Composition of Rare Earth Elements in Fluvial Sediments of the Lesser Zab River Basin, Northeastern Iraq: Implications for Tectonic Setting and Provenance
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Sampling and Analytical Methods
3. Results
4. Discussion
4.1. Normalization of REEs
4.2. Fractionation Indices of REEs and ẟEu–ẟCe
4.3. Comparing REEs in Sediments of LZR and Sub-Basins with Asian Rivers
4.4. Tectonic Setting and Provenance
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Name | Age | Lithology of Iranian Part |
Soltanieh Dolomite Fn | Precambrian | Dolomite, with a shale intercalation in the lower part. |
Barut Fn | Precambrian–Early Cambrian | Shales, with thin dolomites and limestones. |
Lalun Fn | Limestones and sandstones. | |
Mila Fn | Ordovician | Dolomites, limestones, marls, shales, and somewhat sandy beds. |
Pz11 | Ordovician–Carboniferous | Crystallized limestone. |
Ruteh Fn | Late Permian | Limestone. |
KC, KP, KV, K, and Mb | Jurasic–Cretaceous | Mb: Marble; Kp: Homogenous phyllite; Kv: Green andesite and related tuffs; Kc: Conglomerate; and K: limestone, dolomite with subordinate shale. |
K1, Klv, KI, Kpm, and Kf | Cretaceous–Paleocene | Kf: Low-grade metamorphism in general, Flysch-type facies with turbidites; Kpm: Low-grade metamorphism in general, mainly phyllite with minor limestone and volcanics; KI: Crystalized limestone and marble in parts affected by late Eocene thermic events; K11: Orbitolina, in parts, interbedded with slates or shales; Kiv: Andesitic volcanic and associated pyroclastic rocks, mainly lower cretaceous. |
Et, E, and Ub | Paleocene–Eocene | E: Shale, sandy shale, sandstone with some fine limestone intercalations, andesitic to basaltic volcanic with pillow structures; Et: Andesitic pyroclastics, mainly crystal and lithic tuff; Ub: Ultrabasic rocks. |
Intrusive and contact metamorphic Rocks | ||
Gr, G, and gd | gr (Post-Cretaceous–Paleocene) G (Late Eocene–Early Oligocene) gd (Late Paleocene) | Intrusive rocks; gr: Granite; G: Gabbro to diorite with ultrabasic inclusion; gd: Biotite Granodiorite and its marginal varieties. |
S, h, and am | Post-Cretaceous–Paleocene | S: Slate andalusite and schist; h: Pyroxene hornfels facies; and am: Amphibolite |
Io | Post-Cretaceous–Paleocene | Ophiolites undifferentiated |
Lithostratigraphy of LZRB Iraqi part/Unstable Shelf | ||
Sarki | Early Liassic | Cherty dolomitic limestone with cherty shale and dolomite. |
Sehkaniyan | Liassic | Lower unit: dolomites and dolomitic limestones with some solution breccia. Middle unit: fossiliferous limestone often dolomitized with some chert bands. Upper unit: Dolomites and dolomitic limestones, locally with chert. |
Sargelu | Middle Jurassic (Bajocian–Bathonian) | Bituminous and dolomitic limestones, shaley limestone, and shales with chert and dolomitic marls. |
Naokelekan | Late Jurassic | Lower unit: argillaceous bituminous limestone alternating with bituminous shale and fine-grained limestone. Middle unit: fossiliferous dolomitic limestone as “Mottled Beds”. Upper unit: highly bituminous dolomite and limestone with beds of black shale. |
Barsarin | Late Jurassic | Limestone and dolomitic limestone. |
Chia Gara | Middle Tithonian–Berriasian | Limestone and calcareous shale. |
Garagu | Late Berriasian–Hauterivian | Oolitic sandy limestones with marls and sandstones. |
Lower Sarmord | Hauterivian–Berremian | Marls, with beds of argillaceous limestone. |
Balambo | Valanginian–Middle Albian | Limestones, with beds of marl and shale. |
Qamchuqa | Hauterivian–Albian | Limestones. |
Dokan | Cenomanian | Oligosteginal limestone. |
Gulneri | Lower Turonian | Black bituminous shale with glauconite and collophane in the lower part. |
Kometan | Turonian | Globigerinal-oligosteginal limestone. |
Bekhme | Late Campanian | Bituminous secondary dolomite. |
Aqra | Maastrichtian | Limestone. |
Shiranish | Late Campanian–Maastrichtian | Argillaceous limestones. |
Tanjero | Late Campanian–Maastrichtian | Alternation of shale, claystone, sandstone, and siltstone, with limestone. |
Kolosh | Early–Late Paleocene | Fine clastics, like sandstone, siltstone, and claystone. |
Sinjar | Early Eocene | Fossiliferous limestone with occasional beds dolomitic limestone. |
Khurmala | Lower Paleocene–Lower Eocene | Limestones and dolostones interfingering with limestones of Sinjar Formation. |
Gercus | Early–Middle Eocene | Shales, mudstones, sandy and gritty marls, pebbly sandstones, and conglomerates. |
Pila Spi | Middle–Late Eocene | Bituminous, chalky, and crystalline limestones. |
Shurau | Early Oligocene | Coralline limestone. |
Sheikh Alas | Oligocene | Porous, occasionally rubbly dolomitic, and recrystallized limestones. |
Tarjil | Early Oligocene | Splintery limestone. |
Bajawan | Late Oligocene | Reef miliolid limestones alternating with porous, dolomitized, reef limestones. |
Baba | Middle Oligocene | Chalky limestone. |
Anah | Late Oligocene | Brecciated recrystallized, detrital, and coralline limestones. |
Azkand | Late Oligocene | Thick massive, dolomitic, and recrystallized, generally porous limestones. |
Euphrates | Early Miocene | Shelly, chalky, and well-bedded recrystallized limestone, green marls, argillaceous sandstones, breccias, and conglomerates. |
Fatha | Middle Miocene | Cyclic deposits of marl, limestone, gypsum, reddish brown claystone marls rather than green, with alternation of thick limestone |
Injana | Late Miocene | Brown and gray sandstone interbedding with brown claystone and reddish-brown siltstones in cyclic nature. |
Mukdadiya | Late Miocene | Alternation of claystone with cross-bedded sandstone, and brown and gray siltstone. |
Bai Hassan | Late Miocene-Pliocene | Thick and coarse conglomerates alternating with thick brown claystones and thin sandstones. |
Lithostratigraphy of LZRB Iraqi part/Zagros Suture zone | ||
Qulqula Radiolarian | Barremian–Alpian | Thick bedded, oolitic, and detrital limestones, and thick beds of white chert, both interbedded with marly shale. |
Qulqula Conglomerate | Albian–Cenomanian | Thick lenticular beds of conglomerates, composed of pebbles and small boulders of limestone, and to a lesser extent of chert. |
Mawat group | Albian–Cenomanian | Pillow basalt, amygdaloidal basalt, spilite, and keratophyres, metamorphosed into greenschist facies and intruded by gabbro and ultrabasic rocks. |
Gimo | Albian–Cenomanian | Massive and thick-bedded marble and calcschist interbedded with basaltic flows. |
Qandil series | Cretaceous | Limestone, with some serpentinite intrusions. |
Shalair series | Early–Late Cretaceous | Chlorite–sericite phyllite, in the lower part, interbedding with quartzite, and greywacke is common. |
Katar Rash group | Late Cretaceous | Predominantly of calc-alkaline volcanics of andesite–rhyolite association. The most common rocks are andesites, dacite, and rhyolites. |
Intrusive Complex | Early–Late Cretaceous | Intrusive complex of Bulfat massif (Late Cretaceous or younger) unit consists of igneous and metamorphic rocks only, amphibole diorite, olivine diorite, granodiorite, pegmatite syenite, and nepheline syenite. |
Walash group | Late Cretaceous | Very thick basic volcanic sequence including conglomerate, lava flows, pillow lavas, and ashes with associated dykes. |
Red Bed series | Paleocene–Miocene | Sequence of conglomerates and red and bluish-purple shale. |
References
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Office of Scientific and Technical Information: Washington, DC, USA, 1985.
- Mclennan, S.M. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. In Geochemistry and Mineralogy of Rare Earth Elements; De Gruyter: Berlin, Germany, 2018; pp. 169–200. ISBN 1501509039. [Google Scholar]
- Li, C.-S.; Shi, X.-F.; Kao, S.-J.; Liu, Y.-G.; Lyu, H.-H.; Zou, J.-J.; Liu, S.-F.; Qiao, S.-Q. Rare Earth Elements in Fine-Grained Sediments of Major Rivers from the High-Standing Island of Taiwan. J. Asian Earth Sci. 2013, 69, 39–47. [Google Scholar] [CrossRef]
- Ferhaoui, S.; Kechiched, R.; Bruguier, O.; Sinisi, R.; Kocsis, L.; Mongelli, G.; Bosch, D.; Ameur-Zaimeche, O.; Laouar, R. Rare Earth Elements plus Yttrium (REY) in Phosphorites from the Tébessa Region (Eastern Algeria): Abundance, Geochemical Distribution through Grain Size Fractions, and Economic Significance. J. Geochem. Explor. 2022, 241, 107058. [Google Scholar] [CrossRef]
- Lipin, B.R.; McKay, G.A. Geochemistry and Mineralogy of Rare Earth Elements; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2018. [Google Scholar]
- McKay, G.A. Partitioning of Rare Earth Elements between Major Silicate Minerals and Basaltic Melts. Rev. Mineral. Geochem. 1989, 21, 45–77. [Google Scholar]
- Möller, P.; Dulski, P.; De Lucia, M. REY Patterns and Their Natural Anomalies in Waters and Brines: The Correlation of Gd and Y Anomalies. Hydrology 2021, 8, 116. [Google Scholar] [CrossRef]
- Minařík, L.; Žigová, A.; Bendl, J.; Skřivan, P.; Št’astný, M. The Behaviour of Rare-Earth Elements and Y during the Rock Weathering and Soil Formation in the Říčany Granite Massif, Central Bohemia. Sci. Total Environ. 1998, 215, 101–111. [Google Scholar] [CrossRef]
- Cruz, A.; Dinis, P.A.; Gomes, A.; Leite, P. Influence of Sediment Cycling on the Rare-Earth Element Geochemistry of Fluvial Deposits (Caculuvar–Mucope, Cunene River Basin, Angola). Geosciences 2021, 11, 384. [Google Scholar] [CrossRef]
- Blake, J.M.; Peters, S.C.; Johannesson, K.H. Application of REE Geochemical Signatures for Mesozoic Sediment Provenance to the Gettysburg Basin, Pennsylvania. Sediment. Geol. 2017, 349, 103–111. [Google Scholar] [CrossRef]
- Su, N.; Yang, S.; Guo, Y.; Yue, W.; Wang, X.; Yin, P.; Huang, X. Revisit of Rare Earth Element Fractionation during Chemical Weathering and River Sediment Transport. Geochem. Geophys. Geosystems 2017, 18, 935–955. [Google Scholar] [CrossRef]
- Bayon, G.; Toucanne, S.; Skonieczny, C.; André, L.; Bermell, S.; Cheron, S.; Dennielou, B.; Etoubleau, J.; Freslon, N.; Gauchery, T. Rare Earth Elements and Neodymium Isotopes in World River Sediments Revisited. Geochim. Cosmochim. Acta 2015, 170, 17–38. [Google Scholar] [CrossRef]
- Babu, S.S.; Venkata Ramana, R.; Purnachandra Rao, V.; Ram Mohan, M.; Sawant, S.; Satyasree, N.; Keshav Krishna, A. Rare Earth Elements of Sediments in Rivers and Estuaries of the East Coast of India. Curr. Sci. 2021, 120, 519–537. [Google Scholar] [CrossRef]
- Chatain, V.; Sanchez, F.; Bayard, R.; Moszkowicz, P.; Gourdon, R. Effect of Experimentally Induced Reducing Conditions on the Mobility of Arsenic from a Mining Soil. J. Hazard. Mater. 2005, 122, 119–128. [Google Scholar] [CrossRef]
- Harlavan, Y.; Erel, Y. The Release of Pb and REE from Granitoids by the Dissolution of Accessory Phases. Geochim. Cosmochim. Acta 2002, 66, 837–848. [Google Scholar] [CrossRef]
- Davranche, M.; Pourret, O.; Gruau, G.; Dia, A. Impact of Humate Complexation on the Adsorption of REE onto Fe Oxyhydroxide. J. Colloid Interface Sci. 2004, 277, 271–279. [Google Scholar] [CrossRef]
- Berger, A.; Janots, E.; Gnos, E.; Frei, R.; Bernier, F. Rare Earth Element Mineralogy and Geochemistry in a Laterite Profile from Madagascar. Appl. Geochem. 2014, 41, 218–228. [Google Scholar] [CrossRef]
- Yang, M.; Liang, X.; Ma, L.; Huang, J.; He, H.; Zhu, J. Adsorption of REEs on Kaolinite and Halloysite: A Link to the REE Distribution on Clays in the Weathering Crust of Granite. Chem. Geol. 2019, 525, 210–217. [Google Scholar] [CrossRef]
- Huang, J.; Tan, W.; Liang, X.; He, H.; Ma, L.; Bao, Z.; Zhu, J. REE Fractionation Controlled by REE Speciation during Formation of the Renju Regolith-Hosted REE Deposits in Guangdong Province, South China. Ore Geol. Rev. 2021, 134, 104172. [Google Scholar] [CrossRef]
- Dushyantha, N.; Batapola, N.; Ilankoon, I.M.S.K.; Rohitha, S.; Premasiri, R.; Abeysinghe, B.; Ratnayake, N.; Dissanayake, K. The Story of Rare Earth Elements (REEs): Occurrences, Global Distribution, Genesis, Geology, Mineralogy and Global Production. Ore Geol. Rev. 2020, 122, 103521. [Google Scholar] [CrossRef]
- Berberian, M. A Brief Geological Description of North-Central Iran. Mater. Study Seism. Iran North-Central Iran Geol. Surv. Iran Rep. 1974, 29, 127–138. [Google Scholar]
- Ma’ala, K.A. The Geology of Sulaimaniyah Quadrangle Sheet NI-38-3, GEOSURV, Baghdad, Iraq. Int. Rep. No.3095; Geosurv: Baghdad, Iraq, 2007. [Google Scholar]
- Sissakian, V.K. The Geology of Kirkuk Quadrangle Sheet NJ-38- 2, GEOSURV, Baghdad, Iraq. Int. Rep. No. 2229; Geosurv: Baghdad, Iraq, 1993. [Google Scholar]
- Al-Saady, Y.I.; Merkel, B.; Al-Tawash, B.; Al-Suhail, Q. Land Use and Land Cover (LULC) Mapping and Change Detection in the Little Zab River Basin (LZRB), Kurdistan Region, NE Iraq and NW Iran. FOG Freib. Online Geosci. 2015, 43, 1–32. [Google Scholar]
- Al-Saady, Y.I.; Al-Suhail, Q.A.; Al-Tawash, B.S.; Othman, A.A. Drainage Network Extraction and Morphometric Analysis Using Remote Sensing and GIS Mapping Techniques (Lesser Zab River Basin, Iraq and Iran). Environ. Earth Sci. 2016, 75, 1243. [Google Scholar] [CrossRef]
- Ramsey, L.A.; Walker, R.; Jackson, J. Fold Evolution and Drainage Development in the Zagros Mountains of Fars Province, SE Iran. Basin Res. 2008, 20, 23–48. [Google Scholar] [CrossRef]
- Alavi, M. Tectonics of the Zagros Orogenic Belt of Iran: New Data and Interpretations. Tectonophysics 1994, 229, 211–238. [Google Scholar] [CrossRef]
- Sharland, P.R.; Archer, R.; Casey, D.M.; Davies, R.B.; Hall, S.H.; Heward, A.P.; Horbury, A.D.; Simmons, M.D. Arabian Plate Sequence Stratigraphy, GeoArabia Spec. Publ. Bahrain Gulf Pet. 2001, 2, 374. [Google Scholar]
- Al-Qayim, B.; Omer, A.; Koyi, H. Tectonostratigraphic Overview of the Zagros Suture Zone, Kurdistan Region, Northeast Iraq. GeoArabia 2012, 17, 109–156. [Google Scholar] [CrossRef]
- Le Garzic, E.; Vergés, J.; Sapin, F.; Saura, E.; Meresse, F.; Ringenbach, J.C. Evolution of the NW Zagros Fold-and-Thrust Belt in Kurdistan Region of Iraq from Balanced and Restored Crustal-Scale Sections and Forward Modeling. J. Struct. Geol. 2019, 124, 51–69. [Google Scholar] [CrossRef]
- Mohammad, Y.O.; Cornell, D.H. U–Pb Zircon Geochronology of the Daraban Leucogranite, Mawat Ophiolite, Northeastern Iraq: A Record of the Subduction to Collision History for the Arabia–Eurasia Plates. Isl. Arcs 2017, 26, e12188. [Google Scholar] [CrossRef]
- Nezhad, E. Geological Quadrangle Map of Iran No:B4 (Mahabad), Scale1:250000; Ministry of Economy, Geological Survey of Iran: Tehran, Iran, 1973.
- Houshmandzadeh, N.S.A. Geological Quadrangle Map of Iran No: B5 (Marivan-Baneh), Scale1:250000; Ministry of Economy, Geological Survey of Iran: Tahran, Iran, 1974.
- Sissakian, V.K. The Geology of Erbil and Mahabad Quadrangle Sheet NJ-38-14 and NJ-38-15 (GM 5 and 6) Scale 1:250 000_, GEOSURV, Report, 1998; Geosurv: Baghdad, Iraq, 1998. [Google Scholar]
- Jassim, S.Z. Goff Geology of Iraq (2006).Pdf, 1st ed.; Dolin, Prague and Moravian Museum, Barno: Prague, Czech Republic, 2006. [Google Scholar]
- Buday, T.; Jassim, S.Z. Regional Geology of Iraq: Vol. 1. Stratigr. Paleogeography, Iraq State Organ. Miner. Baghdad, 445pp; Geosurv: Baghdad, Iraq, 1980. [Google Scholar]
- Mohammad, Y.O.; Cornell, D.H.; Qaradaghi, J.H.; Mohammad, F.O. Geochemistry and Ar–Ar Muscovite Ages of the Daraban Leucogranite, Mawat Ophiolite, Northeastern Iraq: Implications for Arabia–Eurasia Continental Collision. J. Asian Earth Sci. 2014, 86, 151–165. [Google Scholar] [CrossRef]
- Ali, S.A.; Buckman, S.; Aswad, K.J.; Jones, B.G.; Ismail, S.A.; Nutman, A.P. The Tectonic Evolution of a N Eo-T Ethyan (E Ocene–O Ligocene) Island-arc (W Alash and N Aopurdan Groups) in the K Urdistan Region of the N Ortheast I Raqi Z Agros S Uture Z One. Isl. Arcs 2013, 22, 104–125. [Google Scholar] [CrossRef]
- Mohammad, Y.; Kareem, H.; Anma, R. The Kuradawe Granitic Pegmatite from the Mawat Ophiolite, Northeastern Iraq: Anatomy, Mineralogy, Geochemistry, and Petrogenesis. Can. Mineral. 2016, 54, 989–1019. [Google Scholar] [CrossRef]
- Nutman, A.; Ali, S.; Mohammad, Y.; Jones, B.G.; Zhang, Q. The Early Eocene (48 Ma) Qaladeza Trondhjemite Formed by Wet Partial Remelting of Mafic Crust in the Arc-Related Bulfat Igneous Complex (Kurdistan, Iraq): Constraints on the Timing of Neotethys Closure. Arab. J. Geosci. 2022, 15, 679. [Google Scholar] [CrossRef]
- Stöcklin, J. Stratigraphic Lexicon of Iran, Part1, Central, North and East Iran. Geol. Surv. Iran Rep. No 1971, 18, 338. [Google Scholar]
- Ghorbani, M. A Summary of Geology of Iran. In The Economic Geology of Iran; Springer: Berlin/Heidelberg, Germany, 2013; pp. 45–64. ISBN 9400756240. [Google Scholar]
- Al-Saady, Y.I.; Al-Obaydi, M.M.; Othman, A.A.; Hasan, S.E. Distribution Pattern of Heavy Minerals Assemblages in Recent Sediments of Lesser Zab River Basin (LZRB), NE Iraq. Environ. Earth Sci. 2021, 80, 155. [Google Scholar] [CrossRef]
- Ali, A.R. Major and Trace Elements Distribution in Stream Sediments of the Lesser Zab River at Northeastern Iraq: Implications to Weathering and Transportation. Iraqi Bull. Geol. Min. 2012, 8, 25–44. [Google Scholar]
- Sissakian, V.K. The Geology of Kirkuk Quadrangle Sheet NI-38-2 (GM 9) SCALE 1:250 000, Int. Report Geosurv-Iraq; Geosurv: Baghdad, Iraq, 1992. [Google Scholar]
- Mao, L.; Mo, D.; Yang, J.; Guo, Y.; Lv, H. Rare Earth Elements Geochemistry in Surface Floodplain Sediments from the Xiangjiang River, Middle Reach of Changjiang River, China. Quat. Int. 2014, 336, 80–88. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, H.; Zhu, A.; Wang, K.; Chen, M.-T.; Khokiattiwong, S.; Kornkanitnan, N.; Shi, X. Distribution of Rare Earth Elements in Surface Sediments of the Western Gulf of Thailand: Constraints from Sedimentology and Mineralogy. Quat. Int. 2019, 527, 52–63. [Google Scholar] [CrossRef]
- Fonseca, R.; Araújo, J.F.; Pinho, C.G. Importance of the Spatial Distribution of Rare Earth Elements in the Bottom Sediments of Reservoirs as a Potential Proxy for Tracing Sediments Sources. A Case Study in the Dominican Republic. Geosciences 2021, 11, 490. [Google Scholar] [CrossRef]
- Jonasson, R.G.; Bancroft, G.M.; Nesbitt, H.W. Solubilities of Some Hydrous REE Phosphates with Implications for Diagenesis and Sea Water Concentrations. Geochim. Cosmochim. Acta 1985, 49, 2133–2139. [Google Scholar] [CrossRef]
- Moermond, C.T.A.; Tijink, J.; van Wezel, A.P.; Koelmans, A.A. Distribution, Speciation, and Bioavailability of Lanthanides in the Rhine-Meuse Estuary, The Netherlands. Environ. Toxicol. Chem. Int. J. 2001, 20, 1916–1926. [Google Scholar]
- Kumar, K.; Saion, E.; Halimah, M.K.; CK, Y.; Hamzah, M.S. Rare Earth Element (REE) in Surface Mangrove Sediment by Instrumental Neutron Activation Analysis. J. Radioanal. Nucl. Chem. 2014, 301, 667–676. [Google Scholar] [CrossRef]
- Henderson, P. General Geochemical Properties and Abundances of the Rare Earth Elements. In Developments in Geochemistry; Elsevier: Amsterdam, The Netherlands, 1984; Volume 2, pp. 1–32. ISBN 0921-3198. [Google Scholar]
- Rollinson, H.R. Rar, 1st ed.; Routledge: London, UK, 1993. [Google Scholar]
- Mustafa, R.K.; Tobia, F.H. Geochemical Application in Unraveling Paleoweathering, Provenance and Environmental Setting of the Shale from Chia Gara Formation, Kurdistan Region, Iraq. Iraqi Geol. J. 2020, 53, 90–116. [Google Scholar] [CrossRef]
- Hadi, A.; Kameran, D.; Ismael, S. Characteristics of the Amphibolite Rocks of Penjween Area, Kurdistan Region, Northeast Iraq: Genetic Implication and Association with Penjween Ophiolite Complexes. J. Environ. Earth Sci. 2013, 3, 22–44. [Google Scholar]
- Oni, S.O.; Olatunji, A.S.; Ehinola, O.A. Determination of Provenance and Tectonic Settings of Niger Delta Clastic Facies Using Well-y, Onshore Delta State, Nigeria. J. Geochem. 2014, 2014, 960139. [Google Scholar] [CrossRef]
- Cullers, R.L. The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian–Permian Age, Colorado, USA: Implications for Provenance and Metamorphic Studies. Lithos 2000, 51, 181–203. [Google Scholar] [CrossRef]
- Cullers, R.L.; Graf, J.L. Chapter 8-Rare Earth Elements in Igneous Rocks of the Continental Crust: Intermediate and Silicic Rocks –Ore Petrogenesis. In Rare Earth Element Geochemistry; Henderson, P.B.T.-D.G., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; Volume 2, pp. 275–316. ISBN 0921-3198. [Google Scholar]
- Tang, M.; Rudnick, R.L.; McDonough, W.F.; Gaschnig, R.M.; Huang, Y. Europium Anomalies Constrain the Mass of Recycled Lower Continental Crust. Geology 2015, 43, 703–706. [Google Scholar] [CrossRef]
- Sultan, K.; Shazili, N.A. Rare Earth Elements in Tropical Surface Water, Soil and Sediments of the Terengganu River Basin, Malaysia. J. Rare Earths 2009, 27, 1072–1078. [Google Scholar] [CrossRef]
- Xu, Z.; Lim, D.; Choi, J.; Yang, S.; Jung, H. Rare Earth Elements in Bottom Sediments of Major Rivers around the Yellow Sea: Implications for Sediment Provenance. Geo-Mar. Lett. 2009, 29, 291–300. [Google Scholar] [CrossRef]
- Fouad, S.F.A. Structural Zonation of Western Zagros Fold–Thrust Belt of Iraq. In The Evolution of the Zagros–Makran Fold Belt from Turkey to SE Iran; Institute of Earth Sciences Jaume Almer: Barcelona, Spain, 2012. [Google Scholar]
- Partabian, A.; Nourbakhsh, A.; Sarkarinejad, K. Folded Radiolarite Unit as a Kinematic Indicator of the Zagros COLLISION PROCESSES, Southwestern Iran. J. Earth Sci. 2018, 29, 210–222. [Google Scholar] [CrossRef]
- Wronkiewicz, D.J.; Condie, K.C. Geochemistry of Archean Shales from the Witwatersrand Supergroup, South Africa: Source-Area Weathering and Provenance. Geochim. Cosmochim. Acta 1987, 51, 2401–2416. [Google Scholar] [CrossRef]
- Wronkiewicz, D.J. Geochemistry and Provenance of Sediments from the Pongola Supergroup, South Africa: Evidence for a 3.0-Ga-Old Continental Craton. Geochim. Cosmochim. Acta 1989, 53, 1537–1549. [Google Scholar] [CrossRef]
- Bhatia, M.R.; Crook, K.A.W. Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contrib. Mineral. Petrol. 1986, 92, 181–193. [Google Scholar] [CrossRef]
- Huyan, Y.; Yao, W.; Xie, X.; Wang, L. Provenance, Source Weathering, and Tectonics of the Yarlung Zangbo River Overbank Sediments in Tibetan Plateau, China, Using Major, Trace, and Rare Earth Elements. Geol. J. 2022, 57, 37–51. [Google Scholar] [CrossRef]
- Han, S.; Zhang, Y.; Huang, J.; Rui, Y.; Tang, Z. Elemental Geochemical Characterization of Sedimentary Conditions and Organic Matter Enrichment for Lower Cambrian Shale Formations in Northern Guizhou, South China. Minerals 2020, 10, 793. [Google Scholar] [CrossRef]
- Ali, S.A.; Nutman, A.P.; Aswad, K.J.; Jones, B.G. Overview of the Tectonic Evolution of the Iraqi Zagros Thrust Zone: Sixty Million Years of Neotethyan Ocean Subduction. J. Geodyn. 2019, 129, 162–177. [Google Scholar] [CrossRef]
- Zhu, R.; Zhao, P.; Zhao, L. Tectonic Evolution and Geodynamics of the Neo-Tethys Ocean. Sci. China Earth Sci. 2022, 65, 1–24. [Google Scholar] [CrossRef]
- Roddaz, M.; Viers, J.; Brusset, S.; Baby, P.; Boucayrand, C.; Hérail, G. Controls on Weathering and Provenance in the Amazonian Foreland Basin: Insights from Major and Trace Element Geochemistry of Neogene Amazonian Sediments. Chem. Geol. 2006, 226, 31–65. [Google Scholar] [CrossRef]
- Kasanzu, C.; Maboko, M.A.H.; Manya, S. Geochemistry of Fine-Grained Clastic Sedimentary Rocks of the Neoproterozoic Ikorongo Group, NE Tanzania: Implications for Provenance and Source Rock Weathering. Precambrian Res. 2008, 164, 201–213. [Google Scholar] [CrossRef]
- Allègre, C.J.; Minster, J.F. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth Planet. Sci. Lett. 1978, 38, 1–25. [Google Scholar] [CrossRef]
- McLennan, S.M.; Nance, W.B.; Taylor, S.R. Rare Earth Element-Thorium Correlations in Sedimentary Rocks, and the Composition of the Continental Crust. Geochim. Cosmochim. Acta 1980, 44, 1833–1839. [Google Scholar] [CrossRef]
- Cullers, R.L. Implications of Elemental Concentrations for Provenance, Redox Conditions, and Metamorphic Studies of Shales and Limestones near Pueblo, CO, USA. Chem. Geol. 2002, 191, 305–327. [Google Scholar] [CrossRef]
- Gu, X.X.; Liu, J.M.; Zheng, M.H.; Tang, J.X.; Qi, L. Provenance and Tectonic Setting of the Proterozoic Turbidites in Hunan, South China: Geochemical Evidence. J. Sediment. Res. 2002, 72, 393–407. [Google Scholar] [CrossRef]
- Mohammad, Y.; Abdulla, K.; Azizi, H. Late Cretaceous-Paleocene Arc and Back-Arc System in the Neotethys Ocean, Zagros Suture Zone. Minerals 2023, 13, 1367. [Google Scholar] [CrossRef]
- Cullers, R.L. The Chemical Signature of Source Rocks in Size Fractions of Holocene Stream Sediment Derived from Metamorphic Rocks in the Wet Mountains Region, Colorado, USA. Chem. Geol. 1994, 113, 327–343. [Google Scholar] [CrossRef]
- Verma, S.P. Statistical Evaluation of Bivariate, Ternary and Discriminant Function Tectonomagmatic Discrimination Diagrams. Turkish J. Earth Sci. 2010, 19, 185–238. [Google Scholar] [CrossRef]
Sub-Basin Samples | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LREEs | HREEs | ||||||||||||||
S.ID. | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | |
Sub-basin samples | Sbs1 | 20 | 40.1 | 4.03 | 15.47 | 3.18 | 0.71 | 2.93 | 0.42 | 2.21 | 0.43 | 1.17 | 0.15 | 0.90 | 0.12 |
Sbs2 | 37.87 | 77.07 | 7.44 | 27.87 | 5.42 | 1.01 | 4.76 | 0.66 | 3.4 | 0.65 | 1.78 | 0.23 | 1.39 | 0.19 | |
Sbs3 | 9.24 | 18.55 | 2.35 | 9.60 | 2.11 | 0.55 | 2.12 | 0.32 | 1.75 | 0.35 | 0.97 | 0.13 | 0.78 | 0.11 | |
Sbs4 | 8.02 | 15.58 | 1.96 | 7.89 | 1.75 | 0.45 | 1.79 | 0.27 | 1.49 | 0.30 | 0.82 | 0.11 | 0.65 | 0.09 | |
Sbs5 | 24.74 | 50.21 | 4.94 | 18.91 | 3.82 | 0.84 | 3.47 | 0.48 | 2.54 | 0.49 | 1.32 | 0.17 | 1.04 | 0.14 | |
Sbs6 | 14.47 | 34.84 | 3.50 | 13.39 | 2.64 | 0.61 | 2.42 | 0.34 | 1.76 | 0.33 | 0.88 | 0.11 | 0.65 | 0.09 | |
Sbs7 | 13.48 | 24.58 | 3.08 | 11.90 | 2.44 | 0.57 | 2.35 | 0.33 | 1.73 | 0.34 | 0.92 | 0.12 | 0.70 | 0.10 | |
Sbs8 | 11.05 | 21.75 | 2.52 | 9.61 | 1.93 | 0.43 | 1.79 | 0.24 | 1.22 | 0.23 | 0.61 | 0.08 | 0.47 | 0.07 | |
Sbs9 | 7.92 | 16.07 | 1.92 | 7.50 | 1.57 | 0.36 | 1.49 | 0.21 | 1.10 | 0.21 | 0.58 | 0.07 | 0.45 | 0.06 | |
Sbs10 | 5.15 | 9.14 | 1.17 | 4.71 | 1.05 | 0.30 | 1.11 | 0.17 | 0.99 | 0.20 | 0.56 | 0.07 | 0.45 | 0.06 | |
Sbs11 | 6.95 | 12.91 | 1.64 | 6.48 | 1.35 | 0.34 | 1.32 | 0.19 | 1.01 | 0.20 | 0.53 | 0.07 | 0.42 | 0.06 | |
Sbs12 | 12.91 | 31.87 | 3.23 | 12.64 | 2.66 | 0.63 | 2.44 | 0.34 | 1.75 | 0.33 | 0.85 | 0.11 | 0.65 | 0.09 | |
Sbs13 | 10.67 | 21.18 | 2.61 | 10.19 | 2.18 | 0.53 | 1.99 | 0.27 | 1.37 | 0.25 | 0.65 | 0.08 | 0.49 | 0.07 | |
Sbs14 | 6.81 | 12.89 | 1.66 | 6.58 | 1.43 | 0.36 | 1.34 | 0.19 | 0.96 | 0.18 | 0.47 | 0.06 | 0.36 | 0.05 | |
Sbs15 | 9.46 | 18.78 | 2.33 | 9.23 | 1.98 | 0.48 | 1.86 | 0.26 | 1.33 | 0.25 | 0.66 | 0.08 | 0.51 | 0.07 | |
Min | 5.15 | 9.14 | 1.17 | 4.71 | 1.05 | 0.30 | 1.11 | 0.17 | 0.96 | 0.18 | 0.47 | 0.06 | 0.36 | 0.05 | |
Max | 37.87 | 77.07 | 7.44 | 27.87 | 5.42 | 1.01 | 4.76 | 0.66 | 3.40 | 0.65 | 1.78 | 0.23 | 1.39 | 0.19 | |
Mean | 13.25 | 27.04 | 2.96 | 11.47 | 2.37 | 0.55 | 2.21 | 0.31 | 1.64 | 0.32 | 0.85 | 0.11 | 0.66 | 0.09 | |
SD | 8.58 | 17.88 | 1.59 | 5.87 | 1.11 | 0.20 | 0.95 | 0.13 | 0.67 | 0.13 | 0.35 | 0.05 | 0.28 | 0.04 | |
CV% | 64.73 | 66.13 | 53.69 | 51.18 | 47.07 | 36.02 | 42.83 | 41.39 | 40.63 | 40.49 | 41.45 | 42.24 | 41.88 | 39.84 | |
LZR samples | Zrs1 | 22.39 | 44.88 | 4.33 | 16.3 | 3.16 | 0.62 | 2.84 | 0.40 | 2.26 | 0.46 | 1.33 | 0.18 | 1.13 | 0.16 |
Zrs2 | 10.99 | 22.07 | 2.61 | 9.96 | 1.99 | 0.42 | 1.83 | 0.26 | 1.37 | 0.27 | 0.74 | 0.1 | 0.6 | 0.08 | |
Zrs3 | 26.8 | 53.93 | 5.18 | 19.58 | 3.81 | 0.75 | 3.40 | 0.46 | 2.33 | 0.44 | 1.15 | 0.14 | 0.87 | 0.11 | |
Zrs4 | 32.81 | 65.83 | 6.32 | 23.96 | 4.73 | 1 | 4.29 | 0.59 | 3.03 | 0.57 | 1.51 | 0.19 | 1.13 | 0.15 | |
Zrs5 | 5.19 | 9.55 | 1.16 | 4.58 | 0.97 | 0.25 | 1.00 | 0.15 | 0.81 | 0.16 | 0.45 | 0.06 | 0.35 | 0.05 | |
Zrs6 | 11.55 | 23.06 | 2.82 | 10.95 | 2.27 | 0.53 | 2.04 | 0.28 | 1.39 | 0.26 | 0.69 | 0.09 | 0.52 | 0.07 | |
Zrs7 | 9.24 | 18.21 | 2.27 | 8.96 | 1.92 | 0.46 | 1.80 | 0.25 | 1.30 | 0.24 | 0.65 | 0.08 | 0.50 | 0.07 | |
Zrs8 | 12.70 | 25.01 | 3.12 | 12.26 | 2.64 | 0.63 | 2.46 | 0.34 | 1.76 | 0.33 | 0.87 | 0.11 | 0.66 | 0.09 | |
Min | 5.19 | 9.55 | 1.16 | 4.58 | 0.97 | 0.25 | 1 | 0.15 | 0.81 | 0.16 | 0.45 | 0.06 | 0.35 | 0.05 | |
Max | 32.81 | 65.83 | 6.32 | 23.96 | 4.73 | 1.00 | 4.29 | 0.59 | 3.03 | 0.57 | 1.51 | 0.19 | 1.13 | 0.16 | |
Mean | 16.46 | 32.82 | 3.48 | 13.32 | 2.69 | 0.58 | 2.46 | 0.34 | 1.78 | 0.34 | 0.92 | 0.12 | 0.72 | 0.1 | |
SD | 9.69 | 19.67 | 1.69 | 6.26 | 1.19 | 0.23 | 1.04 | 0.14 | 0.72 | 0.14 | 0.37 | 0.05 | 0.29 | 0.04 | |
CV% | 58.86 | 59.93 | 48.48 | 47.03 | 44.19 | 38.85 | 42.14 | 40.88 | 40.19 | 39.80 | 40.26 | 40.97 | 40.60 | 39.05 | |
Chondrite | 0.37 | 0.96 | 0.14 | 0.71 | 0.23 | 0.09 | 0.31 | 0.06 | 0.38 | 0.09 | 0.25 | 0.04 | 0.25 | 0.04 | |
NASC | 32 | 73 | 7.9 | 33 | 5.7 | 1.24 | 5.2 | 0.85 | 5.8 | 1.0 | 3.4 | 0.5 | 3.1 | 0.48 | |
UCC | 30 | 64 | 7.10 | 26 | 4.5 | 0.88 | 3.8 | 0.64 | 3.5 | 0.8 | 2.3 | 0.33 | 2.20 | 0.32 | |
BCC | 16.00 | 33 | 3.9 | 16 | 3.5 | 1.1 | 3.3 | 0.6 | 3.7 | 0.78 | 2.2 | 0.32 | 2.2 | 0.3 |
S.ID. | ∑REE | ∑LREE | ∑HREE | ∑LREEs/∑HREEs | ᵟEU | ᵟCe | La/Lu | La/Sm | La/Yb | Gd/Yb | Gd/Lu | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sub-basin samples | Sbs1 | 91.82 | 83.49 | 8.33 | 10.02 | 0.71 | 1.05 | 1.81 | 0.94 | 1.63 | 1.89 | 2.09 |
Sbs2 | 169.73 | 156.68 | 13.05 | 12 | 0.61 | 1.08 | 2.18 | 1.05 | 2.00 | 1.99 | 2.16 | |
Sbs3 | 48.93 | 42.41 | 6.52 | 6.51 | 0.8 | 0.93 | 0.89 | 0.66 | 0.87 | 1.58 | 1.6 | |
Sbs4 | 41.16 | 35.64 | 5.52 | 6.46 | 0.77 | 0.92 | 0.91 | 0.69 | 0.91 | 1.60 | 1.61 | |
Sbs5 | 113.12 | 103.46 | 9.66 | 10.71 | 0.71 | 1.06 | 1.85 | 0.97 | 1.74 | 1.93 | 2.05 | |
Sbs6 | 76.02 | 69.45 | 6.57 | 10.57 | 0.73 | 1.15 | 1.80 | 0.82 | 1.64 | 2.17 | 2.38 | |
Sbs7 | 62.63 | 56.04 | 6.58 | 8.51 | 0.73 | 0.89 | 1.45 | 0.83 | 1.40 | 1.93 | 1.99 | |
Sbs8 | 52.01 | 47.29 | 4.72 | 10.02 | 0.70 | 0.97 | 1.76 | 0.86 | 1.71 | 2.18 | 2.25 | |
Sbs9 | 39.52 | 35.35 | 4.17 | 8.47 | 0.73 | 0.97 | 1.33 | 0.75 | 1.29 | 1.91 | 1.97 | |
Sbs10 | 25.15 | 21.53 | 3.62 | 5.95 | 0.86 | 0.87 | 0.85 | 0.74 | 0.84 | 1.43 | 1.45 | |
Sbs11 | 33.47 | 29.67 | 3.8 | 7.81 | 0.78 | 0.9 | 1.24 | 0.77 | 1.22 | 1.83 | 1.86 | |
Sbs12 | 70.49 | 63.93 | 6.56 | 9.75 | 0.75 | 1.16 | 1.55 | 0.73 | 1.46 | 2.19 | 2.32 | |
Sbs13 | 52.55 | 47.37 | 5.18 | 9.15 | 0.77 | 0.94 | 1.68 | 0.73 | 1.59 | 2.35 | 2.48 | |
Sbs14 | 33.33 | 29.72 | 3.61 | 8.24 | 0.8 | 0.9 | 1.45 | 0.72 | 1.38 | 2.14 | 2.25 | |
Sbs15 | 47.28 | 42.27 | 5.01 | 8.43 | 0.77 | 0.94 | 1.43 | 0.72 | 1.37 | 2.13 | 2.22 | |
Min | 25.15 | 21.53 | 3.61 | 5.95 | 0.61 | 0.87 | 0.85 | 0.66 | 0.84 | 1.43 | 1.45 | |
Max | 169.73 | 156.68 | 13.05 | 12.00 | 0.86 | 1.16 | 2.18 | 1.05 | 2 | 2.35 | 2.48 | |
Mean | 63.81 | 57.62 | 6.19 | 8.84 | 0.75 | 0.98 | 1.48 | 0.80 | 1.4 | 1.95 | 2.05 | |
SD | 37.64 | 35.14 | 2.57 | 1.72 | 0.06 | 0.09 | 0.39 | 0.11 | 0.34 | 0.26 | 0.3 | |
LZR samples | Zrs1 | 100.46 | 91.68 | 8.78 | 10.44 | 0.63 | 1.07 | 1.52 | 1.06 | 1.45 | 1.46 | 1.52 |
Zrs2 | 53.28 | 48.04 | 5.23 | 9.18 | 0.67 | 0.97 | 1.41 | 0.83 | 1.35 | 1.78 | 1.85 | |
Zrs3 | 118.96 | 110.06 | 8.90 | 12.37 | 0.64 | 1.07 | 2.50 | 1.05 | 2.27 | 2.27 | 2.50 | |
Zrs4 | 146.12 | 134.66 | 11.46 | 11.75 | 0.68 | 1.07 | 2.33 | 1.04 | 2.13 | 2.20 | 2.41 | |
Zrs5 | 24.74 | 21.70 | 3.04 | 7.15 | 0.79 | 0.91 | 1.09 | 0.80 | 1.08 | 1.65 | 1.66 | |
Zrs6 | 56.51 | 51.18 | 5.33 | 9.60 | 0.75 | 0.95 | 1.69 | 0.76 | 1.62 | 2.26 | 2.35 | |
Zrs7 | 45.95 | 41.06 | 4.89 | 8.39 | 0.76 | 0.93 | 1.42 | 0.72 | 1.36 | 2.09 | 2.19 | |
Zrs8 | 62.98 | 56.37 | 6.61 | 8.53 | 0.76 | 0.93 | 1.48 | 0.72 | 1.41 | 2.15 | 2.26 | |
Min | 24.74 | 21.70 | 3.04 | 7.15 | 0.63 | 0.91 | 1.09 | 0.72 | 1.08 | 1.46 | 1.52 | |
Max | 146.12 | 134.66 | 11.46 | 12.37 | 0.79 | 1.07 | 2.50 | 1.06 | 2.27 | 2.27 | 2.50 | |
Mean | 76.12 | 69.34 | 6.78 | 9.68 | 0.71 | 0.99 | 1.68 | 0.87 | 1.58 | 1.98 | 2.09 | |
SD | 41.33 | 38.63 | 2.74 | 1.76 | 0.06 | 0.07 | 0.49 | 0.15 | 0.41 | 0.31 | 0.37 |
River | Choshui (a) | Terengganu (b) | Huanghe (c) | Mekong (d) | Chao Phraya (e) | Yeongsan (f) | Min | Max | Mean |
---|---|---|---|---|---|---|---|---|---|
Country | Taiwan | Malaysia | China | Asian Regions * | Thailand | Korea | |||
∑REE | 193.12 | 127.12 | 147.99 | 215.7 | 179.84 | 231.24 | 127.12 | 231.24 | 182.50 |
∑LREE | 173.67 | 118.39 | 132.76 | 193.5 | 157.98 | 188.52 | 118.39 | 193.50 | 160.80 |
∑HREE | 19.46 | 8.73 | 15.24 | 22.3 | 20.55 | 42.72 | 8.73 | 42.72 | 21.50 |
∑LREE/∑HREE | 8.88 | 13.56 | 8.67 | 8.68 | 7.69 | 4.41 | 4.41 | 13.56 | 8.65 |
ẟCe | 0.98 | 1.36 | 0.97 | 1 | 1.01 | 1.03 | 0.97 | 1.36 | 1.06 |
ẟEu | 0.66 | 0.46 | 0.61 | 0.7 | 0.67 | 0.73 | 0.46 | 0.73 | 0.64 |
(La/Yb)UCC | 1.06 | 2.03 | 1.05 | 0.98 | 0.86 | 1.32 | 0.86 | 2.03 | 1.22 |
(La/Sm)UCC | 0.98 | 1.96 | 0.93 | 0.87 | 0.86 | 0.96 | 0.86 | 1.96 | 1.09 |
(Gd/Yb)UCC | 1.25 | 1.82 | 1.32 | 1.14 | 1.06 | 1.14 | 1.06 | 1.82 | 1.29 |
(Gd/Lu)UCC | 1.21 | 1.35 | 1.39 | 1.09 | 0.97 | 1.12 | 0.97 | 1.39 | 1.19 |
(La/Lu)UCC | 1.03 | 1.5 | 1.11 | 0.94 | 0.79 | 1.29 | 0.79 | 1.50 | 1.11 |
S.ID. | Yb | Sc | Co | La | Th | La/Sc | Th/Co | Th/Yb | La/Th | Co/Th | Th/Sc | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sub-basin samples | Sbs1 | 0.90 | 7.96 | 24.43 | 20.00 | 5.97 | 2.51 | 0.24 | 6.64 | 3.35 | 4.09 | 0.75 |
Sbs2 | 1.39 | 7.18 | 21.66 | 37.87 | 10.87 | 5.28 | 0.50 | 7.83 | 3.49 | 1.99 | 1.51 | |
Sbs3 | 0.78 | 8.83 | 21.73 | 9.24 | 2.61 | 1.05 | 0.12 | 3.36 | 3.54 | 8.32 | 0.30 | |
Sbs4 | 0.65 | 9.02 | 19.24 | 8.02 | 1.88 | 0.89 | 0.10 | 2.90 | 4.26 | 10.23 | 0.21 | |
Sbs5 | 1.04 | 9.03 | 19.16 | 24.74 | 5.95 | 2.74 | 0.31 | 5.70 | 4.16 | 3.22 | 0.66 | |
Sbs6 | 0.65 | 5.15 | 10.35 | 14.47 | 3.67 | 2.81 | 0.35 | 5.68 | 3.94 | 2.82 | 0.71 | |
Sbs7 | 0.70 | 4.72 | 9.72 | 13.48 | 2.92 | 2.86 | 0.30 | 4.15 | 4.62 | 3.33 | 0.62 | |
Sbs8 | 0.47 | 4.86 | 8.08 | 11.05 | 3.03 | 2.28 | 0.38 | 6.39 | 3.65 | 2.66 | 0.62 | |
Sbs9 | 0.45 | 4.27 | 10.10 | 7.92 | 1.96 | 1.86 | 0.19 | 4.36 | 4.04 | 5.16 | 0.46 | |
Sbs10 | 0.45 | 11.11 | 33.52 | 5.15 | 0.73 | 0.46 | 0.02 | 1.63 | 7.02 | 45.69 | 0.07 | |
Sbs11 | 0.42 | 7.35 | 32.98 | 6.95 | 1.61 | 0.95 | 0.05 | 3.85 | 4.32 | 20.48 | 0.22 | |
Sbs12 | 0.65 | 7.26 | 12.43 | 12.91 | 3.28 | 1.78 | 0.26 | 5.08 | 3.93 | 3.79 | 0.45 | |
Sbs13 | 0.49 | 5.58 | 13.62 | 10.67 | 2.91 | 1.91 | 0.21 | 5.92 | 3.66 | 4.67 | 0.52 | |
Sbs14 | 0.36 | 3.71 | 11.95 | 6.81 | 1.55 | 1.84 | 0.13 | 4.27 | 4.39 | 7.70 | 0.42 | |
Sbs15 | 0.51 | 5.76 | 13.95 | 9.46 | 2.54 | 1.64 | 0.18 | 5.03 | 3.72 | 5.49 | 0.44 | |
Min | 0.36 | 3.71 | 8.08 | 5.15 | 0.73 | 0.46 | 0.02 | 1.63 | 3.35 | 1.99 | 0.07 | |
Max | 1.39 | 11.11 | 33.52 | 37.87 | 10.87 | 5.28 | 0.50 | 7.83 | 7.02 | 45.69 | 1.51 | |
Mean | 0.66 | 6.79 | 17.53 | 13.25 | 3.43 | 2.06 | 0.22 | 4.85 | 4.14 | 8.64 | 0.53 | |
SD | 0.28 | 2.14 | 8.13 | 8.58 | 2.52 | 1.16 | 0.13 | 1.59 | 0.88 | 11.24 | 0.34 | |
LZR samples | Zrs1 | 1.13 | 5.79 | 16.12 | 22.39 | 5.84 | 3.87 | 0.36 | 5.17 | 3.84 | 2.76 | 1.01 |
Zrs2 | 0.60 | 3.93 | 12.04 | 10.99 | 3.24 | 2.80 | 0.27 | 5.44 | 3.40 | 3.72 | 0.82 | |
Zrs3 | 0.87 | 6.76 | 18.01 | 26.80 | 6.77 | 3.96 | 0.38 | 7.82 | 3.96 | 2.66 | 1.00 | |
Zrs4 | 1.13 | 9.73 | 20.67 | 32.81 | 8.53 | 3.37 | 0.41 | 7.57 | 3.85 | 2.42 | 0.88 | |
Zrs5 | 0.35 | 5.75 | 15.53 | 5.19 | 1.06 | 0.90 | 0.07 | 2.99 | 4.91 | 14.69 | 0.18 | |
Zrs6 | 0.52 | 6.24 | 14.58 | 11.55 | 2.64 | 1.85 | 0.18 | 5.07 | 4.37 | 5.51 | 0.42 | |
Zrs7 | 0.50 | 4.52 | 11.37 | 9.24 | 2.51 | 2.05 | 0.22 | 5.04 | 3.68 | 4.53 | 0.56 | |
Zrs8 | 0.66 | 7.29 | 16.28 | 12.70 | 3.55 | 1.74 | 0.22 | 5.36 | 3.58 | 4.59 | 0.49 | |
Min | 0.35 | 3.93 | 11.37 | 5.19 | 1.06 | 0.90 | 0.07 | 2.99 | 3.40 | 2.42 | 0.18 | |
Max | 1.13 | 9.73 | 20.67 | 32.81 | 8.53 | 3.96 | 0.41 | 7.82 | 4.91 | 14.69 | 1.01 | |
Mean | 0.72 | 6.25 | 15.58 | 16.46 | 4.27 | 2.57 | 0.26 | 5.56 | 3.95 | 5.11 | 0.67 | |
SD | 0.29 | 1.79 | 3.02 | 9.69 | 2.52 | 1.11 | 0.12 | 1.53 | 0.48 | 4.02 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Saady, Y.I.; Othman, A.A.; Mohammad, Y.O.; Ali, S.S.; Ali, S.A.; Liesenberg, V.; Hasan, S.E. Composition of Rare Earth Elements in Fluvial Sediments of the Lesser Zab River Basin, Northeastern Iraq: Implications for Tectonic Setting and Provenance. Geosciences 2023, 13, 373. https://doi.org/10.3390/geosciences13120373
Al-Saady YI, Othman AA, Mohammad YO, Ali SS, Ali SA, Liesenberg V, Hasan SE. Composition of Rare Earth Elements in Fluvial Sediments of the Lesser Zab River Basin, Northeastern Iraq: Implications for Tectonic Setting and Provenance. Geosciences. 2023; 13(12):373. https://doi.org/10.3390/geosciences13120373
Chicago/Turabian StyleAl-Saady, Younus I., Arsalan Ahmed Othman, Yousif O. Mohammad, Salahalddin S. Ali, Sarmad A. Ali, Veraldo Liesenberg, and Syed E. Hasan. 2023. "Composition of Rare Earth Elements in Fluvial Sediments of the Lesser Zab River Basin, Northeastern Iraq: Implications for Tectonic Setting and Provenance" Geosciences 13, no. 12: 373. https://doi.org/10.3390/geosciences13120373
APA StyleAl-Saady, Y. I., Othman, A. A., Mohammad, Y. O., Ali, S. S., Ali, S. A., Liesenberg, V., & Hasan, S. E. (2023). Composition of Rare Earth Elements in Fluvial Sediments of the Lesser Zab River Basin, Northeastern Iraq: Implications for Tectonic Setting and Provenance. Geosciences, 13(12), 373. https://doi.org/10.3390/geosciences13120373