331 | Beaches, dunes, sands | 5.43 | 0.00 | 3.24 | 0.00 | −3.24 |
332 | Bare rocks | 0.00 | 2.74 | 0.00 | 1.63 | 1.63 |
333 | Sparsely vegetated areas | 0.00 | 3.68 | 0.00 | 2.20 | 2.20 |
411 | Inland marshes | 4.08 | 0.00 | 2.44 | 0.00 | −2.44 |
511 | Water courses | 17.90 | 0.00 | 10.69 | 0.00 | −10.69 |
512 | Water bodies | 0.21 | 0.00 | 0.13 | 0.00 | −0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bufalini, M.; Omran, A.; Bosino, A. Assessment of Badlands Erosion Dynamics in the Adriatic Side of Central Italy. Geosciences 2022, 12, 208. https://doi.org/10.3390/geosciences12050208
Bufalini M, Omran A, Bosino A. Assessment of Badlands Erosion Dynamics in the Adriatic Side of Central Italy. Geosciences. 2022; 12(5):208. https://doi.org/10.3390/geosciences12050208
Chicago/Turabian StyleBufalini, Margherita, Adel Omran, and Alberto Bosino. 2022. "Assessment of Badlands Erosion Dynamics in the Adriatic Side of Central Italy" Geosciences 12, no. 5: 208. https://doi.org/10.3390/geosciences12050208
APA StyleBufalini, M., Omran, A., & Bosino, A. (2022). Assessment of Badlands Erosion Dynamics in the Adriatic Side of Central Italy. Geosciences, 12(5), 208. https://doi.org/10.3390/geosciences12050208