Balanced Definition of Thresholds for Mode Tracking in a Long-Term Seismic Monitoring System
Abstract
:1. Introduction
2. Long-Term Seismic Monitoring Program
The Case of the Sanctuary of Vicoforte
3. Mode Tracking
- Take a time instant ;
- For each time instant, a set of eigenvectors is identified;
- Calculate the between the eigenvector of a specific reference mode and the kth eigenvector identified for each time instant ;
- For each time instant , a set of MAC can be calculated;
- For each time instant , take the maximum among the several MAC and get: ;
- If , fill the time history of the natural frequency at with NaN; otherwise, the frequency at is the frequency related to .
4. Analysis
4.1. Definition of Thresholds for Mode Tracking
- Outlier analysis;
- Total number of missing values, i.e., NaN;
- Problem of classification, this means that there are many trends at different frequencies rather than just one that oscillates within small ranges.
4.2. Low Temperature Case
4.3. Mild Temperature Case
4.4. High Temperature Case
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Staszewski, W.J.; Robertson, A.N. Time-Frequency and Time-Scale Analyses for Structural Health Monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 449–477. [Google Scholar] [CrossRef]
- Ubertini, F.; Cavalagli, F.; Kita, A.; Comanducci, G. Assessment of a Monumental Masonry Bell-Tower after 2016 Central Italy Seismic Sequence by Long-Term SHM. Bull. Earthq. Eng. 2018, 16, 775–801. [Google Scholar] [CrossRef]
- Gentile, C.; Guidobaldi, M.; Saisi, A. One-Year Dynamic Monitoring of a Historic Tower: Damage Detection under Changing Environment. Meccanica 2016, 51, 2873–2889. [Google Scholar] [CrossRef]
- Lorenzoni, F.; Casarin, F.; Modena, C.; Caldon, M.; Islami, K.; Da Porto, F. Structural Health Monitoring of the Roman Arena of Verona, Italy. J. Civ. Struct. Health Monit. 2013, 3, 227–246. [Google Scholar] [CrossRef]
- Ramos, L.F.; Aguilar, R.; Lourenço, P.B.; Moreira, S. Dynamic Structural Health Monitoring of Saint Torcato Church. Mech. Syst. Signal Process. 2013, 35, 1–15. [Google Scholar] [CrossRef]
- Bartoli, G.; Chiarugi, A.; Gusella, V. Monitoring Systems on Historic Buildings: The Brunelleschi Dome. J. Struct. Eng. 1996, 122, 663–673. [Google Scholar] [CrossRef]
- Russo, S. On the Monitoring of Historic Anime Sante Church Damaged by Earthquake in L’Aquila. Struct. Control Health Monit. 2013, 20, 1226–1239. [Google Scholar] [CrossRef]
- Worden, K.; Dulieu-Barton, J.M. An Overview of Intelligent Fault Detection in Systems and Structures. Struct. Health Monit. 2004, 3, 85–98. [Google Scholar] [CrossRef]
- Boller, C.; Fujino, Y. Encyclopedia of Structural Health Monitoring; John and Wiley and Sons: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Brownjohn, J.M.W. Structural Health Monitoring of Civil Infrastructure. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 589–622. [Google Scholar] [CrossRef]
- Rosales, M.J.; Liyanapathirana, R. Data Driven Innovations in Structural Health Monitoring. In Journal of Physics: Conference Series; Institute of Physics Publishing: Bristol, UK, 2017; Volume 842. [Google Scholar] [CrossRef]
- Farrar, C.R.; Worden, K. An Introduction to Structural Health Monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 303–315. [Google Scholar] [CrossRef]
- Farrar, C.; Doebling, S.W. An Overview of Modal-Based Damage Identification Methods. In Proceedings of the DAMAS ’97, Sheffield, UK, 30 June–2 July 1997. [Google Scholar]
- Masciotta, M.G.; Ramos, L.F.; Lourenço, P.B. The Importance of Structural Monitoring as a Diagnosis and Control Tool in the Restoration Process of Heritage Structures: A Case Study in Portugal. J. Cult. Herit. 2017, 27, 36–47. [Google Scholar] [CrossRef]
- Ceravolo, R.; Coletta, G.; Miraglia, G.; Palma, F. Statistical Correlation between Environmental Time Series and Data from Long-Term Monitoring of Buildings. Mech. Syst. Signal Process. 2021, 152, 107460. [Google Scholar] [CrossRef]
- Pereira, S.; Magalhães, F.; Gomes, J.P.; Cunha, Á. Modal Tracking under Large Environmental Influence. J. Civ. Struct. Health Monit. 2022, 12, 179–190. [Google Scholar] [CrossRef]
- Sohn, H.; Worden, K.; Farrar, C.R. Statistical Damage Classification under Changing Environmental and Operational Conditions. J. Intell. Mater. Syst. Struct. 2002, 13, 561–574. [Google Scholar] [CrossRef]
- Ubertini, F.; Comanducci, G.; Cavalagli, N.; Pisello, A.L.; Materazzi, A.L.; Cotana, F. Environmental Effects on Natural Frequencies of the San Pietro Bell Tower in Perugia, Italy, and Their Removal for Structural Performance Assessment. Mech. Syst. Signal Process. 2017, 82, 307–322. [Google Scholar] [CrossRef]
- Pecorelli, M.L.; Ceravolo, R.; Epicoco, R. An Automatic Modal Identification Procedure for the Permanent Dynamic Monitoring of the Sanctuary of Vicoforte. Int. J. Archit. Herit. 2020, 14, 630–644. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Tan, X. Review on Vibration-Based Structural Health Monitoring Techniques and Technical Codes. Symmetry 2021, 13, 1998. [Google Scholar] [CrossRef]
- Saidin, S.S.; Kudus, S.A.; Jamadin, A.; Anuar, M.A.; Amin, N.M.; Ya, A.B.Z.; Sugiura, K. Vibration-Based Approach for Structural Health Monitoring of Ultra-High-Performance Concrete Bridge. Case Stud. Constr. Mater. 2023, 18, e01752. [Google Scholar] [CrossRef]
- Moughty, J.J.; Casas, J.R. A State of the Art Review of Modal-Based Damage Detection in Bridges: Development, Challenges, and Solutions. Appl. Sci. 2017, 7, 510. [Google Scholar] [CrossRef]
- Ceravolo, R.; Pistone, G.; Fragonara, L.Z.; Massetto, S.; Abbiati, G. Vibration-Based Monitoring and Diagnosis of Cultural Heritage: A Methodological Discussion in Three Examples. Int. J. Archit. Herit. 2016, 10, 375–395. [Google Scholar] [CrossRef]
- Ceravolo, R.; De Marinis, A.; Pecorelli, M.; Zanotti Fragonara, L. Monitoring of Masonry Historical Constructions: 10 Years of Static Monitoring of the World’s Largest Oval Dome. Struct. Control Health Monit. 2016, 24, e1988. [Google Scholar] [CrossRef]
- Aoki, T.; Tanigawa, Y.; Hatanaka, S.; Yuasa, N.; Hamasaki, H.; Chiorino, M.A.; Roccati, R. Nondestructive Testing of the Sanctuary of Vicoforte. In Proceedings of the 13th International Brick and Block Masonry Conference, Amsterdam, The Netherlands, 4–7 July 2004; pp. 1109–1118. [Google Scholar]
- Scandella, L.; Lai, C.G.; Spallarossa, M.; Corigliano, M. Ground Shaking Scenarios at the Town of Vicoforte, Italy. Soil Dyn. Earthq. Eng. 2011, 31, 757–772. [Google Scholar] [CrossRef]
- Miraglia, G.; Cavanni, V.; Crocetti, A.; Len-Ticchia, E.; Ceravolo, R. Digital Twinning for the Prognosis of Spatial Architectures: Morandi’s Underground Pavilion in Turin. In Italian Workshop on Shell and Spatial Structures; Springer Nature Switzerland: Cham, Switzerland, 2023. [Google Scholar]
- Cabboi, A.; Magalhães, F.; Gentile, C.; Cunha, Á. Automated Modal Identification and Tracking: Application to an Iron Arch Bridge. Struct. Control Health Monit. 2016, 24, e1854. [Google Scholar] [CrossRef]
- Desforges, M.J.; Cooper, J.E.; Wright, J.R. Mode Tracking during Flutter Testing Using the Modal Assurance Criterion. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 1996, 210, 27–37. [Google Scholar] [CrossRef]
- Allemang, R.J. The Modal Assurance Criterion—Twenty Years of Use and Abuse. Sound Vib. 2003, 37, 14–23. [Google Scholar]
MACthr | NaN | StD | |
---|---|---|---|
f4 | 0.9750 | 7569 | 0.2789 |
0.9850 | 11,275 | 0.2401 | |
0.9877 | 12,370 | 0.2531 | |
0.9890 | 12,856 | 0.2458 | |
0.9930 | 13,919 | 0.1178 | |
f5 | 0.9750 | 8539 | 0.0890 |
0.9850 | 8718 | 0.0639 | |
0.9877 | 8829 | 0.0594 | |
0.9890 | 8895 | 0.0587 | |
0.9930 | 9364 | 0.0546 |
MACthr | NaN | StD | |
---|---|---|---|
f6 | 0.9750 | 3484 | 0.0908 |
0.9850 | 9495 | 0.0985 | |
0.9877 | 11,989 | 0.0924 | |
0.9892 | 13,059 | 0.0697 | |
0.9940 | 14,387 | 0.1246 | |
f7 | 0.9750 | 8229 | 0.0405 |
0.9850 | 9862 | 0.0384 | |
0.9877 | 10,612 | 0.0379 | |
0.9892 | 11,159 | 0.0379 | |
0.9940 | 13,260 | 0.0360 |
MACthr | NaN | StD | |
---|---|---|---|
f4 | 0.9777 | 5862 | 0.2177 |
0.9890 | 9496 | 0.1247 | |
0.9920 | 10,558 | 0.1006 | |
0.9955 | 12,363 | 0.0723 | |
0.996 | 12,683 | 0.0667 | |
f5 | 0.9777 | 8356 | 0.0807 |
0.9890 | 8668 | 0.0568 | |
0.9920 | 8968 | 0.0544 | |
0.9955 | 10,040 | 0.0515 | |
0.9960 | 10,341 | 0.0495 | |
f6 | 0.9700 | 13,704 | 0.2252 |
0.9750 | 13,935 | 0.1674 | |
0.9780 | 14,068 | 0.1618 | |
0.9800 | 14,149 | 0.1497 | |
0.9892 | 14,440 | 0.2269 | |
f7 | 0.9700 | 8167 | 0.1274 |
0.9750 | 8825 | 0.0915 | |
0.9780 | 9329 | 0.0746 | |
0.9800 | 9732 | 0.0729 | |
0.9892 | 12,283 | 0.0378 |
MACthr | NaN | StD | |
---|---|---|---|
f4 | 0.9650 | 2137 | 0.1097 |
0.9700 | 3116 | 0.0951 | |
0.9930 | 11,372 | 0.0658 | |
0.9950 | 12,724 | 0.0498 | |
0.9988 | 14,387 | 0.0450 | |
f6 | 0.9700 | 11,132 | 0.0418 |
0.9701 | 11,149 | 0.0383 | |
0.9705 | 11,222 | 0.0382 | |
0.9740 | 11,755 | 0.0377 | |
0.9750 | 11,897 | 0.0376 |
Low T | Mild T | High T | ||
---|---|---|---|---|
f1 | μ | 1.926 | 1.926 | 1.926 |
StD | 0.0235 | 0.0234 | 0.0236 | |
Nnan | 3006 | 2958 | 2949 | |
f2 | μ | 2.072 | 2.072 | 2.073 |
StD | 0.0362 | 0.0362 | 0.0376 | |
Nnan | 1791 | 1773 | 3108 | |
f3 | μ | 2.826 | 2.824 | 2.823 |
StD | 0.0551 | 0.0592 | 0.0544 | |
Nnan | 11,734 | 8268 | 8353 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coccimiglio, S.; Miraglia, G.; Coletta, G.; Epicoco, R.; Ceravolo, R. Balanced Definition of Thresholds for Mode Tracking in a Long-Term Seismic Monitoring System. Geosciences 2023, 13, 365. https://doi.org/10.3390/geosciences13120365
Coccimiglio S, Miraglia G, Coletta G, Epicoco R, Ceravolo R. Balanced Definition of Thresholds for Mode Tracking in a Long-Term Seismic Monitoring System. Geosciences. 2023; 13(12):365. https://doi.org/10.3390/geosciences13120365
Chicago/Turabian StyleCoccimiglio, Stefania, Gaetano Miraglia, Giorgia Coletta, Rodolfo Epicoco, and Rosario Ceravolo. 2023. "Balanced Definition of Thresholds for Mode Tracking in a Long-Term Seismic Monitoring System" Geosciences 13, no. 12: 365. https://doi.org/10.3390/geosciences13120365
APA StyleCoccimiglio, S., Miraglia, G., Coletta, G., Epicoco, R., & Ceravolo, R. (2023). Balanced Definition of Thresholds for Mode Tracking in a Long-Term Seismic Monitoring System. Geosciences, 13(12), 365. https://doi.org/10.3390/geosciences13120365