Piuro Landslide: 3D Hydromechanical Numerical Modelling of the 1618 Event
Abstract
:1. Introduction
2. Materials and Methods
2.1. Piuro Landslide
2.1.1. Geological Settings
2.1.2. Geomorphological Settings
2.1.3. Geomechanical Surveys
2.1.4. Laboratory Tests
2.2. Geomechanical Model
2.2.1. Modelling Approach
2.2.2. Geomechanical Conceptual Model
2.2.3. Hydrogeological Conceptual Model
- -
- Function over time of vertical water infiltration along slope surfaces (8 × 10−7 m/s for 432,000 s);
- -
- Zero pore pressure along the Piuro Valley floor, Aurosina Valley, and Schiesone Valley, simulating the presence of streams;
- -
- No flow along the sides and at the base of the model.
2.2.4. Modelling Procedure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scaramellini, G.; Kahl, G.; Falappi, G.P. La Frana di Piuro del 1618: Storia e Immagini di una Rovina; Associazione italo-svizzera per gli scavi di Piuro: Borgonuovo, Italy, 1988. [Google Scholar]
- Scaramellini, G.; Kahl, G.; Falappi, G.P. La Frana di Piuro del 1618: Storia e Immagini di una Rovina, 2nd ed.; Associazione italo-svizzera per gli scavi di Piuro: Borgonuovo, Italy, 1995. [Google Scholar]
- Pigazzi, E.; Bersezio, R.; Morcioni, A.; Tantardini, D.; Apuani, T. Geology of the area of the Piuro 1618 event (Val Bregaglia, Italian Central Alps): The setting of a catastrophic historical landslide. J. Maps 2022, 18, 342–351. [Google Scholar] [CrossRef]
- Mann, M.; Zhang, Z.; Rutherford, S.; Bradley, R.; Hughes, M.; Shindell, D.; Ammann, C.; Faluvegi, G.; Ni, F. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 2009, 326, 1256–1260. [Google Scholar] [CrossRef] [PubMed]
- Grove, A.T. The little ice age and its geomorphological consequences in mediterranean Europe. Clim. Change 2001, 48, 121–136. [Google Scholar] [CrossRef]
- De Pedrini, A.; Ambrosi, C.; Scapozza, C. The 1513 Monte Crenone rock avalanche: Numerical model and geomorphological analysis. Geogr. Helv. 2022, 77, 21–37. [Google Scholar] [CrossRef]
- Scapozza, C.; Tognacca, C.; Ambrosi, C.; Seno, S. 20 maggio 1515: La “Buzza” che impressionò l’Europa. Boll. Soc. Ticin. Sci. Nat. 2015, 103, 78–88. [Google Scholar]
- Stoffel, M.; Beniston, M. On the incidence of debris flows from the early Little Ice Age to a future greenhouse climate: A case study from the Swiss Alps. Geophys. Res. Lett. 2006, 33, L16404. [Google Scholar] [CrossRef]
- Maraun, D.; Knevels, R.; Mishra, A.N.; Truhetz, H.; Bevacqua, E.; Proske, H.; Zappa, G.; Brenning, A.; Petschko, H.; Schaffer, A.; et al. A severe landslide event in the Alpine foreland under possible future climate and land-use changes. Commun. Earth Environ. 2022, 3, 87. [Google Scholar] [CrossRef]
- Crosta, G.; Chen, H.; Lee, C. Replay of the 1987 Val Pola Landslide, Italian Alps. Geomorphology 2004, 60, 127–146. [Google Scholar] [CrossRef]
- Barla, G.; Barla, M. Investigation and modelling of the Brenva Glacier rock avalanche on the Mount Blanc Range. In Proceedings of the ISRM Regional Symposium Eurock, Espoo, Finland, 4–7 June 2001; pp. 35–40. [Google Scholar]
- Loew, S.; Gschwind, S.; Gischig, V.; Keller-Signer, A.; Valenti, G. Monitoring and early warning of the 2012 Preonzo catastrophic rockslope failure. Landslides 2016, 14, 141–154. [Google Scholar] [CrossRef]
- Morcioni, A.; Bajni, G.; Apuani, T. The Cimaganda Rockslide (Italian Alps): Geomechanical characterization and hydro-mechanical numerical modelling. Rend. Online Soc. Geol. Ital. 2020, 52, 40–46. [Google Scholar] [CrossRef]
- Walter, F.; Amann, F.; Kos, A.; Kenner, R.; Phillips, M.; de Preux, A.; Huss, M.; Tognacca, C.; Clinton, J.; Diehl, T.; et al. Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows. Geomorphology 2020, 351, 106933. [Google Scholar] [CrossRef]
- Carlà, T.; Gigli, G.; Lombardi, L.; Nocentini, M.; Casagli, N. Monitoring and analysis of the exceptional displacements affecting debris at the top of a highly disaggregated rockslide. Eng. Geol. 2021, 294, 106345. [Google Scholar] [CrossRef]
- Preisig, G.; Eberhardt, E.; Smithyman, M.; Preh, A.; Bonzanigo, L. Hydromechanical Rock Mass Fatigue in Deep-Seated Landslides Accompanying Seasonal Variations in Pore Pressures. Rock Mech. Rock Eng. 2016, 49, 2333–2351. [Google Scholar] [CrossRef]
- Manconi, A.; Giordan, D. Landslide early warning based on failure forecast models: The example of the Mt. de La Saxe rockslide, northern Italy. Nat. Hazards Earth Syst. Sci. 2015, 15, 1639–1644. [Google Scholar] [CrossRef]
- Eberhardt, E. Twenty-ninth Canadian Geotechnical Colloquium: The role of advanced numerical methods and geotechnical field measurements in understanding complex deep-seated rock slope failure mechanisms. Can. Geotech. J. 2008, 45, 484–510. [Google Scholar] [CrossRef]
- Pedrazzini, A.; Jaboyedoff, M.; Loye, A.; Derron, M.-H. From deep seated slope deformation to rock avalanche: Destabilization and transportation models of the Sierre landslide (Switzerland). Tectonophysics 2013, 605, 149–168. [Google Scholar] [CrossRef]
- Leith, K.; Moore, J.R.; Amann, F.; Loew, S. Subglacial extensional fracture development and implications for Alpine Valley evolution. J. Geophys. Res. Earth Surf. 2014, 119, 62–81. [Google Scholar] [CrossRef]
- Bonzanigo, L.; Oppizzi, P.; Tornaghi, M.; Uggeri, U. Hydrodynamics and rheology: Key factors in mechanisms of large landslides. In Proceedings of the 2006 ECI Conference on Geohazards, Lillehammer, Norway, 18–21 June 2006. [Google Scholar]
- Calista, M.; Miccadei, E.; Piacentini, T.; Sciarra, N. Morphostructural, Meteorological and Seismic Factors Controlling Landslides in Weak Rocks: The Case Studies of Castelnuovo and Ponzano (North East Abruzzo, Central Italy). Geosciences 2019, 9, 122. [Google Scholar] [CrossRef]
- Nguyen, L.C.; Van Tien, P.; Do, T.-N. Deep-seated rainfall-induced landslides on a new expressway: A case study in Vietnam. Landslides 2019, 17, 395–407. [Google Scholar] [CrossRef]
- Gischig, V.S.; Moore, J.; Evans, K.F.; Amann, F.; Loew, S. Thermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slope. J. Geophys. Res. Atmos. 2011, 116, 1–18. [Google Scholar] [CrossRef]
- Morcioni, A.; Apuani, T.; Cecinato, F. The Role of Temperature in the Stress–Strain Evolution of Alpine Rock-Slopes: Thermo-Mechanical Modelling of the Cimaganda Rockslide. Rock Mech. Rock Eng. 2022, 55, 2149–2172. [Google Scholar] [CrossRef]
- Scaringi, G.; Loche, M. A thermo-hydro-mechanical approach to soil slope stability under climate change. Geomorphology 2022, 401, 108108. [Google Scholar] [CrossRef]
- Grämiger, L.M.; Moore, J.R.; Gischig, V.S.; Loew, S. Thermomechanical Stresses Drive Damage of Alpine Valley Rock Walls During Repeat Glacial Cycles. J. Geophys. Res. Earth Surf. 2018, 123, 2620–2646. [Google Scholar] [CrossRef]
- Baroni, C.; Martino, S.; Salvatore, M.C.; Mugnozza, G.S.; Schilirò, L. Thermomechanical stress–strain numerical modelling of deglaciation since the Last Glacial Maximum in the Adamello Group (Rhaetian Alps, Italy). Geomorphology 2014, 226, 278–299. [Google Scholar] [CrossRef]
- Seguí, C.; Veveakis, M. Continuous assessment of landslides by measuring their basal temperature. Landslides 2021, 18, 3953–3961. [Google Scholar] [CrossRef]
- Seguí, C.; Rattez, H.; Veveakis, M. On the Stability of Deep-Seated Landslides. The Cases of Vaiont (Italy) and Shuping (Three Gorges Dam, China). J. Geophys. Res. Earth Surf. 2020, 125, e2019JF005203. [Google Scholar] [CrossRef]
- Cecinato, F.; Zervos, A.; Veveakis, E. A thermo-mechanical model for the catastrophic collapse of large landslides. Int. J. Numer. Anal. Methods Géoméch. 2010, 35, 1507–1535. [Google Scholar] [CrossRef]
- Veveakis, M.; Vardoulakis, I.; Di Toro, G. Thermoporomechanics of creeping landslides: The 1963 Vaiont slide, northern Italy. J. Geophys. Res. Atmos. 2007, 112, F03026. [Google Scholar] [CrossRef]
- Vardoulakis, I. Dynamic thermo-poro-mechanical analysis of catastrophic landslides. Geotechnique 2002, 52, 157–171. [Google Scholar] [CrossRef]
- Eberhardt, E.; Stead, D.; Coggan, J. Numerical analysis of initiation and progressive failure in natural rock slopes—The 1991 Randa rockslide. Int. J. Rock Mech. Min. Sci. 2004, 41, 69–87. [Google Scholar] [CrossRef]
- Brideau, M.-A.; Yan, M.; Stead, D. The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology 2009, 103, 30–49. [Google Scholar] [CrossRef]
- Scholtès, L.; Donzé, F.-V. Modelling progressive failure in fractured rock masses using a 3D discrete element method. Int. J. Rock Mech. Min. Sci. 2012, 52, 18–30. [Google Scholar] [CrossRef]
- Sandøy, G.; Oppikofer, T.; Nilsen, B. Why did the 1756 Tjellefonna rockslide occur? A back-analysis of the largest historic rockslide in Norway. Geomorphology 2017, 289, 78–95. [Google Scholar] [CrossRef]
- Shen, H.; Klapperich, H.; Abbas, S.M.; Ibrahim, A. Slope stability analysis based on the integration of GIS and numerical simulation. Autom. Constr. 2012, 26, 46–53. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y. Identification of failure slip surfaces for landslide risk assessment using smoothed particle hydrodynamics. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2019, 14, 91–111. [Google Scholar] [CrossRef]
- Liu, B.; He, K.; Han, M.; Hu, X.; Wu, T.; Wu, M.; Ma, G. Dynamic process simulation of the Xiaogangjian rockslide occurred in shattered mountain based on 3DEC and DFN. Comput. Geotech. 2021, 134, 104122. [Google Scholar] [CrossRef]
- Riva, F.; Agliardi, F.; Amitrano, D.; Crosta, G. Damage-based time-dependent modeling of paraglacial to postglacial progressive failure of large rock slopes. J. Geophys. Res. Earth Surf. 2018, 123, 124–141. [Google Scholar] [CrossRef]
- Commend, S.; Geiser, F.; Tacher, L. 3D numerical modeling of a landslide in Switzerland. Numerical Models in Geomechanics. In Proceedings of the 9th Proceedings of the International Symposium on Numerical Models in Geomechanics, NUMOG, Ottawa, ON, Canada, 25–27 August 2004; pp. 595–602. [Google Scholar] [CrossRef]
- Lignon, S.; Laouafa, F.; Prunier, F.; Khoa, H.; Darve, F. Hydro-mechanical modelling of landslides with a material instability criterion. Geotechnique 2009, 59, 513–524. [Google Scholar] [CrossRef]
- Mergili, M.; Marchesini, I.; Rossi, M.; Guzzetti, F.; Fellin, W. Spatially distributed three-dimensional slope stability modelling in a raster GIS. Geomorphology 2014, 206, 178–195. [Google Scholar] [CrossRef]
- Wolter, A.; Havaej, M.; Zorzi, L.; Stead, D.; Clague, J.J.; Ghirotti, M.; Genevois, R. Exploration of the kinematics of the 1963 vajont slide, Italy, using a numerical modelling toolbox. Ital. J. Eng. Geol. Environ. 2013, 6, 599–612. [Google Scholar] [CrossRef]
- Montrasio, A.; Sciesa, E. Carta geologica della valle Spluga ed aree adiacenti, scala 1:50.000. CNR-Prog. Strat. Crosta Profond. (CROP) Milano 1988. Università di Milano. [Google Scholar]
- Falappi, P. La frana di Piuro in Bregaglia del 1618: Fantasie e realtà. Quaderni grigionitaliani 2012, 81, 123–137. [Google Scholar] [CrossRef]
- Schmutz, H. Der Mafit-Ultramafit-Komplex zwischen Chiavenna und Val Bondasca. Beitr. Geol. Karte Schweiz. N.F. 1976, 149, 73. [Google Scholar]
- Tibaldi, A.; Pasquarè, F. Quaternary deformations along the ‘Engadine–Gruf tectonic system’, Swiss–Italian Alps. J. Quat. Sci. 2009, 22, 311–320. [Google Scholar] [CrossRef]
- Trümpy, R. The Engadine line: A sinistral wrench fault in the Central Alps. Mem. Geol. Soc. China 1977, 2, 1. [Google Scholar]
- Wenk, H.-R. Brittle-ductile Transition Zone in the Northern Bergell Alps. Int. J. Earth Sci. 1984, 73, 419–431. [Google Scholar] [CrossRef]
- Albini, P.; Bellani, A.; Stucchi, M. Terremoti e frane nelle Alpi Centrali. Atti Del 1988, 7, 129–146. [Google Scholar]
- ISMES. Studi Sismici in Alta Valtellina; I quaderni dell’ISMES 336: Bergamo, Italy, 1994. [Google Scholar]
- Galli, A. Tectono-Metamorphic Evolution of the Gruf complex (Swiss and Italian Central Alps). Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2010. [Google Scholar]
- Tantardini, D.; Stevenazzi, S.; Apuani, T. The Last Glaciation in Valchiavenna (Italian Alps): Maximum ice elevation data and recessional glacial deposits and landforms. Ital. J. Geosci. 2022, 141, 259–277. [Google Scholar] [CrossRef]
- ISRM—International society for Rock Mechanics. Rock Characterization, Testing and Monitoring; ISRM Suggested Methods: Pergamon, London, 1981. [Google Scholar]
- Bieniawski, Z.T. Engineering Rock Mass Classification—Cap. 4; Butterworth-Heinemann: Boston, MA, USA, 1989; pp. 51–69. [Google Scholar]
- Hoek, E.; Marinos, P. Predicting tunnel squeezing problems in weak heterogeneous rock masses. Tunn. Tunn. Int. 2000, 32, 45–51. [Google Scholar]
- ASTM D7012-14; Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures. ASTM International: West Conshohocken, PA, USA, 2014. [CrossRef]
- ASTM D5607-08; Standard Test Method for Performing Laboratory Direct Shear Strength Tests of Rock Specimens Under Constant Normal Force. ASTM International: West Conshohocken, PA, USA, 2008. [CrossRef]
- ISRM—International society for Rock Mechanics. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Kulatilake, P.H.S.W.; Shreedharan, S.; Sherizadeh, T.; Shu, B.; Xing, Y.; He, P. Laboratory Estimation of Rock Joint Stiffness and Frictional Parameters. Geotech. Geol. Eng. 2016, 34, 1723–1735. [Google Scholar] [CrossRef]
- Itasca. FLAC3D—Fast Lagrangian Analysis of Continua; Version 7.0, User’s Manual; Itasca Consulting Group, Inc.: Minneapolis, MN, USA, 2019. [Google Scholar]
- de Ojeda, P.S.; Sanz, E.; Galindo, R. Historical reconstruction and evolution of the large landslide of Inza (Navarra, Spain). Nat. Hazards 2021, 109, 2095–2126. [Google Scholar] [CrossRef]
- Zabuski, L. Three-Dimensional Analysis of a Landslide Process on a Slope in Carpathian Flysch. Arch. Hydro-Eng. Environ. Mech. 2019, 66, 27–45. [Google Scholar] [CrossRef]
- Intrepid Geophysics. Geomodeller; Version 3, User’s Manual; Intrepid Geophysics, Inc.: Brightorn, UK, 2014. [Google Scholar]
- McNeel, R. Rhinoceros 3D; Version 6.0; Robert McNeel & Associates: Seattle, WA, USA, 2010. [Google Scholar]
- Hoek, E.; Carranza-Torres, C.; Corkum, B. Hoek-Brown failure criterion—2002 edition. In Proceedings of the NARMS-TAC Conference, Toronto, ON, Canada, 7–10 July 2002; pp. 267–273. [Google Scholar]
- Lotti, F.; Baiocchi, A.; D’onofrio, S.; Piscopo, V. Hydrogeological site characterization of marly-silici-calcareous rocks through surveys of discontinuities and pumping tests. Acque Sotter. Ital. J. Groundw. 2012, 1, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Sheng, Q.; Zhang, G.; Cui, Z. A 3D Discrete-Continuum Coupling Approach for Investigating the Deformation and Failure Mechanism of Tunnels across an Active Fault: A Case Study of Xianglushan Tunnel. Appl. Sci. 2019, 9, 2318. [Google Scholar] [CrossRef]
- Pu, S.; Yu, T.; Ye, L.; Liao, H.; Fang, Y.; Yao, Z.; Wang, J. Study on Instability Mechanism and Support Scheme of the Tunnel Face in Carbonaceous Phyllite Stratum under High Geo-Stress. Adv. Civ. Eng. 2022, 2022, 3870227. [Google Scholar] [CrossRef]
Mechanical Properties of Blocks | |||
---|---|---|---|
Chiavenna Unit (scenario1/scenario2) | Gruf Unit (scenario1/scenario2) | Tambò Unit (scenario1/scenario2) | |
Uniaxial Strength [MPa] | 180 **/175 ** | 120 */108 * | 70 **/80 ** |
GSI | 70/60 | 65/55 | 50/50 |
mi | 26/26 | 28/28 | 16/16 |
D | 0.8/0.8 | 0.8/0.8 | 0.8/0.8 |
Ei [MPa] | 45,000/40,000 | 40,000/30,000 | 30,000/25,000 |
mb | 4.36/2.404 | 3.486/1.923 | 0.612/0.454 |
s | 0.0106/0.00233 | 0.00498/0.00109 | 0.000513/0.00024 |
a | 0.501/0.503 | 0.502/0.504 | 0.506/0.508 |
Poisson Ratio (υ) | 0.4 **/0.4 ** | 0.3 */0.3 * | 0.4 **/0.4 ** |
Density [Kg/m3] | 2800 * | 2600 * | 2500* |
Interfaces* (scenario 1/scenario 2) | |||
Peak Friction Angle [°] | 35/28 | ||
Peak Cohesion [MPa] | 1/0.1 | ||
Residual Friction Angle [°] | 25/25 | ||
Residual Cohesion [MPa] | 0/0 | ||
Tensile Strength [MPa] | 1/0.1 | ||
Normal Stiffness [GPa m−1] | 5/5 | ||
Shear Stiffness [GPa m−1] | 1/1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morcioni, A.; Apuani, T.; Cecinato, F. Piuro Landslide: 3D Hydromechanical Numerical Modelling of the 1618 Event. Geosciences 2023, 13, 49. https://doi.org/10.3390/geosciences13020049
Morcioni A, Apuani T, Cecinato F. Piuro Landslide: 3D Hydromechanical Numerical Modelling of the 1618 Event. Geosciences. 2023; 13(2):49. https://doi.org/10.3390/geosciences13020049
Chicago/Turabian StyleMorcioni, Andrea, Tiziana Apuani, and Francesco Cecinato. 2023. "Piuro Landslide: 3D Hydromechanical Numerical Modelling of the 1618 Event" Geosciences 13, no. 2: 49. https://doi.org/10.3390/geosciences13020049
APA StyleMorcioni, A., Apuani, T., & Cecinato, F. (2023). Piuro Landslide: 3D Hydromechanical Numerical Modelling of the 1618 Event. Geosciences, 13(2), 49. https://doi.org/10.3390/geosciences13020049