On the Potential of Using Random Forest Models to Estimate the Seismic Bearing Capacity of Strip Footings Positioned on the Crest of Geosynthetic-Reinforced Soil Structures
Abstract
:1. Introduction
2. Data and Methods
2.1. Dataset
2.2. Random Forest Model
3. Results
4. Use of the Cloud-Based Prediction Tool and Example Case Study
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thamm, B.R.; Krieger, B.; Krieger, J. Full scale test on geotextile reinforced retaining structure. In Proceeding of the 4th International Conference on Geotextiles, Geomembranes and Related Products, The Hague, Netherlands, 28 May–1 June 1990; Volume 1, pp. 3–8. [Google Scholar]
- Bathurst, R.J.; Blatz, J.A.; Burger, M.H. Performance of instrumented large scale unreinforced and reinforced loaded by a strip footing to failure. Can. Geotech. J. 2003, 40, 1067–1083. [Google Scholar] [CrossRef]
- Yoo, C.; Kim, S.B. Performance of a two-tier geosynthetic reinforced segmental retaining wall under a surcharge load: Full-scale load test and 3D finite element analysis. Geotext. Geomembr. 2008, 26, 460–472. [Google Scholar] [CrossRef]
- Sommers, A.N.; Viswanadham, B.V.S. Centrifuge model tests on behavior of strip footing on geotextile reinforced slopes. Geotext. Geomembr. 2009, 27, 497–505. [Google Scholar] [CrossRef]
- Selvadurai, A.; Gnanendran, C. An experimental study of a footing located on a sloped fill: Influence of a soil reinforcement layer. Can. Geotech. J. 1989, 26, 467–473. [Google Scholar] [CrossRef]
- Lee, K.M.; Manjunath, V.R. Experimental and numerical studies of geosynthetic-reinforced sand slopes loaded with a footing. Can. Geotech. J. 2000, 37, 828–842. [Google Scholar] [CrossRef]
- Yoo, C. Laboratory investigation of bearing capacity behavior of strip footing on geogrid-reinforced sand slope. Geotext. Geomembr. 2001, 19, 279–298. [Google Scholar] [CrossRef]
- El Sawwaf, M.A. Behavior of strip footing on geogridreinforced sand over a soft clay slope. Geotext. Geomembr. 2007, 25, 50–60. [Google Scholar] [CrossRef]
- Alamshahi, S.; Hataf, N. Bearing capacity of strip footings on sand slopes reinforced with geogrid and grid-anchor. Geotext. Geomembr. 2009, 27, 217–226. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Jha, J.N.; Gill, K.S. Laboratory investigation of bearing capacity behaviour of strip footing on reinforced flyash slope. Geotext. Geomembr. 2010, 28, 393–402. [Google Scholar] [CrossRef]
- Xiao, C.; Han, J.; Zhang, Z. Experimental study on performance of geosynthetic-reinforced soil model walls on rigid foundations subjected to static footing loading. Geotext. Geomembr. 2016, 44, 81–94. [Google Scholar] [CrossRef]
- Turker, E.; Sadoglu, E.; Cure, E.; Uzuner, B.A. Bearing capacity of eccentrically loaded strip foot-ings close to geotextile-reinforced sand slope. Can. Geotech. J. 2014, 51, 884–895. [Google Scholar] [CrossRef]
- Mehrjardi, G.T.; Ghanbari, A.; Mehdizadeh, H. Experimental study on the behaviour of geogrid-reinforced slopes with respect to aggregate size. Geotext. Geomembr. 2016, 44, 862–871. [Google Scholar] [CrossRef]
- Hoseini, M.H.; Noorzad, A.M.; Zamanian, M. Physical modelling of a strip footing on a geosyn-thetic reinforced soil wall containing tire shred subjected to monotonic and cyclic loading. Int. J. Eng. Trans. A Basics 2021, 34, 2266–2279. [Google Scholar]
- Patil, V.N.; Chore, H.S.; Sawant, V.A. Bearing capacity of reinforced embankment slope models of fly ash and furnace slag. Transp. Infrastruct. Geotechnol. 2022, 9, 673–704. [Google Scholar] [CrossRef]
- Blatz, J.A.; Bathurst, R.J. Limit equilibrium analysis of large-scale reinforced and unreinforced em-bankments loaded by a strip footing. Can. Geotech. J. 2003, 40, 1084–1092. [Google Scholar] [CrossRef]
- Haza, E.; Gotteland, P.; Gourc, J.P. Design method for local load on a geosynthetic reinforced soil structure. Geotech. Geol. Eng. 2000, 18, 243–267. [Google Scholar] [CrossRef]
- Ausilio, E. Seismic bearing capacity of strip footings located close to the crest of geosynthetic reinforced soil structures. Geotech. Geol. Eng. 2014, 32, 885–899. [Google Scholar] [CrossRef]
- Chakraborty, D.; Kumar, J. Bearing capacity of strip foundations in reinforced soils. Int. J. Geomech. 2014, 14, 45–58. [Google Scholar] [CrossRef]
- Halder, K.; Chakraborty, D. Seismic bearing capacity of strip footing placed on a reinforced slope. Geosynth. Int. 2019, 2, 474–484. [Google Scholar] [CrossRef]
- Halder, K.; Chakraborty, D. Effect of inclined and eccentric loading on the bearing capacity of strip footing placed on the reinforced slope. Soils Found. 2020, 60, 791–799. [Google Scholar] [CrossRef]
- Xie, Y.; Leshchinsky, B.; Han, J. Evaluation of bearing capacity on geosynthetic-reinforced soil structures considering multiple failure mechanisms. J. Geotech. Geoenvironmental Eng. 2019, 145, 04019040. [Google Scholar] [CrossRef]
- Xu, P.; Li, T.; Hatami, K.; Yang, G.; Liang, X. Finite element limit analysis of load-bearing performance of reinforced slopes using a non-associated flow rule. Geotext. Geomembr. 2022, 50, 1020–1035. [Google Scholar] [CrossRef]
- Moayedi, H.; Mosallanezhad, M.; Rashid, A.S.A.; Jusoh, W.A.W.; Muazu, M.A. A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: Theory and applications. Neural Comput. Appl. 2020, 32, 495–518. [Google Scholar] [CrossRef]
- Ebid, A.M. 35 Years of (AI) in geotechnical engineering: State of the art. Geotech. Geol. Eng. 2021, 39, 637–690. [Google Scholar] [CrossRef]
- Cheng, K.; Ziotopoulou, K. Machine Learning Applications in Geotechnical Earthquake Engineering: Progress, Gaps, and Opportunities. In Proceedings of the Geo-Congress 2023—Machine Learning Applications in Geotechnical Earthquake Engineering: Progress, Gaps, and Opportunities, Los Angeles, CA, USA, 26–29 March 2023; Geotechnical Special Publication 342. pp. 493–505. [Google Scholar]
- Sultana, P.; Kanti Dey, A.; Kumar, D. Empirical approach for prediction of bearing pressure of spread footings on clayey soil using artificial intelligence (AI) techniques. Results Eng. 2022, 15, 100489. [Google Scholar] [CrossRef]
- Durante, M.G. Artificial Intelligence-Based Analysis of Numerical Simulations of the Seismic Response of Retaining Walls. In Proceedings of the 8th National Conference of the Researchers of Geotechnical Engineering, Palermo, Italy, 5–7 July 2023; Springer Series in Geomechanics and Geoengineering 603–610. Springer Nature: Cham, Switzerland, 2023. [Google Scholar]
- Wang, P.; Zimmaro, P.; Buckreis, T.E.; Gospe, T.; Brandenberg, S.J.; Ahdi, S.K.; Yong, A.; Stewart, J.P. Relational database for horizontal-to-vertical spectral ratios. Seismol. Res. Lett. 2021, 93, 1075–1088. [Google Scholar] [CrossRef]
- Sahu, R.; Patra, C.R.; Sivakugan, N.; Das, B.M. Use of ANN and neuro fuzzy model to predict bearing capacity factor of strip footing resting on reinforced sand and subjected to inclined loading. Int. J. Geosynth. Ground Eng. 2017, 3, 455. [Google Scholar] [CrossRef]
- Ansari, M.A.; Roy, L.B. Experimental and ANN-based model of footing pressure of a layered soil reinforced with geogrid. Innov. Infrastruct. Solut. 2023, 8, 100. [Google Scholar] [CrossRef]
- Harikumar, M.; Sankar, N.; Chandrakaran, S. Behaviour of model footing resting on sand bed reinforced with multidirectional reinforcing elements. Geotext. Geomembr. 2016, 44, 568–578. [Google Scholar] [CrossRef]
- Lafifi, B.; Rouaiguia, A.; Soltani, E.A. A Novel Method for Optimizing Parameters influencing the Bearing Capacity of Geosynthetic Reinforced Sand Using RSM, ANN, and Multiobjective Genetic Algorithm. Stud. Geotech. Mech. 2023, 45, 174–196. [Google Scholar] [CrossRef]
- Das, P.P.; Khatri, V.N.; Lai, V.Q.; Keawsawasvong, S. Bearing Capacity Estimation of Ring Footing on Layered Sand with Geogrid at the Interface Using FELA and MARS. Int. J. Geosynth. Ground Eng. 2023, 9, 57. [Google Scholar] [CrossRef]
- Kumar, D.R.; Samui, P.; Wipulanusat, W.; Keawsawasvong, S.; Sangjinda, K.; Jitchaijaroen, W. Soft-Computing Techniques for Predicting Seismic Bearing Capacity of Strip Footings in Slopes. Buildings 2023, 13, 1371. [Google Scholar] [CrossRef]
- Ebid, A.M.; Onyelowe, K.C.; Arinze, E.E. Estimating the Ultimate Bearing Capacity for Strip Footing Near and within Slopes Using AI (GP, ANN, and EPR). Tech. J. Eng. 2021, 2021, 3267018. [Google Scholar] [CrossRef]
- Lai, V.Q.; Lai, F.; Yang, D.; Shiau, J.; Yodsomjai, W.; Keawsawasvong, S. Determining Seismic Bearing Capacity of Footings Embedded in Cohesive Soil Slopes Using Multivariate Adaptive Regression Splines. Int. J. Geosynth. Ground Eng. 2022, 8, 46. [Google Scholar] [CrossRef]
- Ausilio, E.; Durante, M.G.; Zimmaro, P. A prediction model for the seismic bearing capacity of a shallow foundation positioned on the crest of a geosynthetic reinforced soil structure. In Proceedings of the 12th International Conference on Geosynthetics, Rome, Italy, 17–21 September 2023; Geosynthetics: Leading the Way to a Resilient Planet. CRC Press: London, UK, 2023. [Google Scholar]
- Zhou, Y.; Li, S.; Zhou, C.; Luo, H. Intelligent approach based on random forest for safety risk prediction of deep foundation pit in subway stations. J. Comput. Civ. Eng. 2019, 33, 05018004. [Google Scholar] [CrossRef]
- Dutta, R.K.; Gnananandarao, T.; Sharma, A. Application of random forest regression in the prediction of ultimate bearing capacity of strip footing resting on dense sand overlying loose sand deposit. J. Soft Comput. Civ. Eng. 2019, 3, 28–40. [Google Scholar]
- Durante, M.G.; Rathje, E.M. An exploration of the use of machine learning to predict lateral spreading. Earthq. Spectra 2021, 37, 2288–2314. [Google Scholar] [CrossRef]
- Kohestani, V.R.; Vosoughi, M.; Hassanlourad, M.; Fallahnia, M. Bearing capacity of shallow foundations on cohesionless soils: A random forest based approach. Civ. Eng. Infrastruct. J. 2017, 50, 35–49. [Google Scholar]
- Wu, G.; Zhao, M.; Zhao, H. Undrained seismic bearing capacity of strip footings horizontally embedded in two-layered slopes. Earthq. Spectra 2021, 37, 637–651. [Google Scholar] [CrossRef]
- Zhou, H.; Hu, Q.; Yu, X.; Zheng, G.; Liu, X.; Xu, H.; Yang, S.; Liu, J.; Tian, K. Quantitative bearing capacity assessment of strip footings adjacent to two-layered slopes considering spatial soil variability. Acta Geotech. 2023. [Google Scholar] [CrossRef]
- Ausilio, E.; Conte, E.; Dente, G. Seismic Stability Analysis of Reinforced Slopes. Soil Dyn. Earthq. Eng. 2000, 19, 159–172. [Google Scholar] [CrossRef]
- Rathje, E.; Dawson, C.; Padgett, J.E.; Pinelli, J.P.; Stanzione, D.; Adair, A.; Arduino, P.; Brandenberg, S.J.; Cockerill, T.; Dey, C.; et al. DesignSafe: A New Cyberinfrastructure for Natural Hazards Engineering. Nat. Hazards Rev. 2017, 18, 06017001. [Google Scholar] [CrossRef]
- Durante, M.G.; Ausilio, E.; Zimmaro, P. Machine Learning Based Seismic Bearing Capacity Prediction for Strip Footings Positioned on the Crest of Geosynthetic Reinforced Soil Structure. DesignSafe-CI. 2023. Available online: https://www.designsafe-ci.org/data/browser/public/designsafe.storage.published/PRJ-4148 (accessed on 14 September 2023).
Input Parameter | Range |
---|---|
Slope angle, β | 20°–85° |
Dimensionless geosynthetic factor, γB/kt | 0.4–2.72 |
Dimensionless edge distance, D/B | 0.25–6 |
Horizontal seismic coefficient, kh | 0–0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ausilio, E.; Durante, M.G.; Zimmaro, P. On the Potential of Using Random Forest Models to Estimate the Seismic Bearing Capacity of Strip Footings Positioned on the Crest of Geosynthetic-Reinforced Soil Structures. Geosciences 2023, 13, 317. https://doi.org/10.3390/geosciences13100317
Ausilio E, Durante MG, Zimmaro P. On the Potential of Using Random Forest Models to Estimate the Seismic Bearing Capacity of Strip Footings Positioned on the Crest of Geosynthetic-Reinforced Soil Structures. Geosciences. 2023; 13(10):317. https://doi.org/10.3390/geosciences13100317
Chicago/Turabian StyleAusilio, Ernesto, Maria Giovanna Durante, and Paolo Zimmaro. 2023. "On the Potential of Using Random Forest Models to Estimate the Seismic Bearing Capacity of Strip Footings Positioned on the Crest of Geosynthetic-Reinforced Soil Structures" Geosciences 13, no. 10: 317. https://doi.org/10.3390/geosciences13100317
APA StyleAusilio, E., Durante, M. G., & Zimmaro, P. (2023). On the Potential of Using Random Forest Models to Estimate the Seismic Bearing Capacity of Strip Footings Positioned on the Crest of Geosynthetic-Reinforced Soil Structures. Geosciences, 13(10), 317. https://doi.org/10.3390/geosciences13100317