Berriasian–Valanginian Geochronology and Carbon-Isotope Stratigraphy of the Yellow Cat Member, Cedar Mountain Formation, Eastern Utah, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Carbon-Isotope Analyses
2.2. U-Pb Zircon Analyses
3. Results
3.1. Carbon-Isotope Analyses
3.2. U-Pb Zircon Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kirkland, J.I.; Simpson, E.L.; DeBlieux, D.D.; Madsen, S.K.; Bogner, E.; Tibert, N.E. Depositional constraints on the Lower Cretaceous Stikes Quarry dinosaur site: Upper Yellow Cat Member, Cedar Mountain Formation, Utah. Palaios 2016, 31, 421–439. [Google Scholar] [CrossRef]
- Kirkland, J.; Suarez, M.; Suarez, C.; Hunt-Foster, R. The Lower Cretaceous in east-central Utah—The Cedar Mountain Formation and its bounding strata. Geol. Intermount. West 2016, 3, 101–228. [Google Scholar] [CrossRef]
- Joeckel, R.M.; Ludvigson, G.A.; Möller, A.; Hotton, C.L.; Suarez, M.B.; Suarez, C.A.; Sames, B.; Kirkland, J.I.; Hendrix, B. Chronostratigraphy and terrestrial palaeoclimatology of Berriasian–Hauterivian strata of the Cedar Mountain Formation, Utah, USA. In Cretaceous Climate Events and Short-Term Sea-Level Changes; Geological Society, Special Publications 498; Wagreich, M., Hart, M.B., Sames, B., Yilmaz, I.O., Eds.; Geological Society of London: London, UK, 2020; pp. 75–100. [Google Scholar]
- Joeckel, R.M.; Ludvigson, G.A.; Kirkland, J.I. Lower Cretaceous paleo-Vertisols and sedimentary interrelationships in stacked alluvial sequences, Utah, USA. Sediment. Geol. 2017, 361, 1–24. [Google Scholar] [CrossRef]
- Ludvigson, G.A.; Joeckel, R.M.; Gonzalez, L.A.; Gulbranson, E.L.; Rasbury, E.T.; Hunt, G.J.; Kirkland, J.I.; Madsen, S. Correlation of Aptian-Albian carbon isotope excursions in continental strata of the Cretaceous foreland basin of eastern Utah. J. Sediment. Res. 2010, 80, 955–974. [Google Scholar] [CrossRef]
- Ludvigson, G.A.; Joeckel, R.M.; Murphy, L.R.; Stockli, D.F.; González, L.A.; Suarez, C.A.; Kirkland, J.I.; Al-Suwaidi, A. The emerging terrestrial record of Aptian-Albian global change. Cretac. Res. 2015, 56, 1–24. [Google Scholar] [CrossRef]
- Suarez, M.B.; Knight, J.A.; Godet, A.; Ludvigson, G.A.; Snell, K.E.; Murphy, L.; Kirkland, J.I. Multiproxy strategy for determining palaeoclimate parameters in the Ruby Ranch Member of the Cedar Mountain Formation. In Stable Isotope Studies of the Water Cyce and Terrestrial Environments; Geological Society, Special Publications 507; Bojar, A.-V., Pelc, A., Lécuyer, C., Eds.; Geological Society of London: London, UK, 2020; pp. 313–334. [Google Scholar]
- Davies, S.M. Cryptotephras: The revolution in correlation and precision dating. J. Quat. Sci. 2015, 30, 114–130. [Google Scholar] [CrossRef] [Green Version]
- Herrle, J.O.; Kössler, P.; Bollman, J. Palaeoceanographic differences of early Late Aptian black shale events in the Vocontian Basin (SE France). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 297, 367–376. [Google Scholar] [CrossRef]
- Bornemann, A.; Mutterlose, J. Calcareous nannofossil and d13C records from the Early Cretaceous of the western Atlantic Ocean: Evidence for enhanced fertilization across the Berriasian–Valanginian transition. Palaios 2008, 23, 821–832. [Google Scholar] [CrossRef]
- Ross, J.B.; Ludvigson, G.A.; Möller, A.; Gonzalez, L.; Walker, J.D. Stable isotope paleohydrology and chemostratigraphy of the Albian Wayan Formation from the wedge-top depozone, North American Western Interior Basin. Sci. China Earth Sci. 2017, 60, 44–57. [Google Scholar] [CrossRef]
- Mattinson, J.M. Zircon U-Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of ages. Chem. Geol. 2005, 220, 47–66. [Google Scholar] [CrossRef]
- Condon, D.J.; Schoene, B.; McLean, N.M.; Bowring, S.A.; Parrish, R.R. Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME tracer calibration Part I). Geochim. Cosmochim. Acta 2015, 164, 464–480. [Google Scholar] [CrossRef] [Green Version]
- McLean, N.M.; Condon, D.J.; Schoene, B.; Bowring, S.A. Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II). Geochim. Cosmochim. Acta 2015, 164, 481–501. [Google Scholar] [CrossRef] [Green Version]
- Krogh, T.E. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 1973, 37, 485–494. [Google Scholar] [CrossRef]
- Gerstenberger, H.; Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 1997, 136, 309–312. [Google Scholar] [CrossRef]
- Hiess, J.; Condon, D.J.; McLean, N.; Noble, S.R. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 2012, 335, 1610–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLean, N.M.; Bowring, J.F.; Bowring, S.A. An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation. Geochem. Geophys. Geosyst. 2011, 12, Q0AA18. [Google Scholar] [CrossRef]
- Bowring, J.F.; McLean, N.M.; Bowring, S.A. Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb Redux. Geochem. Geophys. Geosyst. 2011, 12, Q0AA19. [Google Scholar] [CrossRef]
- Keller, C.B.; Schoene, B.; Samperton, K.M. A stochastic sampling approach to zircon eruption age interpretation. Geochem. Perspec. Lett. 2018, 8, 31–35. [Google Scholar] [CrossRef]
- Emmanuel, L.; Renard, M. Carbonate geochemistry (Mn, δ13C, δ18O) of the Late Tithonian—Berriasian pelagic limestones of the Vocontian trough (SE France). Bull. Cent. Recher. Expl. Prod. Elf-Acquitaine 1993, 17, 205–221. [Google Scholar]
- Morales, C.; Gardin, S.; Cshnyder, J.; Spangenberg, J.; Arnaud-Vanneau, A.; Arnaud, H.; Adatte, T.; Föllmi, K.B. Berriaian and early early Valanginian environmental change along a transect from the Jura Platform to the Vocotian Basion. Sedimentology 2007, 60, 36–63. [Google Scholar] [CrossRef]
- Bains, S.; Norris, R.D.; Corfield, R.; Bowen, G.J.; Gingerich, P.D.; Koch, P.L. Marine-terrestrial linkages at the Paleocene-Eocene boundary. In Causes and Consequences of Globally Warm Climates of the Early Paleogene; Geological Society of America Special Paper, 369; Wing, S., Gingerich, P.D., Schmitz, B., Thomas, E., Eds.; Geological Society of America: Boulder, CO, USA, 2003; pp. 1–9. [Google Scholar]
- Gröcke, D.R.; Ludvigson, G.A.; Witzke, B.L.; Robinson, S.A.; Joeckel, R.M.; Ufnar, D.F.; Ravn, R.L. Recognizing the Albian-Cenomanian (OAE1d) sequence boundary using plant carbon isotopes: Dakota Formation, Western Interior Basin, USA. Geology 2006, 34, 193–196. [Google Scholar] [CrossRef]
- Gröcke, D.R.; Joeckel., R.M. A Stratigraphic test of the terrestrial carbon-isotope record of the latest Albian OAE from the Dakota Formation, Nebraska. In Field Trip 2: Fluvial-Estuarine Deposition in the Mid-Cretaceous Dakota Formation, Kansas and Nebraska; Kansas Geological Survey, Open-File Report no. 2008-2; University of Kansas: Lawrence, KS, USA, 2002; pp. 24–30. [Google Scholar]
- Richey, J.D.; Upchurch, G.R.; Montañez, I.P.; Lomax, B.H.; Suarez, M.B.; Crout, N.M.J.; Joeckel, R.M.; Ludvigson, G.A.; Smith, J.J. Changes in CO2 during the Ocean Anoxic Event 1d indicate similarities to other carbon cycle perturbations. Earth Planet. Sci. Lett. 2018, 491, 172–182. [Google Scholar] [CrossRef] [Green Version]
- Andrzejewski, K.A.; Layzell, A.L.; Ludvigson, G.A.; Joeckel, R.M.; Möller, A.; Mandel, R.D. Unique insights to the Cretaceous OAE1d, Mid-Cenomanian Event, and OAE2 from long-line drillcores along the eastern cratonic margin of the Western Interior Basin. In Proceedings of the 2022 Perkens-Rosen Conference, Gulf Coast Section SEPM (Society for Sedimentary Geology), Houston, TX, USA, 5–7 December 2022. [Google Scholar]
- Celestino, R.; Wohlwend, S.; Rehakova, D.; Weissert, H. Carbon isotope stratigraphy, biostratigraphy and sedimentology of the Upper Jurassic—Lower Cretaceous Rayda Formation, Central Oman Mountains. Newsl. Stratigr. 2017, 50, 91–109. [Google Scholar] [CrossRef]
- Cavalheiro, L.; Wagner, T.; Steinig, S.; Bottini, C.; Dummann, W.; Esegbue, O.; Gambacorta, G.; Giraldo-Gómez, V.; Farnsworth, A.; Flögel, S.; et al. Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event. Nat. Commun. 2021, 12, 5411. [Google Scholar] [CrossRef]
- Robinson, S.A.; Hesselbo, S.P. Fossil-wood carbon-isotope stratigraphy of the non-marine Wealden Group (Lower Cretaceous, southern England). J. Geol. Soc. 2004, 161, 133–145. [Google Scholar] [CrossRef] [Green Version]
- Gröcke, D.R.; Price, G.D.; Robinson, S.A.; Baraboshkin, E.Y.; Mutterlose, J.; Ruffell, A.H. The Upper Valanginian (Early Cretaceous) positive carbon-isotope event recorded in terrestrial plants. Earth Planet. Sci. Lett. 2005, 240, 495–509. [Google Scholar] [CrossRef]
- Saltzman, M.R.; Thomas, E. Carbon isotope stratigraphy. In The Geologic Time Scale 2012; Gradstein, F.M., Ogg, J.G., Schmitz, M., Ogg, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 207–232. [Google Scholar]
- Schlanger, S.; Jenkyns, H. Cretaceous anoxic events: Causes and consequences. Geol. Mijnb. 1976, 55, 179–184. [Google Scholar]
- Weissert, H. C-isotope stratigraphy, a monitor of paleoenvironmental change: A case study from the early Cretaceous. Surv. Geophys. 1989, 10, 1–61. [Google Scholar] [CrossRef]
- Jenkyns, H.C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 2010, 11, Q03004. [Google Scholar] [CrossRef]
- Föllmi, K.B. Early Cretaceous life, climate and anoxia. Cretac. Res. 2012, 35, 230–257. [Google Scholar] [CrossRef]
- Lini, A.; Weissert, H.; Erba, E. The Valanginian carbon isotope event: A first episode of greenhouse climate conditions during the Cretaceous. Terra Nova 1992, 4, 374–384. [Google Scholar] [CrossRef]
- Channell, J.E.T.; Erba, E.; Lini, A. Magnetostratigraphic calibration of the Late Valanaginian carbon isotope event in pelagic limestones from northern Italy and Switzerland. Earth Planet. Sci. Lett. 1993, 118, 145–166. [Google Scholar] [CrossRef]
- Weissert, H.; Lini, A.; Föllmi, K.B.; Kuhn, O. Correlation of Early Cretaceous carbon isotope stratigraphy and platform drowning events: A possible link? Palaeogeogr. Palaeoclimatol. Palaeoecol. 1998, 137, 189–203. [Google Scholar] [CrossRef]
- Föllmi, K.B.; Weissert, H.; Bisping, M.; Funk, H.P. Phosphogenesis, carbon-isotope stratigraphy, and carbonate-platform evolution along the Lower Cretaceous northern Tethyan margin. Geol. Soc. Am. Bull. 1994, 106, 729–746. [Google Scholar] [CrossRef]
- Erba, E.; Bartolini, A.; Larson, R.L. Valanginian Weissert oceanic anoxic event. Geology 2004, 32, 149–152. [Google Scholar] [CrossRef]
- Charbonnier, G.; Boulila, S.; Gardin, S.; Duchamp-Alphonse, S.; Adatte, T.; Spangenberg, J.E.; Föllmi, K.B.; Colin, C.; Galbrun, B. Astronomical Calibration of the Valanginian ‘‘Weissert’’ Episode: The Orpierre Marl–Limestone Succession (Vocontian Basin, Southeastern France). In STRATI 2013; Rocha, R., Pais, J., Kullberg, J.C., Finney, S., Eds.; Springer Geology: Cham, Switzerland, 2014; pp. 175–179. [Google Scholar]
- Martinez, M.; DeConinch, J.-F.; Pellenard, P.; Riquier, L.; Company, M.; Reboulet, S.; Moiroud, M. Astrochronology of the Valanginian–Hauterivian stages (Early Cretaceous): Chronological relationships between the Paraná–Etendeka large igneous province and the Weissert and the Faraoni events. Glob. Planet. Change 2015, 121, 158–173. [Google Scholar] [CrossRef]
- Nunn, E.V.; Price, G.D.; Gröcke, D.R.; Baraboshkin, E.Y.; Leng, M.J.; Hart, M.B. The Valanginian positive carbon isotope event in Arctic Russia: Evidence from terrestrial and marine isotope records and implications for global carbon cycling. Cretac. Res. 2010, 31, 577–592. [Google Scholar] [CrossRef] [Green Version]
- Meissner, P.; Mutterlose, J.; Bodin, S. Latitudinal temperature trends in the northern hemisphere during the Early Cretaceous (Valanginian–Hauterivian). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 424, 17–39. [Google Scholar] [CrossRef]
- Duchamp-Alphonse, S.; Gardin, S.; Fiet, N.; Bartolini, A.; Blamart, D.; Pagel, M. Fertilization of the northwestern Tethys (Vocotian basin, SE France) during the Valanginian carbon isotope perturbation: Evidence from calcareous nannofossils and trace element data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 243, 132–151. [Google Scholar] [CrossRef]
- Gale, A.S.; Mutterlose, J.; Batenburg, S.; Gradstein, F.M.; Agterberg, F.P.; Ogg, J.G. Chapter 27—The Cretaceous Period. In Geologic Time Scale 2020; Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1023–1086. [Google Scholar]
- Forster, C. Evaluation of Carbon Isotopic Chemostratigraphy of the Cedar Mountain Formation of Utah. Master’s Thesis, University of Arkansas, Fayetteville, AR, USA, 2022. [Google Scholar]
Sample | Stratigraphic Height (m) | Organic δ13C | TOC % |
---|---|---|---|
SQ-0 | 0 | −28.29 | 0.06 |
SQ-1 | 0.2 | −27.4 | 0.05 |
SQ-2 | 0.4 | −27.73 | 0.05 |
SQ-3 | 0.6 | −27.73 | 0.05 |
SQ-4 | 0.8 | −27.43 | 0.03 |
SQ-5 | 1 | −28.35 | 0.04 |
SQ-6 | 1.2 | −28.01 | 0.04 |
SQ-7 | 1.4 | −27.45 | 0.03 |
SQ-8 | 1.6 | −26.65 | 0.08 |
SQ-9 | 1.8 | −26.38 | 0.04 |
SQ-10 | 2 | −25.45 | 0.06 |
SQ-11 | 2.2 | −26.86 | 0.08 |
SQ-12 | 2.4 | −26.44 | 0.06 |
SQ-13 | 2.6 | −27.13 | 0.06 |
SQ-14 | 2.8 | −26.73 | 0.06 |
SQ-15 | 3 | −26.02 | 0.06 |
SQ-16 | 3.2 | −26.26 | 0.06 |
SQ-17 | 3.4 | −27.29 | 0.06 |
SQ-18 | 3.6 | −27.4 | 0.05 |
SQ-19 | 3.8 | −28.19 | 0.05 |
SQ-20 | 4 | −27.97 | 0.04 |
SQ-21 | 4.2 | −27.38 | 0.06 |
SQ-22 | 4.4 | −26.78 | 0.05 |
SQ-23 | 4.6 | −28.68 | 0.09 |
SQ-24 | 4.8 | −29.04 | 0.09 |
SQ-25 | 5 | −28.65 | 0.08 |
SQ-26 | 6 | −26.39 | 0.12 |
SQ-27 | 6.25 | −28.94 | 0.08 |
SQ-28 | 6.5 | −28.99 | 0.11 |
SQ-29 | 6.75 | −29.59 | 0.09 |
SQ-31 | 7.25 | −29.91 | 0.08 |
SQ-32 | 7.5 | −29.57 | 0.1 |
SQ-33 | 7.75 | −29.66 | 0.1 |
SQ-34 | 8 | −29.83 | 0.09 |
SQ-35 | 8.25 | −25.92 | 0.07 |
SQ-36 | 8.5 | −26.62 | 0.05 |
SQ-37 | 8.75 | −26.76 | 0.06 |
SQ-38 | 9 | −27.55 | 0.07 |
SQ-39 | 9.25 | −27.06 | 0.06 |
SQ-40 | 9.5 | −26.23 | 0.06 |
SQ-41 | 9.75 | −26.76 | 0.06 |
SQ-42 | 10 | −26.91 | 0.06 |
SQ-43 | 10.25 | −27.65 | 0.05 |
SQ-44 | 10.5 | −27.72 | 0.04 |
SQ-45 | 10.75 | −27.4 | 0.05 |
SQ-46 | 11 | −27.94 | 0.05 |
SQ-48 | 11.5 | −27.18 | 0.13 |
SQ-49 | 11.75 | −26.28 | 0.16 |
SQ-50 | 13.75 | −28.22 | 0.05 |
SQ-51 | 14 | −28.37 | 0.04 |
SQ-52 | 14.25 | −28.01 | 0.04 |
SQ-53 | 14.5 | −27.82 | 0.03 |
SQ-54 | 14.75 | −27.97 | 0.04 |
SQ-55 | 15 | −28.18 | 0.04 |
SQ-56 | 15.25 | −27.25 | 0.06 |
SQ-57 | 15.5 | −27.86 | 0.04 |
SQ-58 | 15.75 | −27.92 | 0.05 |
SQ-59 | 16 | −27.93 | 0.04 |
SQ-60 | 16.25 | −28.02 | 0.05 |
SQ-61 | 16.5 | −25.18 | 0.05 |
SQ-62 | 16.75 | −28.17 | 0.03 |
SQ-63 | 17 | −27.93 | 0.04 |
SQ-64 | 17.25 | −28.34 | 0.04 |
SQ-65 | 17.5 | −28.34 | 0.12 |
SQ-66 | 17.75 | −27.98 | 0.05 |
SQ-67 | 18 | −27.73 | 0.05 |
SQ-68 | 18.25 | −27.35 | 0.05 |
SQ-69 | 18.5 | −27.71 | 0.06 |
SQ-70 | 18.75 | −28.14 | 0.17 |
SQ-71 | 19 | −27.54 | 0.14 |
SQ-72 | 19.25 | −27.22 | 0.21 |
SQ-73 | 32.5 | −27.02 | 0.05 |
SQ-74 | 32.75 | −27.1 | 0.07 |
SQ-75 | 33 | −27.3 | 0.04 |
SQ-76 | 33.25 | −27.08 | 0.14 |
SQ-77 | 33.5 | −26.64 | 0.05 |
SQ-78 | 33.75 | −23.53 | 0.08 |
SQ-79 | 34 | −27.17 | 0.09 |
SQ-80 | 34.25 | −27.17 | 0.04 |
SQ-81 | 34.5 | −15.65 | 0.32 |
SQ-82 | 34.75 | −26.27 | 0.1 |
SQ-83 | 35 | −26.72 | 0.13 |
SQ-84 | 35.25 | −27.17 | 0.06 |
SQ-85 | 35.5 | −26.58 | 0.09 |
SQ-86 | 35.75 | −26.91 | 0.08 |
SQ-87 | 36 | −28.11 | 0.19 |
SQ-88 | 36.25 | −27.35 | 0.09 |
SQ-89 | 36.5 | −27.1 | 0.09 |
SQ-90 | 36.75 | −27.18 | 0.06 |
SQ-91 | 37 | −26.79 | 0.06 |
SQ-92 | 37.25 | −27.12 | 0.06 |
SQ-93 | 37.5 | −27.7 | 0.05 |
SQ-94 | 37.75 | −27.66 | 0.06 |
SQ-95 | 38 | −25.5 | 0.05 |
SQ-96 | 38.25 | −27.81 | 0.05 |
SQ-97 | 38.5 | −27.97 | 0.03 |
SQ-98 | 38.75 | −27.89 | 0.05 |
SQ-99 | 39 | −27.6 | 0.03 |
SQ-100 | 39.25 | −27.44 | 0.03 |
SQ-101 | 39.5 | −27.22 | 0.03 |
SQ-102 | 38.25 | −27.11 | 0.03 |
SQ-103 | 38.5 | −26.75 | 0.03 |
SQ-104 | 38.75 | −26.94 | 0.03 |
SQ-105 | 39.75 | −26.84 | 0.06 |
SQ-106 | 40 | −25.71 | 0.06 |
SQ-107 | 40.25 | −28.29 | 0.25 |
SQ-108 | 40.5 | −27.9 | 0.06 |
SQ-109 | 40.75 | −27.83 | 0.06 |
SQ-110 | 41 | −27.63 | 0.15 |
SQ-111 | 41.25 | −27.68 | 0.04 |
SQ-112 | 41.5 | −22.34 | 0.08 |
SQ-113 | 41.75 | −27.49 | 0.04 |
SQ-114 | 42 | −26.94 | 0.09 |
SQ-115 | 42.25 | −27.18 | 0.04 |
SQ-116 | 42.5 | −26.89 | 0.05 |
SDR | Composition | Isotopic Ratios | Correlation Coefficients | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dates (Ma) | |||||||||||||||||||
206Pb/ | 206Pb/ | 206Pb/238U | |||||||||||||||||
238U | ±2σ | 207Pb/ | ±2σ | 207Pb/ | ±2σ | Th/ | Pbc | Pb*/ | 206Pb/ | 238U | 207Pb/ | 207Pb/ | <Th>- | ||||||
Fraction | <Th> a | abs | 235U b | abs | 206Pb b | abs | % disc c | U d | (pg) e | Pbc f | 204Pb g | <Th> ha | ±2σ % | 235U h | ±2σ % | 206Pb h | ±2σ % | 207Pb/235U | Fraction |
2021-142 | 135.32 | 0.12 | 135.32 | 0.53 | 137.1 | 8.8 | 1.38 | 0.18 | 0.67 | 19.96 | 1380 | 0.021214 | 0.091 | 0.14256 | 0.42 | 0.04880 | 0.37 | 0.554 | 2021-142 |
Zircon | |||||||||||||||||||
56 | 135.67 | 0.11 | 136.18 | 0.87 | 147 | 15 | 7.59 | 0.30 | 0.70 | 10.09 | 686 | 0.021270 | 0.086 | 0.14353 | 0.68 | 0.04900 | 0.63 | 0.622 | 56 |
2021-048 | 135.28 | 0.30 | 134.7 | 2.7 | 127 | 48 | −6.35 | 0.27 | 1.66 | 3.77 | 269 | 0.021207 | 0.22 | 0.1419 | 2.2 | 0.04859 | 2.0 | 0.536 | 2021-048 |
2021-132 | 135.06 | 0.76 | 134.2 | 2.9 | 120 | 48 | −12.57 | 0.51 | 0.80 | 5.79 | 380 | 0.021171 | 0.57 | 0.1413 | 2.3 | 0.04844 | 2.0 | 0.554 | 2021-132 |
2021-142 | 135.32 | 0.12 | 135.32 | 0.53 | 137.1 | 8.8 | 1.38 | 0.18 | 0.67 | 19.96 | 1380 | 0.021214 | 0.091 | 0.14256 | 0.42 | 0.04880 | 0.37 | 0.554 | 2021-142 |
2021-207 | 135.23 | 0.34 | 134.9 | 2.7 | 131 | 46 | −3.26 | 0.21 | 1.57 | 4.34 | 312 | 0.021199 | 0.25 | 0.1421 | 2.1 | 0.04867 | 2.0 | 0.668 | 2021-207 |
2021-316 | 136.38 | 0.29 | 135.7 | 1.8 | 125 | 31 | −9.36 | 0.61 | 7.74 | 5.58 | 357 | 0.021382 | 0.22 | 0.1429 | 1.4 | 0.04854 | 1.3 | 0.469 | 2021-316 |
Publication | Carbon-Isotope Excursion (CIE) Events | Marine CIE Magnitude | Terrestrial CIE Magnitude |
---|---|---|---|
Bains [23] | Paleocene–Eocene Thermal Maximum | 2.5 per mil 0.0 to 2.5‰ | 5.5 to 8 per mil −15.5 to 8.5‰ |
Gröcke et al. [24] | Albian–Cenomanian OAE 1d | 1.5 per mil 0.2 to 1.6‰ | 3 per mil −26 to −23‰ |
Gröcke and Joeckel [25] | Albian–Cenomanian OAE 1d | _____ | 4 per mil −26.4 to −22.6‰ |
Richey et al. [26] | Albian–Cenomanian OAE 1d | _____ | 3 per mil −26 to −23‰ |
Andrzejewski et al. [27] | Albian–Cenomanian OAE 1d | _____ | 5 per mil −29 to −24‰ |
Ross et al. [11] | Albian C15 segment | 0.5 per mil 2.0 to 2.5‰ | 4 per mil −27 to −23‰ |
Ludvigson et al. [5] | Aptian OAE 1a, 1b | 2 per mil 2.0 to 4.0‰ | 3 per mil −6 to −3‰ |
Ludvigson et al. [6] | Aptian OAE 1a, 1b | 2 per mil 2.0 to 4.0‰ | 3 per mil -6 to -3‰ |
Channell et al. [38] | Valanginian CIE | 1.5 per mil 1.5 to 3.0‰ | _____ |
Erba et al. [41] | Valanginian CIE | 1.5 per mil 1.5 to 3.0‰ | _____ |
Celestino et al. [28] | Valanginian CIE | 2 per mil 1.0 to 3.0‰ | _____ |
Cavalheiro et al. [29] | Valanginian CIE | 1 per mil −31 to −30‰ | _____ |
Robinson & Hesselbo [30] | Valanginian CIE | 1.5 per mil 1.5 to 3.0‰ | 4 per mil −25 to −21‰ |
Gröcke et al. [31] | Valanginian CIE | 1.5 per mil 1.5 to 3.0‰ | 4 per mil −24 to −20‰ |
Joeckel et al. (this report) | Valanginian CIE | 2 per mil 1.0 to 3.0‰ | 2 per mil −28 to −26‰ |
Emmanuel and Reynard [21] | Early Berriasian CIEs | 1 per mil 0.5 to 1.5‰ | _____ |
Morales et al. (2013) | Early Berriasian CIEs | 2 per mil 0.0 to 2.0‰ | |
Joeckel et al. (this report) | Early Berriasian CIEs | _____ | 4 per mil −30 to −26‰ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joeckel, R.M.; Suarez, C.A.; McLean, N.M.; Möller, A.; Ludvigson, G.A.; Suarez, M.B.; Kirkland, J.I.; Andrew, J.; Kiessling, S.; Hatzell, G.A. Berriasian–Valanginian Geochronology and Carbon-Isotope Stratigraphy of the Yellow Cat Member, Cedar Mountain Formation, Eastern Utah, USA. Geosciences 2023, 13, 32. https://doi.org/10.3390/geosciences13020032
Joeckel RM, Suarez CA, McLean NM, Möller A, Ludvigson GA, Suarez MB, Kirkland JI, Andrew J, Kiessling S, Hatzell GA. Berriasian–Valanginian Geochronology and Carbon-Isotope Stratigraphy of the Yellow Cat Member, Cedar Mountain Formation, Eastern Utah, USA. Geosciences. 2023; 13(2):32. https://doi.org/10.3390/geosciences13020032
Chicago/Turabian StyleJoeckel, Robert M., Celina A. Suarez, Noah M. McLean, Andreas Möller, Gregory A. Ludvigson, Marina B. Suarez, James I. Kirkland, Joseph Andrew, Spencer Kiessling, and Garrett A. Hatzell. 2023. "Berriasian–Valanginian Geochronology and Carbon-Isotope Stratigraphy of the Yellow Cat Member, Cedar Mountain Formation, Eastern Utah, USA" Geosciences 13, no. 2: 32. https://doi.org/10.3390/geosciences13020032
APA StyleJoeckel, R. M., Suarez, C. A., McLean, N. M., Möller, A., Ludvigson, G. A., Suarez, M. B., Kirkland, J. I., Andrew, J., Kiessling, S., & Hatzell, G. A. (2023). Berriasian–Valanginian Geochronology and Carbon-Isotope Stratigraphy of the Yellow Cat Member, Cedar Mountain Formation, Eastern Utah, USA. Geosciences, 13(2), 32. https://doi.org/10.3390/geosciences13020032