U–Pb Geochronology and Stable Isotope Geochemistry of Terrestrial Carbonates, Lower Cretaceous Cedar Mountain Formation, Utah: Implications for Synchronicity of Terrestrial and Marine Carbon Isotope Excursions
Abstract
:1. Introduction
2. Geologic Setting
3. Materials and Methods
3.1. The Sample
3.2. Petrographic Investigations
3.3. Uranium Chemistry and Spatial Distribution
3.4. Uranium–Lead Geochronology
3.5. Carbon and Oxygen Isotopic Compositions of Carbonate Minerals
3.6. Carbonate Clumped Isotope Paleothermometry
4. Results
4.1. Carbonate Petrography
4.2. Uranium Chemistry and Spatial Distribution
4.3. Uranium–Lead Geochronology
4.4. Carbon and Oxygen Isotopic Compositions of Carbonate Minerals
4.5. Clumped Isotope Paleothermometry
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Schlanger, S.O.; Jenkyns, H.C. Cretaceous oceanic anoxic events: Causes and consequences. Geol. Mijnb. 1976, 55, 179–184. [Google Scholar]
- Scholle, P.A.; Arthur, M.A. Carbon isotope fluctuations in Cretaceous pelagic limestones: Potential stratigraphic and petroleum exploration tool. Am. Assoc. Pet. Geol. Bull. 1980, 64, 67–87. [Google Scholar]
- Jarvis, I.; Gale, A.; Jenkyns, H.C.; Pearce, M.A. Secular variation in Late Cretaceous carbon isotopes: A new δ13C carbonate reference curve for the Cenomanian-Campanian (99.6–70.6 Ma). Geol. Mag. 2006, 143, 561–608. [Google Scholar] [CrossRef]
- Jenkyns, H.C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 2010, 11. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, K.; Hu, D.; Sha, J. Mid-Cretaceous carbon cycle perturbations and Oceanic Anoxic Events recorded in southern Tibet. Sci. Rep. 2016, 6, 39643. [Google Scholar] [CrossRef] [PubMed]
- Leckie, R.M.; Bralower, T.J.; Cashman, R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 2002, 17, 13-1–13-29. [Google Scholar] [CrossRef]
- Taylor, B. The single largest oceanic plateau: Ontong Java–Manihiki–Hikurangi. Earth Planet. Sci. Lett. 2006, 241, 372–380. [Google Scholar] [CrossRef]
- Erba, E.; Duncan, R.A.; Bottini, C.; Tiraboschi, D.; Weissert, H.; Jenkyns, H.C.; Malinverno, A. Environmental consequences of Ontong Java Plateau and Kerguelen Plateau volcanism. In The Origin, Evolution, and Environmental Impact of Oceanic Large Igneous Provinces; Geological Society of America: Boulder, CO, USA, 2015; Volume 511, pp. 271–303. [Google Scholar] [CrossRef]
- Malinverno, A.; Erba, E.; Herbert, T.D. Orbital tuning as an inverse problem: Chronology of the early Aptian oceanic anoxic event 1a (Selli Level) in the Cismon APTICORE. Paleoceanography 2010, 25. [Google Scholar] [CrossRef]
- Malinverno, A.; Hildebrandt, J.; Tominaga, M.; Channell, J.E.T. M-sequence geomagnetic polarity time scale (MHTC12) that steadies global spreading rates and incorporates astrochronology constraints. J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef]
- Hasegawa, T. Cenomanian-Turonian carbon isotope events recorded in terrestrial organic matter from northern Japan. Palaeogeogr. Palaeoclim. Palaeoecol. 1997, 130, 251–273. [Google Scholar] [CrossRef]
- Gröcke, D.; Hesselbo, S.P.; Jenkyns, H. Carbon-isotope composition of Lower Cretaceous fossil wood: Ocean-atmosphere chemistry and relation to sea-level change. Geology 1999, 27, 155–158. [Google Scholar] [CrossRef]
- Gröcke, D.R.; Price, G.D.; Robinson, S.A.; Baraboshkin, E.Y.; Mutterlose, J.; Ruffell, A.H. The upper Valangian (Early Cretaceous) positive carbon-isotope event recorded in terrestrial plants. Earth Planet. Sci. Lett. 2005, 240, 495–509. [Google Scholar] [CrossRef]
- Gröcke, D.; Ludvigson, G.A.; Witzke, B.L.; Robinson, S.; Joeckel, R.M.; Ufnar, D.F.; Ravn, R.L. Recognizing the Albian-Cenomanian (OAE1d) sequence boundary using plant carbon isotopes: Dakota Formation, Western Interior Basin, USA. Geology 2006, 34, 193–196. [Google Scholar] [CrossRef]
- Ando, A.; Kakegawa, T. Carbon isotope records of terrestrial organic matter and the occurrence of planktonic foraminifera from the Albian stage of Hokkaido, Japan: Ocean-atmosphere δ13C trends and chronostratigraphic implications. Palaios 2007, 22, 417–432. [Google Scholar] [CrossRef]
- Jahren, A.H.; Arens, N.C.; Sarmiento, G.; Guerrero, J.; Amundson, R. Terrestrial record of methane hydrate dissociation in the Early Cretaceous. Geology 2001, 29, 159–162. [Google Scholar] [CrossRef]
- Jacobs, L.L.; Ferguson, K.; Polcyn, M.J.; Rennison, C. Cretaceous δ13C stratigraphy and the age dinosaurs and early mosasaurs. Geol. Mijnb. 2005, 84, 257–268. [Google Scholar] [CrossRef]
- Ludvigson, G.A.; Joeckel, R.M.; Gonzalez, L.; Gulbranson, E.L.; Rasbury, T.; Hunt, G.J.; Kirkland, J.I.; Madsen, S. Correlation of Aptian-Albian Carbon Isotope Excursions in Continental Strata of the Cretaceous Foreland Basin, Eastern Utah, U.S.A. J. Sediment. Res. 2010, 80, 955–974. [Google Scholar] [CrossRef]
- Ludvigson, G.; Joeckel, R.; Murphy, L.; Stockli, D.; González, L.; Suarez, C.; Kirkland, J.; Al-Suwaidi, A. The emerging terrestrial record of Aptian-Albian global change. Cretac. Res. 2015, 56, 1–24. [Google Scholar] [CrossRef]
- Li, X.; Xu, W.; Liu, W.; Zhou, Y.; Wang, Y.; Sun, Y.; Liu, L. Climatic and environmental indications of carbon and oxygen isotopes from the Lower Cretaceous calcrete and lacustrine carbonates in Southeast and Northwest China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 385, 171–189. [Google Scholar] [CrossRef]
- Joeckel, R.M.; Ludvigson, G.A.; Möller, A.; Hotton, C.L.; Suarez, M.B.; Suarez, C.A.; Sames, B.; Kirkland, J.I.; Hendrix, B. Chronostratigraphy and terrestrial palaeoclimatology of Berriasian–Hauterivian strata of the Cedar Mountain Formation, Utah, USA. Geol. Soc. Lond. Spec. Publ. 2019, 498, 75–100. [Google Scholar] [CrossRef]
- Suarez, M.B.; Knight, J.A.; Godet, A.; Ludvigson, G.A.; Snell, K.E.; Murphy, L.; Kirkland, J.I. Multiproxy strategy for determining palaeoclimate parameters in the Ruby Ranch Member of the Cedar Mountain Formation. Geol. Soc. Lond. Spec. Publ. 2020, 507, 313–334. [Google Scholar] [CrossRef]
- Kirkland, J.; Suarez, M.; Suarez, C.; Hunt-Foster, R. The Lower Cretaceous in east-central Utah—The Cedar Mountain Formation and its bounding strata. Geol. Intermt. West 2016, 3, 101–228. [Google Scholar] [CrossRef]
- Kirkland, J.I.; Burge, D.; Gaston, R. Lower to Middle Cretaceous dinosaur faunas of the central Colorado Plateau: A key to understanding 35 million years of tectonics, sedimentology, evolution, and biogeography. Brigh. Young Univ. Geol. Stud. 1997, 42, 69–104. [Google Scholar]
- Kirkland, J.I.; Madsen, S.K. The Lower Cretaceous Cedar Mountain Formation, eastern Utah–the view up an always interesting learning curve. In Field Guide to Geological Excursions in Southern Utah, Proceedings of the Geological Society of America Rocky Mountain Section 2007 Annual Meeting, Grand Junction Geological Society and Utah Geological Association Publication, St. George, UT, USA, 4–6 May 2007; Lund, W.R., Ed.; Utah Geological Association: Salt Lake City, UT, USA, 2007; Volume 35, pp. 1–108. [Google Scholar]
- Lawton, T.F.; Hunt, G.J.; Gehrels, G.E. Detrital zircon record of thrust belt unroofing in Lower Cretaceous synorogenic conglomerates, central Utah. Geology 2010, 38, 463–466. [Google Scholar] [CrossRef]
- Hunt, G.J.; Lawton, T.F.; Kirkland, J.I. Detrital zircon U-Pb geochronological provenance of Lower Cretaceous strata, foreland basin, Utah. In Sevier Thrust Belt: Northern and Central Utah and Adjacent Areas. Utah Geological Association Publication; Sprinkel, D.A., Yonkee, W.A., Chidsey, T.C., Jr., Eds.; Utah Geological Association Publication: Salt Lake City, UT, USA, 2011; Volume 40, pp. 193–211. [Google Scholar]
- Mattioli, E.; Pittet, B.; Riquier, L.; Grossi, V. The mid-Valanginian Weissert Event as recorded by calcareous nannoplankton in the Vocontian Basin. Palaeogeogr. Palaeoclim. Palaeoecol. 2014, 414, 472–485. [Google Scholar] [CrossRef]
- Cavalheiro, L.; Wagner, T.; Steinig, S.; Bottini, C.; Dummann, W.; Esegbue, O.; Gambacorta, G.; Giraldo-Gómez, V.; Farnsworth, A.; Flögel, S.; et al. Impact of global cooling on Early Cretaceous high pCO2 world during the Weissert Event. Nat. Commun. 2021, 12, 5411. [Google Scholar] [CrossRef] [PubMed]
- Cifelli, R.L.; Kirkland, J.I.; Weil, A.; Deino, A.L.; Kowallis, B.J. High-precision 40Ar/39Ar geochronology and the advent of North America’s Late Cretaceous terrestrial fauna. Proc. Natl. Acad. Sci. USA 1997, 94, 11163–11167. [Google Scholar] [CrossRef] [PubMed]
- Joeckel, R.M.; Suarez, C.A.; McLean, N.M.; Möller, A.; Ludvigson, G.A.; Suarez, M.B.; Kirkland, J.I.; Kiessling, S.; Hatzell, G. First Identification in Terrestrial Sediments and In-Situ Radiometric Dating of Valanginian Weissert Event; Yellow Cat Member, Cedar Mountain Formation, Eastern Utah, USA. Geosciences, 2022; in press. [Google Scholar]
- Garrison, J.R., Jr.; Brinkman, D.; Nichols, D.J.; Layer, P.; Burge, D.; Thayn, D. A multidisciplinary study of the Lower Cretaceous Cedar Mountain Formation, Mussentuchit Wash, Utah: A determination of the paleoenvironment and paleoecology of the Eolambia caroljonesa dinosaur quarry. Cretac. Res. 2007, 28, 461–494. [Google Scholar] [CrossRef]
- Tucker, R.T.; Zanno, L.E.; Huang, H.-Q.; Makovicky, P.J. A refined temporal framework for newly discovered fossil assemblages of the upper Cedar Mountain Formation (Mussentuchit Member), Mussentuchit Wash, Central Utah. Cretac. Res. 2020, 110, 104384. [Google Scholar] [CrossRef]
- Moorbath, S.; Taylor, P.N.; Orpen, J.L.; Treloar, P.; Wilson, J.F. First direct radiometric dating of Archaean stromatolitic limestone. Nature 1987, 326, 865–867. [Google Scholar] [CrossRef]
- Smith, P.E.; Farquhar, R.M. Direct dating of Phanerozoic sediments by the 238U–206Pb method. Nature 1989, 341, 518–521. [Google Scholar] [CrossRef]
- Rasbury, E.T.; Cole, J.M. Directly dating geologic events: U-Pb dating of carbonates. Rev. Geophys. 2009, 47. [Google Scholar] [CrossRef]
- Shapiro, R.S.; Fricke, H.C.; Fox, K. Dinosaur-bearing oncoids from ephemeral lakes of the Lower Cretaceous Cedar Mountain Formation, Utah. PALAIOS 2009, 24, 51–58. [Google Scholar] [CrossRef]
- Suarez, C.A.; González, L.A.; Ludvigson, G.A.; Cifelli, R.L.; Tremain, E. Water utilization of the Cretaceous Mussentuchit Member local vertebrate fauna, Cedar Mountain Formation, Utah, USA: Using oxygen isotopic composition of phosphate. Palaeogeogr. Palaeoclim. Palaeoecol. 2012, 313–314, 78–92. [Google Scholar] [CrossRef]
- Suarez, C.A.; Gonzalez, L.A.; Ludvigson, G.A.; Kirkland, J.I.; Cifelli, R.L.; Kohn, M.J. Multi-Taxa Isotopic Investigation of Paleohydrology in the Lower Cretaceous Cedar Mountain Formation, Eastern Utah, U.S.A.: Deciphering Effects of the Nevadaplano Plateau on Regional Climate. J. Sediment. Res. 2014, 84, 975–987. [Google Scholar] [CrossRef]
- Robertson, C.; Ludvigson, G.A.; Joeckel, R.; Mohammadi, S.; Kirkland, J.I. Differentiating early from later diagenesis in a Cretaceous sandstone and petroleum reservoir of the Cedar Mountain Formation, Utah. Rocky Mt. Geol. 2021, 56, 19–36. [Google Scholar] [CrossRef]
- Arens, N.C.; Harris, E.B. Paleoclimatic reconstruction for the Albian–Cenomanian transition based on a dominantly angiosperm flora from the Cedar Mountain Formation, Utah, USA. Cretac. Res. 2015, 53, 140–152. [Google Scholar] [CrossRef]
- Harris, E.B.; Arens, N.C. A mid-Cretaceous angiosperm-dominated macroflora from the Cedar Mountain Formation of Utah, USA. J. Paleontol. 2016, 90, 640–662. [Google Scholar] [CrossRef]
- Lohmann, K.C. Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In Paleokarst; James, N.P., Choquette, P.W., Eds.; Springer: New York, NY, USA, 1988; pp. 58–80. [Google Scholar]
- Kirkland, J.I.; Zanno, L.E.; Sampson, S.D.; Clark, J.M.; DeBlieux, D.D. A primitive therizinosaurid dinosaur from the Early Cretaceous of Utah. Nature 2005, 435, 84–87. [Google Scholar] [CrossRef]
- Currie, B.S. Structural configuration of the Early Cretaceous cordilleran foreland-basin system and Sevier thrust belt, Utah and Colorado. J. Geol. 2002, 110, 697–718. [Google Scholar] [CrossRef]
- Ufnar, D.; González, L.; Ludvigson, G.; Brenner, R.; Witzke, B. Evidence for increased latent heat transport during the Cretaceous (Albian) greenhouse warming. Geology 2004, 32, 1049–1052. [Google Scholar] [CrossRef]
- Suarez, M.B.; González, L.A.; Ludvigson, G.A.; Vega, F.J.; Alvarado-Ortega, J. Isotopic composition of low-latitude paleoprecipitation during the Early Cretaceous. GSA Bull. 2009, 121, 1584–1595. [Google Scholar] [CrossRef]
- Heller, P.L.; Paola, C. The paradox of Lower Cretaceous gravels and the initiation of thrusting in the Sevier orogenic belt, United States Western Interior. GSA Bull. 1989, 101, 864–875. [Google Scholar] [CrossRef]
- Yingling, V.L.; Heller, P.L. Timing and record of foreland sedimentation during the initiation of the Sevier orogenic belt in central Utah. Basin Res. 1992, 4, 279–290. [Google Scholar] [CrossRef]
- Miall, A.D. Reservoir Heterogeneities in Fluvial Sandstones: Lessons from Outcrop Studies. AAPG Bull. 1988, 72, 682–697. [Google Scholar] [CrossRef]
- DeCelles, P.G. Sedimentation in a tectonically partitioned, nonmarine foreland basin: The Lower Cretaceous Kootenai Formation, southwestern Montana. GSA Bull. 1986, 97, 911–931. [Google Scholar] [CrossRef]
- Britt, B.B.; Scheetz, R.D.; Brinkman, D.B.; Eberth, D.A. A Barremian neochoristodere from the Cedar Mountain Formation, Utah, U.S.A. J. Vertebr. Paleontol. 2006, 26, 1005–1008. [Google Scholar] [CrossRef]
- Aubrey, W.M. A newly discovered, widespread fluvial facies and unconformity marking the Upper Jurassic/Lower Cretaceous boundary, Colorado Plateau. In The Upper Jurassic Morrison Formation—An Interdisciplinary Study, Part I: Modern Geology; Carpenter, K., Chure, D., Kirkland, J.I., Eds.; 1998; Volume 22, pp. 209–233.
- Demko, T.M.; Currie, B.S.; Nicoll, K.A. Regional paleoclimatic and stratigraphic implications of paleosols and fluvial/overbank architecture in the Morrison Formation (Upper Jurassic), Western Interior, USA. Sediment. Geol. 2004, 167, 115–135. [Google Scholar] [CrossRef]
- Myers, T.S.; Tabor, N.J.; Rosenau, N.A. Multiproxy approach reveals evidence of highly variable paleoprecipitation in the Upper Jurassic Morrison Formation (western United States). GSA Bull. 2014, 126, 1105–1116. [Google Scholar] [CrossRef]
- Jordan, T.E. Thrust Loads and Foreland Basin Evolution, Cretaceous, Western United States. AAPG Bull. 1981, 65, 2506–2520. [Google Scholar] [CrossRef]
- DeCelles, P.G.; Coogan, J.C. Regional structure and kinematic history of the Sevier fold-thrust belt, central Utah: Implications for the Cordilleran magmatic arc and foreland basin system. GSA Bull. 2006, 118, 841–864. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Gehrels, G.E. Sediment delivery to the Cordilleran foreland basin: Insights from U-Pg ages of detrital zircons in Upper Jurassic and Cretaceous strata of the Colorado Plateau. Am. J. Sci. 2008, 308, 1041–1082. [Google Scholar]
- Suarez, M.; Suarez, C.; Al-Suwaidi, A.; Hatzell, G.; Kirkland, J.; Salazar-Verdin, J.; Ludvigson, G.; Joeckel, R. Terrestrial Carbon Isotope Chemostratigraphy in the Yellow Cat Member of the Cedar Mountain Formation. In Terrestrial Depositional Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 303–336. [Google Scholar] [CrossRef]
- Al-Suwaidi, A.H. A Ped’s Story–Weathering out Climatic Change during the Mid-Cretaceous. Master’s Thesis, University of Kansas, Lawrence, KS, USA, 2007; 134p. [Google Scholar]
- Kirschbaum, M.A.; Schenk, C.J. Sedimentology and Reservoir Heterogeneity of a Valley-Fill Deposit—A Field Guide to the Dakota Sandstone of the San Rafael Swell, Utah; US Geological Survey: Reston, VA, USA, 2011. [Google Scholar] [CrossRef]
- Montgomery, E. Limnogeology and Chemostratigraphy of Carbonates and Organic Carbon from the Cedar Mountain Formation (CMF), Eastern Utah. Master’s Thesis, University of Texas San Antonio, San Antonio, TX, USA, 2014; 68p. [Google Scholar]
- Sprinkel, D.A.; Madsen, S.K.; Kirkland, J.I.; Waanders, G.L.; Hunt, G.J. Cedar Mountain and Dakota Formations around Dinosaur National Monument–evidence of the first incursion of the Cretaceous Western Interior Seaway into Utah. In Utah Geological Survey Special Study; Utah Geological Survey: Salt Lake City, UT, USA, 2012; Volume 143, 21p. [Google Scholar]
- Cole, J.M.; Nienstedt, J.; Spataro, G.; Rasbury, E.T.; Lanzirotti, A.; Celestian, A.J.; Nilsson, M.; Hanson, G.N. A method for determining relative uranium concentrations in geological samples on a hand specimen scale. Chem. Geol. 2003, 193, 127–136. [Google Scholar] [CrossRef]
- Llorens, I.; Solari, P.L.; Sitaud, B.; Bes, R.; Cammelli, S.; Hermange, H.; Othmane, G.; Safi, S.; Moisy, P.; Wahu, S.; et al. X-ray absorption spectroscopy investigations on radioactive matter using MARS beamline at SOLEIL synchrotron. Radiochim. Acta 2014, 102, 957–972. [Google Scholar] [CrossRef]
- Roberts, N.M.W.; Rasbury, T.; Parrish, R.R.; Smith, C.J.; Horstwood, M.S.A.; Condon, D.J. A calcite reference material for LA-ICP-MS U-Pb geochronology. Geochem. Geophys. Geosyst. 2017, 18, 2807–2814. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Hellstrom, J.; Hergt, J.M.; Greig, A.; Maaß, R. Isotopic and Elemental Imaging of Geological Materials by Laser Ablation Inductively Coupled Plasma-Mass Spectrometry. Geostand. Geoanal. Res. 2007, 31, 331–343. [Google Scholar] [CrossRef]
- Cao, W.; Xi, D.; Melinte-Dobrinescu, M.C.; Jiang, T.; Wise, S.W.; Wan, X. Calcareous nannofossil changes linked to climate deterioration during the Paleocene–Eocene thermal maximum in Tarim Basin, NW China. Geosci. Front. 2018, 9, 1465–1478. [Google Scholar] [CrossRef]
- Roberts, N.M.W.; Drost, K.; Horstwood, M.S.A.; Condon, D.J.; Chew, D.; Drake, H.; Milodowski, A.E.; McLean, N.M.; Smye, A.J.; Walker, R.J.; et al. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb carbonate geochronology: Strategies, progress, and limitations. Geochronology 2020, 2, 33–61. [Google Scholar] [CrossRef]
- Pickering, R.; Edwards, T.R. Factors controlling age quality in UPb dated Plio-Pleistocene speleothems from South Africa: The good, the bad and the ugly. Chem. Geol. 2021, 579, 120364. [Google Scholar] [CrossRef]
- Passey, B.H.; Levin, N.E.; Cerling, T.E.; Brown, F.H.; Eiler, J.M. High-temperature environments of human evolution in East Africa based on bond ordering in paleosol carbonates. Proc. Natl. Acad. Sci. USA 2010, 107, 11245–11249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henkes, G.A.; Passey, B.H.; Wanamaker, A.D.; Grossman, E.L.; Ambrose, W.G.; Carroll, M.L. Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells. Geochim. Cosmochim. Acta 2013, 106, 307–325. [Google Scholar] [CrossRef]
- Gao, Y.; Henkes, G.A.; Cochran, J.K.; Landman, N.H. Temperatures of Late Cretaceous (Campanian) methane-derived authigenic carbonates from the Western Interior Seaway, South Dakota, USA, using clumped isotopes. GSA Bull. 2021, 133, 2524–2534. [Google Scholar] [CrossRef]
- Dennis, K.J.; Affek, H.P.; Passey, B.H.; Schrag, D.P.; Eiler, J.M. Defining an absolute reference frame for “clumped” isotope studies of CO2. Geochim. Cosmochim. Acta 2011, 75, 7117–7131. [Google Scholar] [CrossRef]
- Brand, W.A.; Assonov, S.S.; Coplen, T.B. Correction for the 17O interference in δ(13C) measurements when analyzing CO2 with stable isotope mass spectrometry (IUPAC Technical Report). Pure Appl. Chem. 2010, 82, 1719–1733. [Google Scholar] [CrossRef]
- Petersen, S.V.; Defliese, W.F.; Saenger, C.; Daëron, M.; Huntington, K.W.; John, C.M.; Kelson, J.R.; Bernasconi, S.M.; Colman, A.S.; Kluge, T.; et al. Effects of Improved 17O Correction on Interlaboratory Agreement in Clumped Isotope Calibrations, Estimates of Mineral-Specific Offsets, and Temperature Dependence of Acid Digestion Fractionation. Geochem. Geophys. Geosyst. 2019, 20, 3495–3519. [Google Scholar] [CrossRef]
- Kim, S.-T.; O’Neil, J.R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta 1997, 61, 3461–3475. [Google Scholar] [CrossRef]
- Hill, C.A.; Polyak, V.J.; Asmerom, Y.; Provencio, P.P. Constraints on a Late Cretaceous uplift, denudation, and incision of the Grand Canyon region, southwestern Colorado Plateau, USA, from U-Pb dating of lacustrine limestone. Tectonics 2016, 35, 896–906. [Google Scholar] [CrossRef]
- Hemingway, J.D.; Henkes, G.A. A disordered kinetic model for clumped isotope bond reordering in carbonates. Earth Planet. Sci. Lett. 2021, 566, 116962. [Google Scholar] [CrossRef]
- Lan, Z.; Wu, S.; Roberts, N.M.W.; Zhang, S.; Cao, R.; Wang, H.; Yang, Y. Geochronological and geochemical constraints on the origin of highly 13Ccarb-depleted calcite in basal Ediacaran cap carbonate. Geol. Mag. 2022, 159, 1323–1334. [Google Scholar] [CrossRef]
- Lan, Z.; Roberts, N.M.; Zhou, Y.; Zhang, S.; Li, Z.; Zhao, T. Application of in situ U-Pb carbonate geochronology to Stenian-Tonian successions of North China. Precambrian Res. 2022, 370, 106551. [Google Scholar] [CrossRef]
- Ludwig, K.R. Uranium-daughter migration and U/Pb isotope apparent ages of uranium ores, Shirley Basin, Wyoming. Econ. Geol. 1978, 73, 29–49. [Google Scholar] [CrossRef]
- Sturchio, N.C.; Antonio, M.R.; Soderholm, L.; Sutton, S.R.; Brannon, J.C. Tetravalent Uranium in Calcite. Science 1998, 281, 971–973. [Google Scholar] [CrossRef]
- Reeder, R.J.; Nugent, M.; Lamble, G.M.; Tait, C.D.; Morris, D.E. Uranyl Incorporation into Calcite and Aragonite: XAFS and Luminescence Studies. Environ. Sci. Technol. 2000, 34, 638–644. [Google Scholar] [CrossRef]
- Choquette, P.W.; James, N.P. Diagenesis #12: Diagenesis in limestones—3: The deep burial environment. Geosci. Can. 1987, 14, 3–5. [Google Scholar]
- Algeo, T.J.; Wilkinson, B.H.; Lohmann, K.C. Meteoric-burial diagenesis of Middle Pennsylvanian limestones in the Orogrande Basin, New Mexico: Water/rock interactions and basin geothermics. J. Sediment. Petrol. 1992, 62, 652–670. [Google Scholar]
- Hasiuk, F.J.; Kaczmarek, S.E.; Fullmer, S.M. Diagenetic Origins of the Calcite Microcrystals That Host Microporosity in Limestone Reservoirs. J. Sediment. Res. 2016, 86, 1163–1178. [Google Scholar] [CrossRef]
- Passey, B.H.; Henkes, G.A. Carbonate clumped isotope bond reordering and geospeedometry. Earth Planet. Sci. Lett. 2012, 351–352, 223–236. [Google Scholar] [CrossRef]
- Stolper, D.A.; Eiler, J.M. The kinetics of solid-state isotope-exchange reactions for clumped isotopes: A study of inorganic calcites and apatites from natural and experimental samples. Am. J. Sci. 2015, 315, 363–411. [Google Scholar] [CrossRef]
- MacDonald, J.M.; Faithfull, J.W.; Roberts, N.M.W.; Davies, A.J.; Holdsworth, C.M.; Newton, M.; Williamson, S.; Boyce, A.; John, C.M. Clumped-isotope palaeothermometry and LA-ICP-MS U–Pb dating of lava-pile hydrothermal calcite veins. Contrib. Mineral. Petrol. 2019, 174, 63. [Google Scholar] [CrossRef]
- Vermeesch, P. Maximum depositional age estimation revisited. Geosci. Front. 2020, 12, 843–850. [Google Scholar] [CrossRef]
- Platt, N.H.; Wright, V.P. Palustrine carbonates and the Florida Everglades; towards and exposure index for the fresh-water environment? J. Sediment. Res. 1992, 62, 1058–1071. [Google Scholar]
- Freytet, P.; Verrecchia, E.P. Lacustrine and palustrine carbonate petrography: An overview. J. Paleolimnol. 2002, 27, 221–237. [Google Scholar] [CrossRef]
- Alonso-Zarza, A.M.; Wright, V.P. Palustrine carbonates. Dev. Sedimentol. 2010, 61, 103–131. [Google Scholar]
- Sheldon, N.D.; Tabor, N.J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Sci. Rev. 2009, 95, 1–52. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, J.; Wu, S.; Chen, F.; Yang, Y. Divalent heavy metals and uranyl cations incorporated in calcite change its dissolution process. Sci. Rep. 2020, 10, 16864. [Google Scholar] [CrossRef]
- Banner, J.L.; Hanson, G.N. Calculation of simultaneous isotopic and trace element variations during water-rock interaction with applications to carbonate diagenesis. Geochim. Cosmochim. Acta 1990, 54, 3123–3137. [Google Scholar] [CrossRef]
- Ahm, A.-S.C.; Bjerrum, C.J.; Blättler, C.L.; Swart, P.K.; Higgins, J.A. Quantifying early marine diagenesis in shallow-water carbonate sediments. Geochim. Cosmochim. Acta 2018, 236, 140–159. [Google Scholar] [CrossRef]
- Galloway, J.M.; Hadlari, T.; Fensome, R.; Swindles, G.T.; Schroder-Adams, C.; Herrle, J.; Fath, J. Response of vegetation to Lower Cretaceous paleoclimate variation in the Canadian Arctic. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 4–13 April 2018; p. 10324. [Google Scholar]
- Li, J.; Wen, X.; Huang, C. Lower Cretaceous paleosols and paleoclimate in Sichuan Basin, China. Cretac. Res. 2016, 62, 154–171. [Google Scholar] [CrossRef]
- Mutterlose, J.; Ruffell, A. Milankovitch-scale palaeoclimate changes in pale–dark bedding rhythms from the Early Cretaceous (Hauterivian and Barremian) of eastern England and northern Germany. Palaeogeogr. Palaeoclim. Palaeoecol. 1999, 154, 133–160. [Google Scholar] [CrossRef]
Instrument | Settings and Running Parameters |
---|---|
New Wave Research UP-213 Laser | Fluence: 0.75–1.20 J cm−2 |
Repetition Rate: 20 Hz | |
Ablation duration for spots: 30 s | |
Sample movement rate for maps: 20 microns/s | |
Spot diameter: 120 microns | |
Carrier gas: 100% He in cell—1.21 L/min | |
Makeup gas: Ar—0.85–0.9 L/min (tuned to optimize signal and minimize doubly charged ions and oxides (sourced from Agilent) | |
Agilent 7500cx Quadrupole ICP-MS | Sample introduction: ablation aerosol via conventional tubing |
RF power: 1250 W | |
Detection system: Dual-mode electron multiplier | |
Masses Measured: 238U, 232Th, 208Pb, 207Pb, 206Pb, 88Sr, 43Ca, 28Si, 24Mg |
Instrument | Settings and Running Parameters |
---|---|
Arf excimer 193 nm, Photon Machines Analyte G2, Atlex300 | Fluence: 2.7 J cm−2 |
Repetition Rate: 10 Hz | |
Ablation duration for spots: 30 s | |
Sample movement rate for maps: 20 microns/s | |
Spot diameter: 130 microns | |
Carrier gas: He—1.1 L/min, Ar—1.35 L/min (two-volume cell) | |
Makeup gas: Ar—0.85–0.9 L/min (tuned to optimize signal and minimize doubly charged ions and oxides (sourced from Agilent) | |
Thermo Element2 magnetic sector field ICP-MS | Sample introduction: ablation aerosol via conventional tubing |
RF power: 1350 W | |
Detection system: single detector, counting | |
Masses Measured: 238U, 232Th, 208Pb, 207Pb, 206Pb |
δ18O (VPDB) | δ13C (VPDB) | Carbonate Domain | Cement Stratigraphy |
---|---|---|---|
−9.66 | −3.80 | Micrite | Stratum 1 |
−9.96 | −3.83 | Micrite | Stratum 1 |
−10.14 | −3.82 | Micrite | Stratum 1 |
−10.46 | −3.79 | Micrite | Stratum 1 |
−10.28 | −4.09 | Micrite | Stratum 1 |
−10.06 | −3.87 | Micrite | Stratum 1 |
−10.35 | −4.08 | Micrite | Stratum 1 |
−9.75 | −3.82 | Micrite | Stratum 1 |
−10.26 | −3.79 | Micrite | Stratum 1 |
−9.95 | −3.56 | Micrite | Stratum 1 |
−9.30 | −3.26 | Micrite | Stratum 1 |
−8.88 | −3.71 | Micrite | Stratum 1 |
−8.86 | −3.62 | Micrite | Stratum 1 |
−10.65 | −4.56 | Micrite | Stratum 3 |
−10.56 | −4.59 | Micrite | Stratum 3 |
−10.52 | −4.53 | Micrite | Stratum 3 |
−10.60 | −4.46 | Micrite | Stratum 3 |
−10.48 | −4.32 | Micrite | Stratum 3 |
−9.78 | −4.06 | Micrite | Stratum 3 |
−9.36 | −4.24 | Micrite | Stratum 3 |
−8.51 | −3.93 | Micrite | Stratum 3 |
−8.06 | −3.80 | Micrite | Stratum 3 |
−8.90 | −3.92 | Micrite | Stratum 3 |
−9.61 | −4.00 | Micrite | Stratum 3 |
−9.39 | −3.73 | Micrite | Stratum 3 |
−11.08 | −4.82 | Micrite | Stratum 4 |
−11.37 | −4.91 | Micrite | Stratum 4 |
−7.47 | −3.81 | Micrite | Stratum 4 |
−7.65 | −4.12 | Micrite | Stratum 4 |
−10.47 | −4.78 | Micrite | Stratum 4 |
−10.58 | −4.34 | Micrite | Stratum 4 |
−10.59 | −4.34 | Micrite | Stratum 4 |
−9.90 | −5.41 | Micrite | Stratum 4 |
−7.89 | −3.94 | Micrite | Stratum 4 |
−7.45 | −3.33 | Micrite | Stratum 4 |
−7.83 | −3.83 | Micrite | Stratum 4 |
−7.85 | −3.97 | Micrite | Stratum 4 |
−7.77 | −4.08 | Micrite | Stratum 4 |
−7.61 | −4.14 | Micrite | Stratum 4 |
−8.03 | −4.1 | Micrite | (Stratum 2) U-enriched |
−8.26 | −4.29 | Micrite | (Stratum 2) U-enriched |
−8.4 | −4.26 | Micrite | (Stratum 2) U-enriched |
−8.56 | −4.27 | Micrite | (Stratum 2) U-enriched |
−8.45 | −4.24 | Micrite | (Stratum 2) U-enriched |
−8.48 | −4.32 | Micrite | (Stratum 2) U-enriched |
−8.18 | −4.1 | Micrite | (Stratum 2) U-enriched |
−8.08 | −4.15 | Micrite | (Stratum 2) U-enriched |
−8.01 | −3.91 | Micrite | (Stratum 2) U-enriched |
−8.38 | −4.17 | Micrite | (Stratum 2) U-enriched |
−8.16 | −4.14 | Micrite | (Stratum 2) U-enriched |
−7.89 | −4.02 | Micrite | (Stratum 2) U-enriched |
−8.32 | −4.17 | Micrite | (Stratum 2) U-enriched |
−8.07 | −4.32 | Micrite | (Stratum 2) U-enriched |
−8.1 | −4.12 | Micrite | (Stratum 2) U-enriched |
−8.05 | −4.14 | Micrite | (Stratum 2) U-enriched |
−6.88 | −3.4 | Micrite | Stratum 1 |
−7.05 | −4.04 | Micrite | Stratum 1 |
−6.76 | −3.82 | Micrite | Stratum 4 |
−7.8 | −4.43 | Micrite | (Stratum 2) U-enriched |
−6.54 | −3.04 | Micrite | Stratum 4 |
−12.11 | −6.22 | Sparite | Stratum 4 |
−7.54 | −4.36 | Micrite | Stratum 1 |
−7.54 | −4.26 | Micrite | Stratum 1 |
−7.00 | −4.06 | Micrite | Stratum 1 |
−7.95 | −4.50 | Micrite | Stratum 1 |
−7.14 | −4.09 | Micrite | Stratum 1 |
−6.93 | −3.66 | Micrite | Stratum 1 |
−6.83 | −4.01 | Micrite | Stratum 1 |
−6.90 | −3.61 | Micrite | Stratum 1 |
−6.58 | −4.21 | Micrite | Stratum 1 |
−8.29 | −4.25 | Micrite | Stratum 1 |
−9.58 | −5.18 | Micrite | Stratum 1 |
−9.32 | −4.12 | Micrite | Stratum 1 |
−4.21 | −2.85 | Micrite | Stratum 1 |
−9.65 | −4.45 | Micrite | Stratum 1 |
−8.19 | −4.28 | Micrite | Stratum 1 |
−5.46 | −3.13 | Micrite | Stratum 1 |
−8.43 | −4.16 | Micrite | Stratum 1 |
−7.50 | −4.83 | Micrite | Stratum 1 |
Sample | n | δ13C ± 1 SD | δ18O ± 1 SD | Δ47 ± 1 SD | T (Δ47) | T (Δ47) | δ18Ofluid | δ18Ofluid |
---|---|---|---|---|---|---|---|---|
(‰, VPDB) | (‰, VPDB) | (‰, CDES90) | (°C) | 95% CI * | (‰, VSMOW) | 95% CI # | ||
CdrMtn1 | 1 | −3.33 | −7.19 | 0.481 | 72 | 12 | 3.0 | 1.7 |
CdrMtn2 | 2 | −4.07 ± 0.04 | −8.44 ± 0.06 | 0.405 ± 0.009 | 116 | 12 | 7.7 | 1.4 |
CdrMtn3 | 3 | −4.07 ± 0.03 | −8.58 ± 0.05 | 0.388 ± 0.015 | 128 | 13 | 9.1 | 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulbranson, E.L.; Rasbury, E.T.; Ludvigson, G.A.; Möller, A.; Henkes, G.A.; Suarez, M.B.; Northrup, P.; Tappero, R.V.; Maxson, J.A.; Shapiro, R.S.; et al. U–Pb Geochronology and Stable Isotope Geochemistry of Terrestrial Carbonates, Lower Cretaceous Cedar Mountain Formation, Utah: Implications for Synchronicity of Terrestrial and Marine Carbon Isotope Excursions. Geosciences 2022, 12, 346. https://doi.org/10.3390/geosciences12090346
Gulbranson EL, Rasbury ET, Ludvigson GA, Möller A, Henkes GA, Suarez MB, Northrup P, Tappero RV, Maxson JA, Shapiro RS, et al. U–Pb Geochronology and Stable Isotope Geochemistry of Terrestrial Carbonates, Lower Cretaceous Cedar Mountain Formation, Utah: Implications for Synchronicity of Terrestrial and Marine Carbon Isotope Excursions. Geosciences. 2022; 12(9):346. https://doi.org/10.3390/geosciences12090346
Chicago/Turabian StyleGulbranson, Erik L., E. Troy Rasbury, Greg A. Ludvigson, Andreas Möller, Gregory A. Henkes, Marina B. Suarez, Paul Northrup, Ryan V. Tappero, Julie A. Maxson, Russell S. Shapiro, and et al. 2022. "U–Pb Geochronology and Stable Isotope Geochemistry of Terrestrial Carbonates, Lower Cretaceous Cedar Mountain Formation, Utah: Implications for Synchronicity of Terrestrial and Marine Carbon Isotope Excursions" Geosciences 12, no. 9: 346. https://doi.org/10.3390/geosciences12090346
APA StyleGulbranson, E. L., Rasbury, E. T., Ludvigson, G. A., Möller, A., Henkes, G. A., Suarez, M. B., Northrup, P., Tappero, R. V., Maxson, J. A., Shapiro, R. S., & Wooton, K. M. (2022). U–Pb Geochronology and Stable Isotope Geochemistry of Terrestrial Carbonates, Lower Cretaceous Cedar Mountain Formation, Utah: Implications for Synchronicity of Terrestrial and Marine Carbon Isotope Excursions. Geosciences, 12(9), 346. https://doi.org/10.3390/geosciences12090346