Comparative Study of Deterioration in Built Heritage in a Coastal Area: Barbanza Peninsula (Galicia, NW Spain)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Geography
2.1.2. Climatological Setting
2.1.3. Geology
2.2. Description of Studied Buildings
- Zone 1: Monuments located on the coastal platform, closer to the sea (<1 km). According to the natural conditions described in Section 2.1, the influence of sea salts and wind on the decay of stone is expected, but also there is more human activity in this area because it is the area with the highest concentration of people in the peninsula.
- Zone 2: Monuments located on the slopes of the Sierra de Barbanza, with higher altitudes and higher precipitation (more than 3300 mm collected) and humidity.
2.3. Fieldwork and Laboratory Methods
2.3.1. Chemical Analyses
2.3.2. Scanning Electron Microscopy (SEM) Coupled with Energy Dispersive X-ray Spectrometry (EDS)
3. Results and Discussion
3.1. Macroscopic Observations
- Location of the building in the peninsula: In the highest parts of the peninsula (zone 2) precipitation is significantly more abundant, and there is more forest cover; this is a more humid area than zone 1. Therefore, these monuments exhibit a higher level of biological colonization (Figure 5e). An example is the Church of Ribasieria (PU3), one of the most recent and with great deterioration due to biological action.
- Marine environment: Zone 1 is directly exposed to marine spray. The accumulation of salts also allows the proliferation of certain biological communities, such as nitrophilous lichens (Figure 6a). In this zone, in the vicinity of the ground, the typical communities are usually Aspicilia Calcarea [48]. Likewise, the areas of higher condensation and poor wind exposure will also allow biological colonization. There are several reviews on the processes of salt weathering of rocks and stones and the factors that control their impact [13,49,50,51,52,53].
- Climatic effect: Both the relative humidity and the precipitation gradient in Barbanza cause there to be moist areas and biofilm growth on areas of building façades (Figure 6a,b,e) because rainwater runoff promotes the development of lichens. Another more local form of damage is caused by water leaks through pipes that could form biofilms with a limited extent (Figure 6d). Lastly, the rising of water from underground due to capillarity [54] is also very noticeable, also causing areas of darkening, and its amplitude depends on the characteristics of the material (Figure 6c) of the walls and foundations and the composition of the ground on which the monument sits.
- Orientation of façades: It is generally observed that the combined action of wind (means of transport of lichens and substances that help their proliferation) and rain and the degree of sun exposure is influenced by the façade orientation (Figure 6f). In this case, most of the monuments presented greater alteration on the principal façade or portico (oriented NW, W, or SW) and the least alteration on that exposed to the E. The buildings that surround the monument can also affect the luminosity (especially in zone 1, where population centers are concentrated).
3.2. Elemental Analysis
3.3. Microscopic Observations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegesmund, S.; Snethlage, R. Stone in Architecture: Properties, Durability; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Sanjurjo-Sánchez, J.; Vidal-Romani, J.R.; Alves, C.A.S.; Ferna´ndez-Mosquera, D. Origin of gypsum-rich coatings on historic buildings. Water Air Soil. Pollut. 2009, 204, 53–68. [Google Scholar] [CrossRef]
- Sanjurjo-Sánchez, J.; Romaní, J.R.V.; Alves, C. Deposition of particles on gypsum-rich coatings of historic buildings in urban and rural environments. Constr. Build. Mater. 2011, 25, 813–822. [Google Scholar] [CrossRef]
- Sanjurjo-Sa´nchez, J.; Vidal Roman´ı, J.R.; Alves, C. Comparative analysis of coatings on granitic substrates from urban and natural settings (NW Spain). Geomorphology 2012, 138, 231–242. [Google Scholar] [CrossRef]
- Winkler, E.M. Stone: Properties, Durability in Man’s Environment; Springer: Berlin/Heidelberg, Germany, 1973; 230p. [Google Scholar]
- Amoroso, G.G.; Fassina, V. Stone Decay and Conservation: Atmospheric Pollution, Cleaning, Consolidation and Protection; Elsevier Science Publishers: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Williams, R.; Robinson, D. Origin and distribution of polygonal cracking of rock surfaces. Geogr. Ann. 1989, 71, 145–159. [Google Scholar] [CrossRef]
- Alves, C.; Figueiredo, C.; Sanjurjo-Sánchez, J.; Hernández, A.C. Geological Materials as Cultural Markers of Water Resources. Environ. Sci. Proc. 2020, 5, 8. [Google Scholar]
- Alves, C.; Figueiredo, C.A.; Sanjurjo-Sánchez, J.; Hernández, A.C. Salt weathering of natural stone: A review of comparative laboratory studies. Heritage 2021, 4, 1554–1565. [Google Scholar] [CrossRef]
- Arnold, A. Origin and behaviour of some salts in context of weathering on monuments. In Origin and Behaviour of Some Salts in Context of Weathering on Monuments; Research Workshop; Zezza, F., Ed.; European Commission: Bari, Italy, 1996; pp. 134–139. [Google Scholar]
- Rodriguez-Navarro, C.; Doehne, E. Salt weathering: Influence of evaporation rate, supersaturation and crystallization pattern. Earth Surf. Landf. 1999, 24, 191–209. [Google Scholar] [CrossRef]
- Scherer, R.G.W. Crystallization in pores. Cem. Concr. Res. 1999, 29, 1947–1958. [Google Scholar] [CrossRef]
- Charola, A.E. Salt in the deterioration of porous materials: An overview. J. Am. Inst. Conserv. 2000, 39, 327–343. [Google Scholar] [CrossRef]
- Sanjurjo-Sánchez, J.; Alves, C. Decay effects of pollutants on stony materials in the built environment. Environ. Chem. Lett. 2012, 10, 131–143. [Google Scholar] [CrossRef]
- Oguchi, C.T.; Yu, S. A review of theoretical salt weathering studies for stone heritage. Prog. Earth Planet. Sci. 2021, 8, 32. [Google Scholar] [CrossRef]
- Nicholson, D.T. Pore properties as indicators of breakdown mechanisms in experimentally weathered limestones. Earth Surf. Process. Landf. 2001, 26, 819–838. [Google Scholar] [CrossRef]
- Arnold, A.; Zehnder, K. Salt weathering on monuments. In Proceedings of the 1st International Symposium on the Conservation of Monuments in the Mediterranean Basin, Bari, Italy, 7–10 June 1989; pp. 13–23. [Google Scholar]
- Lewin, S.Z. The mechanism of masonry decay through crystallization. In Conservation of Historic Stone Buildings and Monuments: Report of the Committee on Conservation of Historic Stone Buildings and Monuments, National Materials Advisory Board, Commission on Engineering and Technical Systems, National Research Council; National Academy Press: Washington, DC, USA, 1982; pp. 120–144. [Google Scholar]
- Goudie, A.S.; Viles, H.A. Salt Weathering Hazards; John Wiley: Chichester, UK, 1997; 256p. [Google Scholar]
- Zehnder, K.; Arnold, A. Crystal growth in salt efflorescence. J. Cryst. Growth 1989, 97, 513–521. [Google Scholar] [CrossRef]
- Fassina, V. General criteria for the cleaning of stone: Theoretical aspects and methodology of application. In Stone Material in Monuments: Diagnosis and Conservation; Scuola Uniersitaria C.U.M. Conservazione dei Monumenti; Heraklion, Crete, 24–30 May 1993; Zezza, F., Ed.; Mario Adda Editore: Bari, Italy, 1994; pp. 131–138. [Google Scholar]
- Mamillian, M. Méthodes d’evaluation de l’état d’alterations des pierres desmonuments. In Conservation of Stone and Other Materials, Proceedings of the International RILEM/UNESCO Congress; Thiel, M.J., Ed.; RILEM: Champs-sur-Marne, France, 1993; Volume 21, pp. 775–783. [Google Scholar]
- Linnow, K.; Zeunert, A.; Steiger, M. Investigation of sodium sulfate phase transitions in a porous material using humidity and temperature controlled X-ray diffraction. Anal. Chem. 2006, 78, 4683–4689. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Heras, M.; Benavente, D.; Alvarez de Buergo, M.; Fort, R. Soluble salt minerals from pigeon droppings as potential contribution to the decay of stone based cultural heritage. Eur. J. Miner. 2004, 16, 505–509. [Google Scholar] [CrossRef]
- Hosono, T.; Uchida, E.; Suda, C.; Ueno, A.; Nakagawa, T. Salt weathering of sandstone at the Angkor monuments, Cambodia: Identification of the origins of salts using sulfur and strontium isotopes. J. Archaeol. Sci. 2006, 33, 11. [Google Scholar] [CrossRef]
- La Russa, M.F.; Fermo, P.; Comite, V. The Oceanus statue of the Fontana di Trevi (Rome): The analysis of black crust as a tool to investigate the urban air pollution and its impact on the stone degradation. Sci. Total Environ. 2017, 593–594, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Přikryl, R.; Přikrylová, J.; Racek, M.; Weishauptová, A.; Kreislová, K. Decay mechanism of indoor porous opuka stone: A case study from the main altar located in the St. Vitus Cathedral, Prague (Czech Republic). Environ. Earth Sci. 2017, 76, 290. [Google Scholar] [CrossRef]
- Cammuffo, D.; Delmonte, M.; Sabbioni, C. Origin and growth mechanisms of the sulfated crusts on urban limestone. Water Air Soil. Poll. 1983, 19, 351–359. [Google Scholar] [CrossRef]
- García-Talegón, J.; Iñigo, A.C.; Molina, E.; Pérez-Rodríguez, J.L.; Vargas, M.; Vicente, M.A. Granites employed in Avila (Spain): I.- Chemical composition of the different types. Mater. Construcción 1994, 44, 23–28. [Google Scholar] [CrossRef]
- Iñigo, A.C.; Vicente, S.; Rives, V.; Vicente, M.A. Porosidad libre en granitos alterados: Comentarios a las normas. Mater. Construcción 1994, 45, 47–53. [Google Scholar] [CrossRef]
- Benavente, D.; Gacría del Cura, M.A.; Bernabeu, A.; Ordoñez, S. Quantification of salt weathering in porous using an experimental continuous partial inmersion method. Eng. Geol. 2001, 59, 313–325. [Google Scholar] [CrossRef]
- Chabas, A.; Lefèvre, R. Chemistry and microscopy of atmospheric particulate at Delos (Cyclades, Greece). Atmos. Environ. 2000, 34, 225–238. [Google Scholar] [CrossRef]
- Manfredotti, L.; Marini, P. The durability of natural stones: Relationships between water absortion coefficient and non-destructive testing. In Proceedings of the 6th International Symposium on the Conservation of Monuments in the Mediterranean Basin, Lisbon, Portugal, 7–10 April 2004; pp. 289–292. [Google Scholar]
- Jones, M.S.; O’Brien, P.F.; Haneef, S.J.; Thompson, G.E.; Wood, G.C.; Cooper, T.P. A study of decay occurring in Leinster Granite, House No. 9, trynity College. In Proceedings of the 8th International Congress on Deterioration and Conservation on Stone, Berlin, Germany, 30 September– 4 October 1996; pp. 211–221. [Google Scholar]
- Magee, A.W.; Bull, P.A.; Goudie, A.S. Before rock decay: Chemical weathering of constituent grains by salts. In Engineering Geology of Ancient Works, Monuments and Historical Sites; Marinos, P.G., Koukis, G.C., Eds.; Balkema: Rotterdam, The Netherlands, 1988; pp. 779–786. [Google Scholar]
- Meteogalicia. 2023. Available online: https://www.meteogalicia.gal/ (accessed on 12 February 2023).
- Sistema de Información de Ordenación del Territorio y Urbanismo de Galicia (SIOTUGA). 2023. Available online: http://siotuga.xunta.gal/siotuga/documentos/urbanismo/RIBEIRA/documents/0347ME016.pdf (accessed on 5 October 2023).
- Parga-Pondal, D.I. Nota explicativa del mapa geológico de la parte NO de la provincia de La Coruña. Leidse Geol. Mededelingen. 1956, 21, 467–484. [Google Scholar]
- Sanjurjo-Sánchez, J.; Blanco-Rotea, R.; Sánchez-Pardo, J.C. An interdisciplinary study of early mediaeval churches in North-Western Spain (Galicia). Heritage 2019, 2, 599–610. [Google Scholar]
- ICOMOS-ISCS Illustrated Glossary on Stone Deterioration Patterns. 2008. Available online: http://www.international.icomos.org/publications/monuments_and_sites/15/pdf/Monuments_and_Sites_15_ISCS_Glossary_Stone.pdf (accessed on 20 September 2023).
- Silva, B.; Rivas, T.; Prieto, B. Effects of lichens on the geochemical weathering of granitic rocks. Chemosphere 1999, 39, 379–388. [Google Scholar] [CrossRef]
- Sanmartin, P.; Aira, N.; Devesa-Ray, R.; Silva, B.; Prieto, B. Relationship between color and pigment production in two stone biofilm-forming cyanobarcteria. Biofouling 2010, 26, 499–509. [Google Scholar] [PubMed]
- Vázquez-Nion, D.; Rodríguez-Castro, J.; López-Rodríguez, M.C.; Fernández-Silva, I.; Prieto, B. Subaerial biofilms on granitic historic buildings, microbial diversity and development of phototrophic multi-species cultures. Biofouling 2016, 32, 657–669. [Google Scholar] [CrossRef]
- Fuentes, E.; Carballeira, R.; Prieto, B. Role of exposure on the microbial consortiums on historical hural granite buildings. Appl. Sci. 2021, 11, 3786. [Google Scholar] [CrossRef]
- Prieto, B.; Silva, B. Estimation of the potential bioreceptivity of granitic rocks from their intrinsic properties. Int. Biodeterior. Biodegrad. 2005, 56, 206–215. [Google Scholar] [CrossRef]
- Vázquez-Nion, D.; Silva, B.; Prieto, B.B. Influence of the properties of granitic rocks on their bioreceptivity to subaerial phototrophic biofilms. Sci. Total Environ. 2018, 610–611, 44–54. [Google Scholar] [CrossRef]
- Sanmartín, P.; Miller, A.Z.; Prieto, B.; Viles, H.A. Revisiting and reanalysing theconcept of bioreceptivity 25 years on. Sci. Total Environ. 2021, 770, 145314. [Google Scholar] [CrossRef] [PubMed]
- Ascaso, C.; Galván, J.; Ortega, C. The Pedogenic Action of Parmelia Conspersa, Rhizocarpon Geographicum and Umbjlicaria Pustulata. Lichenologist 1976, 8, 151–171. [Google Scholar] [CrossRef]
- Evans, I.S. Salt crystallization and rock weathering: A review. Rev. Géomorphol. Dynam. 1970, 19, 153–177. [Google Scholar]
- Doornkamp, J.C.; Ibrahim, H.A.M. Salt weathering. Prog. Phys. Geogr. Earth Environ. 1990, 14, 335–348. [Google Scholar] [CrossRef]
- Flatt, R.; Nevin, A.M.; Caruso, F.; Derluyn, H.; Desaunaud, J.; Lubelli, B.; Espinosa-Marzal, R.M.; Pel, L.; Rodriguez-Navarro, C.; Scherer, G.W. Predicting salt damage in practice: A theoretical insight into laboratory tests. RILEM Tech. Lett. 2017, 2, 108. [Google Scholar] [CrossRef]
- Espinosa-Marzal, R.M.; Scherer, G.W. Mechanisms of damage by salt. Geol. Soc. 2010, 331, 61–77. [Google Scholar] [CrossRef]
- Doehne, E. Salt weathering: A selective review. Geol. Soc. 2002, 205, 51–64. [Google Scholar] [CrossRef]
- Alves, C.; Figueiredo, C.A.; Sanjurjo-Sánchez, J.; Hernández, A.C. Effects of Water on Natural Stone in the Built Environment—A Review. Geosciences 2021, 11, 459. [Google Scholar] [CrossRef]
- Arnold, A.; Zehnder, K. Monitoring Wall Paintings Affected by Soluble Salts: The Conservation of Wall Paintings; Cather, S., Courtauld Institute of Art, Getty Conservation Institute, Eds.; Getty Conservation Institute: Marina del Rey, CA, USA, 1991; pp. 103–135. [Google Scholar]
- Nord, A.G. Efflorescence salts on weathered building stone in Sweden. Geol. Föreningen I Stockh. Förhandlingar 1992, 114, 423–429. [Google Scholar] [CrossRef]
- Charola, A.E.; Bläuer, C. Salts in Masonry: An overview of the problem. Restor. Build. Monum. 2015, 21, 119–135. [Google Scholar] [CrossRef]
- Sousa, L.; Siegesmund, S.; Wedekind, W. Salt weathering in granitoids: An overview on the controlling factors. Environ. Earth Sci. 2018, 77, 1–29. [Google Scholar] [CrossRef]
- Panova, E.G.; Vlasov, D.Y.; Luodes, H. Evaluation of the durability of granite in architectural monuments. Geol. Surv. Finl. Rep. Investig. 2014, 214, 79. [Google Scholar]
- Chabas, A.; Jeannette, D. Weathering of marbles and granites in marine environment: Petrophysical properties and special role of atmospheric salts. Environ. Geol. 2001, 40, 359–368. [Google Scholar] [CrossRef]
No. | Name of the Monument | Location | Lithology | Distance from the Sea (Km) | Altitude (m) | Categories of Populated Places | Construction Age (Century) | Zone |
---|---|---|---|---|---|---|---|---|
1 | Pazo de Goians (with Chapel) | Boiro | Granite (medium–coarse grain) | 0.5 | 20 | Hamlet | XVIII * | Zone 1 |
2 | Church of San Pedro de Bealo | Boiro | Granite (medium–coarse grain) | 3 | 30 | Hamlet | XIII * | Zone 2 |
3 | Church of Santa Baia de Boiro | Boiro | Granite (medium–coarse grain) | 0.9 | 40 | Village | XII * | Zone 1 |
4 | Church of San Cristovo de Abanqueiro | Boiro | Granite (Fine–medium grain) | 0.2 | 15 | Hamlet | XVIII | Zone 1 |
5 | Church of Santa Maria de Jobre | Puebla del Caramiñal | Granite (medium grain) | 0.5 | 7 | Hamlet | XVIII | Zone 1 |
6 | Church of Santiago da Pobra do Daen | Puebla del Caramiñal | Granite (medium–coarse grain) | 0.2 | 20 | Village | XVI | Zona 1 |
7 | Pazo da Merce | Puebla del Caramiñal | Granite (medium–coarse grain) | 0 | 18 | Hamlet | XV | Zone 1 |
8 | Church of San Xoan de Macenda | Boiro | Granite (fine–medium grain) | 7.3 | 245 | Hamlet | XVIII | Zone 2 |
9 | Church of Santa Maria de Caamaño | Porto Son | Granite (medium–coarse grain) | 1.5 | 57 | Hamlet | XII* | Zone 2 |
10 | Church of Santa Maria de Ribasieira | Porto Son | Granite (medium–coarse grain) | 4.5 | 167 | Hamlet | XVIII | Zone 2 |
11 | Church of Santa Maria a Nova | Noia | Granite (Fine–medium grain) | 0.1 | 9 | Village | XIV | Zone 1 |
12 | Church of San Martiño de Noia | Noia | Granite (two types) | 0.1 | 9 | Village | XV | Zone 1 |
13 | Pazo de Mortelo | Rianxo | Granite (fine–medium grain) | 0.1 | 11 | Village | XVII | Zone 1 |
14 | Church of Santa Uxia de Ribeira | Ribeira | Granite (fine–medium grain) | 0.2 | 5 | City | XIX | Zone 1 |
No. | Name of the Monument | Patterns of Deterioration | |||||
---|---|---|---|---|---|---|---|
Zone | Biological Colonization | Discoloration | Physical Damage | Efflorescence | Others | ||
1 | Pazo de Goians (with Chapel) | Zone 1 | ++ | + | ++ | ||
2 | Church of San Pedro de Bealo | Zone 2 | ++ | + | |||
3 | Church of Santa Baia de Boiro | Zone 1 | + | ++ | + | ||
4 | Church of San Cristovo de Abanqueiro | Zone 1 | ++ | ++ | ++ | + | |
5 | Church of Santa Maria de Jobre | Zone 1 | ++ | + | + | + | |
6 | Church of Santiago da Pobra do Daen | Zona 1 | ++ | ++ | + | Dark crust; graffiti | |
7 | Pazo da Merce | Zone 1 | +++ | + | +++ | ||
8 | Church of San Xoan de Macenda | Zone 2 | +++ | + | |||
9 | Church of Santa Maria de Caamaño | Zone 2 | ++ | ++ | + | ||
10 | Church of Santa Maria de Ribasieira | Zone 2 | +++ | + | ++ | Dark crust | |
11 | Church of Santa Maria a Nova | Zone 1 | ++ | + | + | ||
12 | Church of San Martiño de Noia | Zone 1 | + | ++ | + | + | Graffiti |
13 | Pazo de Mortelo | Zone 1 | ++ | + | + | ||
14 | Church of Santa Uxia de Ribeira | Zone 1 | + |
Name of the Monument | K2O | Na2O | CaO | MgO | P2O5 | SO3 | LOI | Distance from the Sea (Km) | Altitude (m) |
---|---|---|---|---|---|---|---|---|---|
Church of Santiago da Pobra do Daen | 5.0 | 5.2 | 0.51 | <0.005 | <0.005 | <0.030 | 0.6 | 0.2 | 20 |
Church of San Xoan de Macenda | 5.8 | 5.3 | 0.78 | 0.36 | 0.14 | <0.030 | 1.1 | 7.3 | 245 |
Pazo de Goians (with Chapel) | 6.2 | 5.1 | 0.41 | 0.26 | 0.40 | <0.030 | 1.3 | 0.5 | 20 |
Church of San Martiño de Noia | 4.8 | 4.5 | 0.54 | 0.23 | 0.28 | <0.030 | 1.4 | 0.1 | 9 |
Church of Santa Maria de Ribasieira | 5.5 | 3.7 | 0.40 | 0.45 | 0.36 | <0.030 | 2.2 | 4.5 | 167 |
Pazo da Merce | 5.5 | 3.7 | 0.56 | 0.45 | 0.46 | <0.030 | 2.4 | 0 | 18 |
Church of San Cristovo de Abanqueiro | 5.8 | 3.2 | 0.37 | 0.32 | 0.45 | <0.030 | 2.1 | 0.2 | 15 |
Zone 1 (<1 Km) | Zone 2 (>2 Km) | Altitude 1 (<30 m) | |
---|---|---|---|
LOI | −0.443 | 0.151 | −0.438 |
K2O | −0.450 | 0.154 | −0.160 |
Na2O | 0.470 | 0.290 | 0.257 |
MgO | 0.149 | 0.101 | 0.116 |
CaO | 0.333 | 0.384 | 0.191 |
P2O3 | −0.200 | −0.600 | 0.100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, A.C.; Sanjurjo-Sánchez, J.; Alves, C.; Figueiredo, C.A.M. Comparative Study of Deterioration in Built Heritage in a Coastal Area: Barbanza Peninsula (Galicia, NW Spain). Geosciences 2023, 13, 375. https://doi.org/10.3390/geosciences13120375
Hernández AC, Sanjurjo-Sánchez J, Alves C, Figueiredo CAM. Comparative Study of Deterioration in Built Heritage in a Coastal Area: Barbanza Peninsula (Galicia, NW Spain). Geosciences. 2023; 13(12):375. https://doi.org/10.3390/geosciences13120375
Chicago/Turabian StyleHernández, Ana C, Jorge Sanjurjo-Sánchez, Carlos Alves, and Carlos A. M. Figueiredo. 2023. "Comparative Study of Deterioration in Built Heritage in a Coastal Area: Barbanza Peninsula (Galicia, NW Spain)" Geosciences 13, no. 12: 375. https://doi.org/10.3390/geosciences13120375
APA StyleHernández, A. C., Sanjurjo-Sánchez, J., Alves, C., & Figueiredo, C. A. M. (2023). Comparative Study of Deterioration in Built Heritage in a Coastal Area: Barbanza Peninsula (Galicia, NW Spain). Geosciences, 13(12), 375. https://doi.org/10.3390/geosciences13120375